在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。相信許多人會覺得范文很難寫?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
圓錐的體積教學(xué)實錄獲獎圓錐的體積教學(xué)案例篇一
一、情境引入:
(1)(老師出示鉛錘):你有辦法知道這個鉛錘的體積嗎?
(2)學(xué)生發(fā)言:(把它放進盛水的量杯里,看水面升高多少……)
(3)教師評價:這種方法可行,你利用上升的這部分水的體積就是鉛錘的體積,間接地求出了鉛錘的體積。真是一個愛動腦筋的孩子。
(4)提出疑問:是不是每一個圓錐體都可以這樣測量呢?(學(xué)生思考后發(fā)言)
(5)引入:如果每個圓錐都這樣測,太麻煩了!類似圓錐的麥堆也能這樣測嗎?(學(xué)生發(fā)表看法),那我們今天就來共同探究解決這類問題的普遍方法。(老師板書課題)
設(shè)計意圖:情景的創(chuàng)設(shè),激發(fā)了學(xué)生學(xué)習(xí)的興趣,使學(xué)生產(chǎn)生了自己想探索的需求,情緒高漲地積極投入到學(xué)習(xí)活動中去。
二、新課探究
(一)、探究圓錐體積的計算公式。
1、大膽猜測:
(1)圓錐的體積該怎樣求呢?能不能通過我們已學(xué)過的圖形來求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)
(2)圓錐和我們認識的哪種立體圖形有共同點?(學(xué)生答:圓柱)為什么?(圓柱的底面是圓,圓錐的底面也是圓……)
(3)請你猜猜圓錐的體積和圓柱的體積有沒有關(guān)系呢?有什么關(guān)系?(學(xué)生大膽猜測后,課件出示一個圓錐與3個底、高都不同的圓柱,其中一個圓柱與圓錐等底等高),請同學(xué)們猜一猜,哪一個圓錐的體積與這個圓柱的體積關(guān)系最密切?(學(xué)生答:等底等高的)
(5)學(xué)生用上面的方法驗證自己做的圓錐與圓柱是否等底等高。(把等底等高的放在桌上備用。)
2、試驗探究圓錐和圓柱體積之間的關(guān)系
我們通過試驗來研究等底等高的圓錐體積和圓柱體積的關(guān)系。
(1)課件出示試驗記錄單:
a、提問:我們做幾次實驗?選擇一個圓柱和圓錐我們比較什么?
b、通過實驗,你發(fā)現(xiàn)了什么?
(2)學(xué)生分組用等底等高的圓柱圓錐試驗,做好記錄。教師在組間巡回指導(dǎo)。
(3)匯報交流:
你們的試驗結(jié)果都一樣嗎?這個試驗說明了什么?
(4)老師用等底等高的圓柱圓錐裝紅色水演示。
(教師讓學(xué)生注意記錄幾次,使學(xué)生清楚地看到倒3次正好把圓柱裝滿。)
(5)學(xué)生拿小組內(nèi)不等底等高的圓錐,換圓錐做這個試驗幾次,看看有沒有這樣的關(guān)系?(學(xué)生匯報,有的說我用自己的圓錐裝了5次,才把圓柱裝滿;有的說,我裝了2次半……)
(6)試驗小結(jié):上面的試驗說明了什么?(學(xué)生小組內(nèi)討論后交流)
(這說明圓柱的體積是與它等底等高圓錐體積的3倍.也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。)
3、公式推導(dǎo)
(1)你能把上面的試驗結(jié)果用式子表示嗎?(學(xué)生嘗試)
(2)老師結(jié)合學(xué)生的回答板書:
圓錐的體積公式及字母公式:
(3)在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)
設(shè)計意圖:放手讓學(xué)生自主探究,在實踐中真正去體驗圓柱和圓錐之間的關(guān)系。
(二)圓錐的體積計算公式的應(yīng)用
1、已知圓錐的底面積和高,求圓錐的體積。
(1)出示例2:現(xiàn)在你能求出老師手中的鉛錘的體積嗎?(已知鉛錘底面積24平方厘米,高8厘米)學(xué)生嘗試解決。
(2)提問:已知圓錐的底面積和高應(yīng)該怎樣計算?
(3)引導(dǎo)學(xué)生對照圓錐體積的計算公式代入數(shù)據(jù),然后讓學(xué)生自己進行計算。
2、已知圓錐的底面半徑和高,求圓錐的體積。
(1)出示例題:
(2)學(xué)生嘗試解答
(3)提問:已知圓錐的底面半徑和高,可以直接利用公式
v=1/3兀r2h來求圓錐的體積。
3、已知圓錐的底面直徑和高,求圓錐的體積。
(1)出示例3:
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))
(2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
(3)題目的條件中不知道圓錐的底面積,應(yīng)該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據(jù)圓錐的體積公式求出沙堆的體積)
(4)分析完后,指定兩名學(xué)生板演,其余學(xué)生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學(xué)生最后得數(shù)的取舍方法是否正確)
(5)提問
:已知圓錐的底面直徑和高,可以直接利用公式
v=1/3兀(d/2)2h來求圓錐的體積。
設(shè)計意圖:公式的延伸讓學(xué)生對所學(xué)知識做到靈活應(yīng)用,培養(yǎng)了學(xué)生活學(xué)活用的本領(lǐng)。
圓錐的體積教學(xué)實錄獲獎圓錐的體積教學(xué)案例篇二
(一個長方形,上面的一邊漸漸變短,直到變成三角形)
師: 剛才你看到多媒體屏幕上出現(xiàn)了什么樣的動畫?
生: 我看到了一個長方形逐漸變成了三角形.
師: 你看到的三角形和原來的長方形有什么關(guān)系?
生1: 它們是等底等高的關(guān)系.
生2: 它們面積的關(guān)系是倍數(shù)關(guān)系,正好兩倍.
師: 很好,你們真會動腦筋,我們來在看一個動畫.
多媒體演示2:
(圓柱體的上底面越來越小,直到縮成一點變成一個圓錐)
師: 這回你看到了什么?你猜想一下其中有什么知識和規(guī)律在里面?
生1: 我看到一個圓柱體的上底面越來越小,直到縮成一點.
生2: 圓柱體變成了圓錐體.
生5: 它們是等底等高的關(guān)系.
生6: 圓柱體的體積不是錐體的體積的兩倍,而是三倍.
(生匯報:
正確的有: “我想圓錐體積和圓柱的體積一定有某種關(guān)系.” “它們是等底等高的關(guān)系.”有爭論的有: “圓柱體的體積是錐體的體積的兩倍,” “圓柱體的體積不是錐體的體積的兩倍,而是三倍.”)
(學(xué)生進行討論)
師: 太好了還有什么更妙的主意沒有?
圓錐的體積教學(xué)實錄獲獎圓錐的體積教學(xué)案例篇三
1、掌握圓錐的體積公式,能運用公式進行計算。
2、在觀察、實驗、討論等活動中探索圓錐的體積公式。
3、體驗數(shù)學(xué)與生活的密切聯(lián)系,自覺養(yǎng)成合作交流與獨立思考的良好習(xí)慣。
教學(xué)重點:
1、使學(xué)生探索出圓錐的體積公式。
2、初步掌握圓錐體積的計算方法并解決一些實際問題。
教學(xué)過程:
一、情境導(dǎo)入
1、課件出示圖片
引導(dǎo)學(xué)生指圖說出冰淇淋形狀像我們學(xué)過的什么幾何體?圓錐
2、導(dǎo)入:同學(xué)們,冰淇淋形狀像我們學(xué)過的圓錐體,你喜歡吃冰淇淋嗎?那么冰淇淋體積有多大呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知:
(一)圓錐的體積公式探討
師:我們的猜想是真的嗎?圓柱和圓錐的體積之間有沒有關(guān)系?有什么樣的關(guān)系?讓我們來做一個實驗來驗證一下吧!
出示圓柱和圓錐圖片,演示等底等高
師:今天用來試驗的教具有點特殊,他們的底相等,高也相等。
教師引導(dǎo)提出要求:
學(xué)生分組實驗
每小組推舉一名學(xué)生匯報實驗結(jié)果:
當(dāng)圓柱和圓錐的底面積相等,高相等時,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.(教師多媒體演示)
所以我們的結(jié)論是:
3、教師出示兩個大小懸殊的圓錐和圓柱,請同學(xué)猜測,圓錐的體積是否還是圓柱的三分之一?(進一步強調(diào)等底等高,教師演示)
4、師生共同總結(jié)結(jié)論:圓錐的體積等于和它等底等高的圓柱體積的1/3。
(二)簡單應(yīng)用? 嘗試解答
判斷:
1、圓柱的體積是圓錐體積的3倍。(?。?/p>
2、圓柱的體積大于與它等底等高的圓錐的體積。(? )
3、圓錐的高是圓柱的高的3倍,它們的體積一定相等。(?。?/p>
填空:
1、一個圓柱的體積是75.36m3,與它等底等高的圓錐的體積是(? )m3。
2、一個圓錐的體積是141.3cm3,與它等底等高的圓柱的體積是(? )cm3。
例題:(出示課件)
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù)。)
(生獨立列式計算,小組交流,是指名組長出示答案)
鞏固練習(xí),運用拓展
一、求下圖中圓錐體積。(略)
二、 一堆煤成圓錐形,底面半徑是1.5m,高是1.1m。這堆煤的體積是多少?如果每立方米的煤約重1.4噸,這堆煤約有多少噸?(得數(shù)保留整數(shù)。)
三、提高拓展
總結(jié):你學(xué)到了什么?
板書設(shè)計:
圓錐的體積
等底等高??? v錐=1/3v柱=1/3sh
教學(xué)內(nèi)容:
本節(jié)教材是人教版六年級數(shù)學(xué)下冊第二單元“圓錐的體積”部分,課本第25-26頁。這部分內(nèi)容是在學(xué)生已經(jīng)認識圓錐的特征和會圓柱體積計算的基礎(chǔ)上學(xué)習(xí)的。學(xué)習(xí)過程中要引導(dǎo)學(xué)生探索并掌握圓錐的體積公式。然后能夠根據(jù)公式及變形公式進行計算。