在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。相信許多人會覺得范文很難寫?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
圓錐的體積教學實錄獲獎圓錐的體積教學案例篇一
一、情境引入:
(1)(老師出示鉛錘):你有辦法知道這個鉛錘的體積嗎?
(2)學生發言:(把它放進盛水的量杯里,看水面升高多少……)
(3)教師評價:這種方法可行,你利用上升的這部分水的體積就是鉛錘的體積,間接地求出了鉛錘的體積。真是一個愛動腦筋的孩子。
(4)提出疑問:是不是每一個圓錐體都可以這樣測量呢?(學生思考后發言)
(5)引入:如果每個圓錐都這樣測,太麻煩了!類似圓錐的麥堆也能這樣測嗎?(學生發表看法),那我們今天就來共同探究解決這類問題的普遍方法。(老師板書課題)
設計意圖:情景的創設,激發了學生學習的興趣,使學生產生了自己想探索的需求,情緒高漲地積極投入到學習活動中去。
二、新課探究
(一)、探究圓錐體積的計算公式。
1、大膽猜測:
(1)圓錐的體積該怎樣求呢?能不能通過我們已學過的圖形來求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)
(2)圓錐和我們認識的哪種立體圖形有共同點?(學生答:圓柱)為什么?(圓柱的底面是圓,圓錐的底面也是圓……)
(3)請你猜猜圓錐的體積和圓柱的體積有沒有關系呢?有什么關系?(學生大膽猜測后,課件出示一個圓錐與3個底、高都不同的圓柱,其中一個圓柱與圓錐等底等高),請同學們猜一猜,哪一個圓錐的體積與這個圓柱的體積關系最密切?(學生答:等底等高的)
(5)學生用上面的方法驗證自己做的圓錐與圓柱是否等底等高。(把等底等高的放在桌上備用。)
2、試驗探究圓錐和圓柱體積之間的關系
我們通過試驗來研究等底等高的圓錐體積和圓柱體積的關系。
(1)課件出示試驗記錄單:
a、提問:我們做幾次實驗?選擇一個圓柱和圓錐我們比較什么?
b、通過實驗,你發現了什么?
(2)學生分組用等底等高的圓柱圓錐試驗,做好記錄。教師在組間巡回指導。
(3)匯報交流:
你們的試驗結果都一樣嗎?這個試驗說明了什么?
(4)老師用等底等高的圓柱圓錐裝紅色水演示。
(教師讓學生注意記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)
(5)學生拿小組內不等底等高的圓錐,換圓錐做這個試驗幾次,看看有沒有這樣的關系?(學生匯報,有的說我用自己的圓錐裝了5次,才把圓柱裝滿;有的說,我裝了2次半……)
(6)試驗小結:上面的試驗說明了什么?(學生小組內討論后交流)
(這說明圓柱的體積是與它等底等高圓錐體積的3倍.也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。)
3、公式推導
(1)你能把上面的試驗結果用式子表示嗎?(學生嘗試)
(2)老師結合學生的回答板書:
圓錐的體積公式及字母公式:
(3)在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)
設計意圖:放手讓學生自主探究,在實踐中真正去體驗圓柱和圓錐之間的關系。
(二)圓錐的體積計算公式的應用
1、已知圓錐的底面積和高,求圓錐的體積。
(1)出示例2:現在你能求出老師手中的鉛錘的體積嗎?(已知鉛錘底面積24平方厘米,高8厘米)學生嘗試解決。
(2)提問:已知圓錐的底面積和高應該怎樣計算?
(3)引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算。
2、已知圓錐的底面半徑和高,求圓錐的體積。
(1)出示例題:
(2)學生嘗試解答
(3)提問:已知圓錐的底面半徑和高,可以直接利用公式
v=1/3兀r2h來求圓錐的體積。
3、已知圓錐的底面直徑和高,求圓錐的體積。
(1)出示例3:
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數)
(2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
(3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的體積公式求出沙堆的體積)
(4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數的取舍方法是否正確)
(5)提問
:已知圓錐的底面直徑和高,可以直接利用公式
v=1/3兀(d/2)2h來求圓錐的體積。
設計意圖:公式的延伸讓學生對所學知識做到靈活應用,培養了學生活學活用的本領。
圓錐的體積教學實錄獲獎圓錐的體積教學案例篇二
(一個長方形,上面的一邊漸漸變短,直到變成三角形)
師: 剛才你看到多媒體屏幕上出現了什么樣的動畫?
生: 我看到了一個長方形逐漸變成了三角形.
師: 你看到的三角形和原來的長方形有什么關系?
生1: 它們是等底等高的關系.
生2: 它們面積的關系是倍數關系,正好兩倍.
師: 很好,你們真會動腦筋,我們來在看一個動畫.
多媒體演示2:
(圓柱體的上底面越來越小,直到縮成一點變成一個圓錐)
師: 這回你看到了什么?你猜想一下其中有什么知識和規律在里面?
生1: 我看到一個圓柱體的上底面越來越小,直到縮成一點.
生2: 圓柱體變成了圓錐體.
生5: 它們是等底等高的關系.
生6: 圓柱體的體積不是錐體的體積的兩倍,而是三倍.
(生匯報:
正確的有: “我想圓錐體積和圓柱的體積一定有某種關系.” “它們是等底等高的關系.”有爭論的有: “圓柱體的體積是錐體的體積的兩倍,” “圓柱體的體積不是錐體的體積的兩倍,而是三倍.”)
(學生進行討論)
師: 太好了還有什么更妙的主意沒有?
圓錐的體積教學實錄獲獎圓錐的體積教學案例篇三
1、掌握圓錐的體積公式,能運用公式進行計算。
2、在觀察、實驗、討論等活動中探索圓錐的體積公式。
3、體驗數學與生活的密切聯系,自覺養成合作交流與獨立思考的良好習慣。
教學重點:
1、使學生探索出圓錐的體積公式。
2、初步掌握圓錐體積的計算方法并解決一些實際問題。
教學過程:
一、情境導入
1、課件出示圖片
引導學生指圖說出冰淇淋形狀像我們學過的什么幾何體?圓錐
2、導入:同學們,冰淇淋形狀像我們學過的圓錐體,你喜歡吃冰淇淋嗎?那么冰淇淋體積有多大呢?這節課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知:
(一)圓錐的體積公式探討
師:我們的猜想是真的嗎?圓柱和圓錐的體積之間有沒有關系?有什么樣的關系?讓我們來做一個實驗來驗證一下吧!
出示圓柱和圓錐圖片,演示等底等高
師:今天用來試驗的教具有點特殊,他們的底相等,高也相等。
教師引導提出要求:
學生分組實驗
每小組推舉一名學生匯報實驗結果:
當圓柱和圓錐的底面積相等,高相等時,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.(教師多媒體演示)
所以我們的結論是:
3、教師出示兩個大小懸殊的圓錐和圓柱,請同學猜測,圓錐的體積是否還是圓柱的三分之一?(進一步強調等底等高,教師演示)
4、師生共同總結結論:圓錐的體積等于和它等底等高的圓柱體積的1/3。
(二)簡單應用? 嘗試解答
判斷:
1、圓柱的體積是圓錐體積的3倍。( )
2、圓柱的體積大于與它等底等高的圓錐的體積。(? )
3、圓錐的高是圓柱的高的3倍,它們的體積一定相等。( )
填空:
1、一個圓柱的體積是75.36m3,與它等底等高的圓錐的體積是(? )m3。
2、一個圓錐的體積是141.3cm3,與它等底等高的圓柱的體積是(? )cm3。
例題:(出示課件)
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數。)
(生獨立列式計算,小組交流,是指名組長出示答案)
鞏固練習,運用拓展
一、求下圖中圓錐體積。(略)
二、 一堆煤成圓錐形,底面半徑是1.5m,高是1.1m。這堆煤的體積是多少?如果每立方米的煤約重1.4噸,這堆煤約有多少噸?(得數保留整數。)
三、提高拓展
總結:你學到了什么?
板書設計:
圓錐的體積
等底等高??? v錐=1/3v柱=1/3sh
教學內容:
本節教材是人教版六年級數學下冊第二單元“圓錐的體積”部分,課本第25-26頁。這部分內容是在學生已經認識圓錐的特征和會圓柱體積計算的基礎上學習的。學習過程中要引導學生探索并掌握圓錐的體積公式。然后能夠根據公式及變形公式進行計算。