每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。相信許多人會覺得范文很難寫?以下是小編為大家收集的優秀范文,歡迎大家分享閱讀。
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇一
1、知識目標:掌握3的倍數的數的特征。
2、技能目標:能運用特征判斷一個數是否是3的倍數。
3、情感目標:培養學生自主探索的能力,合作學習的品質。讓學生感受生活中蘊藏著豐富的數學知識。
教學重點:探索3的倍數的特征。
教學過程:
一、舊知引新
師出示3、4、5三個數
提問:你能用3、4、5這三個數字組成2的倍數和5的倍數三位數嗎?
學生匯報,教師板書。
談話:你是怎么想的?
二、設疑探究
(一)設置教學“陷阱”。
談話:如果仍用這三個數字,你能否組成是3的倍數的數呢? 試一試。
學生嘗試組數,并驗證這兩個數是否是3的倍數。
師:從這兩個能被3整除的數,你想到了什么?能被3整除的數有什么特征?
生:個位上是3的倍數的數能被3整除。(引導學生提出假設①)
(二)制造認知矛盾。
師:剛才同學們是從個位上去尋找能被3整除的數的“特征”的,那么個位上是3的倍數的數就一定能被3整 除嗎?
教師緊接著舉出16、123、449等數讓學生試除判斷,由此引導學生推翻假設①。
師:這幾個數個位上都是3的倍數,有的數能被3整除,而有的數卻不能被3整除。我們能從個位上找出能被 3整除的數的特征嗎?
生:不能。
(三)設疑問激興趣。
師:請同學們仍用3、4、5這三個數字,任意組成一個三位數, 看看它們能不能被3整除。
學生用3、4、5這三個數字任意組成一個三位數, 通過試除發現:所組成的三位數都能被3整除。
師:能被3整除的數有沒有規律可循呢? 下面我們一起來學習“能被3整除的數的特征。”(板書課題)
(四)引導探究新知。
師:觀察用3、4、5任意組成的能被3整除的三位數,雖然它們的大小不相同,但它們有什么共同點?
引導學生發現:組成的三位數的三個數字相同,所不同的是這三個數字排列的順序不同。
師:三個數字相同,那它們的什么也相同?
生:它們的和也相同。
師:和是多少?
生:這三個數字的和是12。
師:這三個數字的和與3有什么關系?
生:是3的倍數。
師:也就是說它們的和能被什么整除?
生:它們的和能被3整除。
師:由此你想到了什么?
學生提出假設②:一個數各位上的數的和能被3整除, 這個數就能被3整除。
師:通過同學們的觀察,有的同學提出了能被3 整除的數特征的假設,但是同學們觀察的僅是幾個特殊的 數,是否能被3 整除的數都有這樣的特征呢?要說明同學們的假設是正確的,我們需要怎么做?
生:進行驗證。
師:怎樣進行驗證呢?
引導學生任意舉一些能被3整除的數, 看看各位上的數的和能否被3整除。(為了便于計算和研究,可讓學生任意舉出100以內的自然數,然后除以3。)
根據學生舉出的數,教師完成如下的板書,并讓學生計算出各個數各位上的數的和進行驗證。
師:通過上面的驗證,說明同學們提出的能被3 整除的數特征的假設怎樣?
生:是正確的。
師:請同學們翻開書,看看書上是怎樣概括出能被3 整除的數的特征的。引導學生閱讀教材第36頁的有關內容。
師:什么叫各位?它與個位有什么不同?根據這個特征,怎樣判斷一個數能不能被3整除?
組織學生討論,加深能被3整除的數的特征的認識,掌握判斷一個數能否被3整除的方法。
三、課堂練習
(一)判斷下面各數能否被3整除,并說明理由。
54 83 114 262 837
(二)數369能被3整除嗎?你是怎樣判斷的?有沒有更簡捷的判斷方法?
引導學生發現:3、6、9這三個數字本身就能被3整除,因此它們的和自然能被3整除。判斷時用不著把它們相加。
(三)數35462791能被3整除嗎?(將369中插入一些數字改編而成。)
引導學生概括出迅速判斷一個數能否被3整除的方法:(1)先去掉這個數各位上是3、6、9的數;(2)把余下數位上的數相加,并去掉相加過程中湊成3、6、9的數;(3)看剩下數位上的數能否被3整除。
(四)運用上述判斷一個數能否被3整除的方法,迅速判斷31965、732659、3946586能否被3整除。
(五)在下面每個數的□里填上一個數字,使這個數有約數3。 它們各有幾種不同的填法?
□7 4□2 □44 56□
引導學生掌握科學的填數方法:(1 )先看已知數位上的數字的和是多少;(2)如果已知數位上的數字和 是3的倍數,那么未知數位的□里最小填“0”,要填的其它數字可依次加上3;如果已知數位上的數字和不是3 的倍數,那么未知數位的里可先填一個最小的數, 使它能與已知數位上的數字和湊成是3的倍數, 要填的其它數字可在此基礎上依次加上3。
(六)從0、5、6、7四個數字中選擇三個數,組成一個3的倍數,有多少種不同的數?
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇二
恩格斯說過:“思維是人類文化歷史長河中一朵美麗的浪花。”課堂教學中,有效地引導學生思維,不僅可以啟迪智慧,也能激發或撫慰人的情懷,使人賞心悅目、動人心弦,給人以美的享受。3的倍數特征這節課教學中,我讓學生在猜想——討論——驗證的過程中感受到數學是形象的、有趣味的和美麗的。在學習過程中,師生共同探討,開闊學生思維,感受教學的樂趣。
【教學片斷一】
一、在知識鏈接中,激活思維
師:我們學習了2、5的倍數的特征,誰來說說?
生1:個位上是0、2、4、6、8的數都是2的倍數。
生2:個位上是0或5的數都是5的倍數。
師:那怎樣判斷一個數既是2的倍數、又是5的倍數呢?
生3:看這個數的個位是不是0。
師:請一、二組的同學根據自己的學號說說是不是2、5的倍數。
生1:我的學號是1,既不是2的倍數,也不是5的倍數。
生2:我的學號是2,是2的倍數。
【教學片斷二】
二、在新知探究中,發展思維
師:看來我們已經掌握了2、5的倍數的特征,今天我們來學習3的倍數的特征,(板書)3的倍數的特征怎樣呢?是不是和2、5的倍數的特征一樣,只要看“個位”呢?請同學們一起來討論這個問題。
生1:我認為看個位可以。如:33、36、39它們的個位分別是3、6、9這些數都是3的倍數。
生2:我認為不能只看個位。如:23、16、29它們的個位雖然也是3、6、9,但這些數不是3的倍數。
生3:但也有的數它們不是3、6、9,如:24、45,可是這些數都是3的倍數。
師:那么3的倍數有什么特征呢?你們可以以45為例,在它的前后面添上一個數、兩個數、三個數……,老師能很快判斷能否是3的倍數。
生1:前面添上2。?????????????????? (×)
生2:后面添上24。????????????????? (√)
生3:前面添上3,后面添上53。????? (×)
師:請們用計算器驗證一下,看看老師判斷對不對?
(學生驗證后,產生疑惑)
師:老師判斷對不對呀?
生:(齊答)對。
師:其實老師也不是圣人,不過知道其中的奧妙,先掌握其中的規律罷了,你們想知道嗎?
生:(異口同聲說)想。
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇三
教學內容:
北師大版數學五年級上冊6—7頁的內容。
教學目的:
1、通過觀察、探究、交流等活動,讓學生經歷發現3的倍數特征的過程。
2、在理解的基礎上,掌握3的倍數的特征,并能利用特征進行判斷。
3、通過探究3的倍數的特征的活動過程,讓學生獲得積極的情感體驗,激發學習數學的興趣
教學重點:
理解3的倍數的特征。
教學難點:
探索活動中,發現規律,并歸納出3的倍數的特征。
教具準備:
實物投影儀、數字卡片等。
學具準備:
每人幾張數字卡片。
教學過程:
一、談話導入,揭示課題。
我們能不能通過觀察個位上的數來確定是不是3的倍數,那么3的倍數到底有什么特征呢?今天我們共同來研究。
板書課題:3的倍數的特征。
二、探索交流、獲取新知。
(一)活動一:復習鞏固。
1、前面我們研究了2和5的倍數的特征,能用你的話說一說他們的特征呢?
2、請你舉例說明。(請學生說,教師把學生的舉例板書在黑板上。)
3、說說能同時被2和5整除的數有什么特征?(觀察特征。用自己的話說一說。)
(二)活動二:探索研究3的倍數的特征。
1、在書上第6頁的表中,找出3的倍數,并做上記號。
(先獨立完成,看誰找的快?)
2、觀察3的倍數,你發現了什么?
教師參與到討論學習中。
先獨立思考,想出自己的想法。
然后與四人小組的同學說說你的發現。
生1:3的倍數個位上的數有0、1、2、3、4、5、6、7、8、9沒什么規律。
生2:十位上的數也沒有什么規律。
生3:將每個數的各個數字加起來試試看
3、你發現的規律對三位數成立嗎?找幾個數來檢驗一下。
(1) 自己先找幾個數試一試。
(2)然后在小組內說說你驗證的結論。
(三)活動三:試一試
在下面數中圈出3的倍數。
28 45 53 87 36 65
(先自己圈,然后說說你是怎樣判斷的?)
(四)活動四:練一練
1、請將編號是3的倍數的氣球涂上顏色。
36 17 54 71 45 48
(自己獨立完成,在小組內說說自己的想法。)
2、選出兩個數字組成一個兩位數,分別滿足下面的條件。
3 0 4 5
(1)是3的倍數。
(2)同時是2和3的倍數。
(3)同時是3和5 的倍數。
(4)同時是2,3和5的倍數。
(獨立完成,說說你的竅門和方法。)
(五)活動五:實踐活動
在下表中找出9的倍數,并涂上顏色。
(可以在自主實踐以后再交流。)
三、總結。
通過這節課的學習,你有什么收獲?
板書設計:
課題:探索活動(二)3的倍數的特征
1、在下面數中圈出3的倍數。
28 45 53 87 36 65
2、選出兩個數字組成一個兩位數,分別滿足下面的條件。
3 0 4 5
(1)是3的倍數。
(2)同時是2和3的倍數。
(3)同時是3和5 的倍數。
(4)同時是2,3和5的倍數。
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇四
一、溫故知新,直接導入
師:前面我們學過了2、5倍數的特征,回憶一下它的具體內容是什么?
生:2的倍數的個位數是0、2、4、6、8;5的倍數個位上是0、5。
師:那么3的倍數有什么特征呢?是不是還看個位數呢?這就是這節課我們要研究的內容。
教師板書課題:3的倍數的特征,學生齊讀課題。
二、小棒游戲,探究規律
1、師生小游戲
師:首先我們來做一個擺小棒的游戲,怎么玩呢?找一個同學在這張數位表上隨意用小棒擺出一個數,我能馬上猜出它是不是3的倍數。信不信?
師:你來!
師:為了驗證我猜得對不對,再請一個同學到前面的展臺上用計算器來算一算,跟我比比速度。
學生擺出:51
師:51是3的倍數。我算的比計算器快吧?
師:能擺一個三位數嗎?
學生擺出:312
師:312是3的倍數。
師:再來一個難點的。
學生擺出:1123
師:1123不是3的倍數。
師:想知道老師為什么判斷的這么快嗎?相信通過下面的操作你能發現其中的秘訣。
【評析:改變了以往先讓學生猜測3的倍數的特征入手的形式,變為直接就用操作小棒引入,讓學生一開始就拋開2、5倍數的特征的負遷移的影響。在課之始創設了學生“擺”老師“猜”這一互動環節。學生用幾根小棒在數位表中擺數,無論學生擺的是幾位數,老師都能迅速判斷出這個數是否是3的倍數。速度遠遠超過計算器。“老師為什么判斷的這么快呢?”學生被徹底征服且急于想知道答案,吊足學生的胃口。】
2、小組合作探究
(1)師:我們一起來看探究要求:用相應根數的小棒在數位表上各擺出3個數。
小組內合理分工,請大家靜靜的看一下合作要求——???????????
①男同學操作前兩行,女同學操作后兩行,記錄員將擺出的數記錄在表格中。
②用計算器算一算,將3的倍數圈出來。
③仔細觀察表格,從中你發現了什么?
師:明白要求后,小組合作完成。
(2)集體交流:
師:哪個小組來交流你們的研究成果?再找個小助手。
第一小組:
師:問問大家你們擺的數沒有問題吧!
師:給大家讀讀,你們圈出了哪些數?你們發現了什么?
生:我們發現了3根、6根小棒擺出來的數都是3的倍數。
師評價:關鍵要看小棒的根數,了不起的發現。
師:其他小組還有補充嗎?
第二小組:
師:來,介紹一下你們的發現。
生:只要小棒的根數是3的倍數,這個數就是3的倍數。
師:你們認為除了3根、6根,還有其它情況是嗎?具體解釋一下。
生: 9根、12根、15根……都行——
師:真是這么回事嗎?以9根為例擺擺看。
學生活動。
師:來,說說你們小組擺出了哪個數,它是不是3的倍數?
生:我用9根小棒擺出了36,36是3的倍數。
師:哪個小組還想出三位數、四位數或是更大的數?
生:我用9根小棒擺出了216,216是3的倍數。
生:我用9根小棒擺出了3015,3015是3的倍數。
師:說得完嗎?
生:說不完。
師:大家用九根小棒擺出來的數都是3的倍數嗎?那你認為他們小組的結論合理嗎?
生:很合理。
師:大家說著,我把它記錄下來(板書):只要小棒的根數是3的倍數,擺出來的數就是3的倍數。
【評析:通過用“小棒擺數活動” 讓研究對象直觀化,降低了學生觀察發現特征的難度,使得所學新知更貼近學生的“最近發展區”。學生借助小棒這個腳手架,在好奇心的驅使下很輕易的就會發現“只要所用小棒的根數是3的倍數,擺出來的這個數就是3的倍數”。】
師:由擺數所用小棒的根數我們就能快速判斷出一個數是不是3的倍數。如果把擺小棒換成撥珠子呢?
二、撥珠子,進一步探究
師:(出示計數器)你認識它嗎?仔細看,我撥出一個什么數,用了幾顆珠子?
板書:345——3+4+5——十二?
師:算一算345是3的倍數嗎?
師:在你的腦子里想象一個計數器,隨意撥出一個數,并想一想:
(1)各個數位上是幾顆珠子,一共撥了幾顆珠子?
(2)這個數是多少,算一算它是3的倍數嗎?
師:和你的同桌交流一下。
師:誰來說說你是怎么撥的?
根據學生的回答,教師操作點課件。
生:個位上有3珠子,十位上有6珠子,百位上有3珠子,一共用了12顆珠子,363是3的的倍數。
生:個位上有5珠子,十位上有5珠子,百位上有0珠子,千位上有5顆珠子,一共用了15顆珠子,5055是3的的倍數。
生:個位上是2顆珠子,十位上有5顆珠子,百位上有1顆珠子,千位上有2顆珠子,一共用了10顆珠子,2152不是3的倍數。
教師根據學生的回答板書,師:用12顆珠子撥出了363,是3的倍數,用15顆珠子撥出了5055也是3的倍數。想一想:用幾顆珠子撥出的數是3的倍數?
生1:珠子的顆數是3的倍數,這個數就是3的倍數。
生2:只要各個數位上珠子顆數的和是3的倍數,這個數就是3的倍數。
師:我們的研究又有了新的進展,也記錄下來。(板書:各個數位上珠子顆數的和是3的倍數,這個數就是3的倍數。)
【評析:在擺小棒的基礎上,引導學生用計數器想像一個數,借助學生對計數器熟練運用的經驗,使得學生的思維更加聚焦于對數的特征的研究。雖然每個同學只操作了一次,但是通過學生之間的合作交流,再加上教師的引導,學生們經歷了一個典型的通過不完全歸納的方法得出規律的過程。學生再次發現:只要各個數位上珠子顆數的和是3的倍數,這個數也是3的倍數。】
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇五
一、復習舊知
前面同學們已學習了2和5的倍數的特征,下面老師就來檢查一下你們能用3、4、5這三個數字來組成是2的倍數的三位數嗎?
(學生根據教師要求組數,教師板書出學生組數的情況:354、534。)師:同學們你們為什么這樣組數呢?
同樣用這三個數字,你們能組成是5的倍數嗎?你們是怎樣想的?
二、新知學習
(一)設疑引入
1.如果仍用這三個數字,你們能組成是3的倍數的數嗎? 請同學們試一試。
(教師根據學生組數的情況板書出:543、453。 )
2.這兩個數是3的倍數嗎?從這兩個是3的倍數的數來看,你想到了什么?
能被3整除的數有什么特征?
3.引導學生提出假設個位上是3的倍數的數能被3整除。
(二)制造認知矛盾
1.如果從個位上去尋找3的倍數的“特征”,那么個位上是3的數,它就一定是3的倍數嗎?你認為這種說法正確嗎?說說你的想法。
2.學生舉例推翻上列說法,提出新的觀點:一個數,各個數位上的和是3的倍數,這個數就是3的倍數。
(三)設問激趣
1.這位同學的觀點是不是正確的呢?我們不能輕信,需要驗證一下。請同學們自己寫出三個3的倍數,可大可小。
2.集體交流驗證:學生說數,教師隨機板書,并引導學生驗證。
3.通過驗證總結規律:一個數,各個數位上的和是3的倍數,這個數就是3的倍數。
4.自我驗證所寫出的3的倍數是否符合這個特征。
5.練一練:你還能利用3、4、5這三個數字,組成一個三位數,然后再看看它是不是3的倍數嗎?
6.小結:因為3、4、5三個數字的和是3的倍數,所以無論怎樣排列所組成的三位數都是3的倍數。
4. 活動小結:通過剛才的活動,我們發現3的倍數的一些特點,誰能歸納一下是3的倍數的數有什么特征嗎?得出結論:一個數各位上數的和是3的倍數,這個數就是3的倍數。
5.看書質疑(通過活動總結了結論,再讓學生看書,來發現問題,從而加深了學生對新知的認識。)
三、鞏固新知
通過學習,我們現在已經知道3的倍數的特征,你能運用這一規律來解決一些簡單問題嗎?
1.判斷下列的數是不是3的倍數:
369693396?? 136945692?? 121212127?? 18275499?? 923331
2.在下面每個數的□里填上一個數字,使這個數是3的倍數。 它們各有幾種不同的填法?
□7???????? 4□5???????? □44???????? 65□
3. 在下面每個數的□里填上一個數字,使這個數既是3的倍數又是5的倍數。
42□?????? 6□0??????? □7□??????? 31□□
四、全課總結:通過這節課,說一說你有什么收獲啊?你印象最深的是什么?
教學內容: 人教版五年級下冊第二單元第19—22頁
教學目標:
1. 使學生通過觀察、猜想、比較、驗證等一系列數學活動,自主探索并掌握3的倍數的特征。
2. 使學生在具體的探索活動中,培養自主探索的意識,發展初步的推理能力。
3. 使學生在參與學習活動的過程中,體驗成功的喜悅,增強學習數學的興趣。
4.讓學生感受生活中蘊藏著豐富的數學知識。
教學重點:知道3的倍數的特征,能判斷一個數是不是3的倍數。
教學難點:讓學生通過探索自主掌握3的倍數的特征。
教學準備:數位表 教學課件
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇六
一,復習引新
1, 用5,6,7三個數字組成一個三位數,使這個數是2的倍數 說說什么樣的數一定是2的倍數 可以擺成5的倍數嗎 說說怎樣擺 什么樣的數是5的倍數
2, 引入:我們已經知道看一個數是不是2或5的倍數,只要看這個數的個位,那么你能從個位上發現3的倍數的特征嗎 今天我們一起來研究3的倍數的特征.(揭示課題:3的倍數的特征)
二,排列中感受奇妙
1, 談話:我們班有50個同學,現在每個同學手中都有一張寫有自己學號的卡片,請大家判斷一下,自己的學號數是3的倍數嗎 (稍停,讓學生完成判斷)請學號數是3的倍數的同學把卡片貼在黑板的左邊,不是3的倍數的,卡片貼在黑板的右邊.
2, 提問:請觀察一下,根據一個數個位上的數字,能確定一個數是3的倍數嗎 (不能)那么3的倍數究竟有什么特征呢
3, 抽取黑板左邊3的倍數12和21.
(1) 談話:比較這兩個數,你能發現什么有趣的現象 (數字相同,數字排列的順序不同)
(2) 提問:在左邊3的倍數中,再找幾個數,把他的數字順序改變一下,看看還是不是3的倍數 你有什么發現 (一個3的倍數,改變數字的順序后,仍然是一個3的倍數.)
(3) 在右邊不是3的倍數的數中,也有這樣的數,你能把他們一組一組地排列起來嗎 (13,31;14,41;23,32;25,52;34,43;)這里又說明什么呢 (一個不是3的倍數,改變數字的順序后,仍然不是3的倍數)
(4) 到現在,我們可以推想,3的倍數的特征和數字的排列順序沒有系,但和這個數的各個數位上的數字有關,這里到底有什么奧秘呢
三,操作中發現規律
1, 活動:每個同學手中都有一些小棒和一張數位表,我們在數位表上分別來擺幾個3的倍數,看看分別用了幾根小棒,現在請你在3的倍數中任意選幾個來擺一擺,開始.
2, 學生在小組中完成并記錄,然后匯報,教師板書如:12:1+2=3;
3, 提問:對于小棒的根數你有什么發現 (都是3的倍數)
4, 下面我們反過來試試看,請你數出3的倍數根小棒,擺成一個兩位數或三位數,看看這個數是不是3的倍數.(學生操作后匯報結果)
5, 提問:擺每個數所用的小棒根數就是這個數的什么 現在你覺得什么樣的數一定是3的倍數 (3的倍數,它的各位數的和一定是3的倍數)
6, 教學試一試:如果一個數不是3的倍數,這個數各數位上數字之和會是3的倍數嗎 請你找幾個不是3的倍數算一算看.你得到什么結論 (各數位上數字的和不是3的倍數,這個數就不是3的倍數)
7, 你能把剛才發現的結論和現在這個結論連起來說一說嗎
四,練習中提升認識
1, 完成"想想做做"第1題
學生獨立完成判斷,并把題中3的倍數圈出來.
組織交流:哪些數是3的倍數 你是怎樣判斷的
明確方法:判斷一個數是不是3的倍數,可以先把這個數各位上的數相加,看得到的和是不是3的倍數.
2, 完成"想想做做"第2題
啟發:這幾道除法算式有什么共同特點 如果一個數除以3沒有余數,說明這個數和3是什么關系 反過來,如果一個數是3的倍數,那么這個數除以3會有余數嗎 你打算怎么判斷
學生各自做出判斷,在組織交流.
3,完成"想想做做"第3題
填什么數字能使這個兩位數是 3的倍數 你為什么填這個數 你是怎么想的 還可以填哪些數
4,完成"想想做做"第4題
先讓學生按要求操作,交流:你是怎么找9的倍數的 9的倍數都是3的倍數嗎 反過來,3的倍數都是9的倍數嗎 請舉例說明.
5,完成"想想做做"第5題
提問:每次要選幾張卡片 要使組成的三位數是3的倍數,這三張卡片上的數要滿足什么要求
學生動手選一選,并把每次組成的三位數記下來.
組織交流:你選了哪三張卡片 為什么選這三張呢 用這三張卡片能組成幾個不同的三位數 還可以選哪三張卡片 用這三張卡片又能組成哪幾個3的倍數 這樣的三位數一共有多少個
五,全課總結
3的倍數有什么特征 判斷一個數是不是3的倍數,你會怎么判斷
教學目標:
1, 使學生經歷探索3的倍數的特征的過程,知道3的倍數的特征,能正確判斷一個數是否是3的倍數
2, 使學生在探索3的倍數的特征的過程中,進一步培養觀察,比較,分析,歸納以及數學表達的能力,感受數學思維的嚴謹性及數學結論的確定性,激發學生學習興趣.
教學重點:使學生掌握3的倍數的特征,會判斷一個數是否是3的倍數
教學難點:探索3的倍數的特征
教學準備:有學號的卡片;學生準備小棒若干.
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇七
學習目標:
1.掌握2、5的倍數的特征,會判斷一個數是不是2、5的倍數。并由此感知奇數、偶數的概念。
2.通過觀察、猜想、比較、驗證等一系列數學活動,讓學生自主探索并掌握3的倍數的特征。
3.讓學生感受生活中蘊藏著豐富的數學知識。
學習重點、難點:
1、重點:知道3的倍數的特征,能判斷一個數是不是3的倍數。
2、難點:讓學生通過操作實驗自主發現3的倍數的特征。
學習過程
一、知識鏈接,激發學習興趣
師:前面同學們已學習了2和5的倍數的特征,下面老師就來檢查一下你們能用2、3、0、5這四個數字來組成是2的倍數的四位數嗎?
(學生根據教師要求組數,教師適時板書)
師:同學們你們為什么這樣組數呢?
生:……
師:同樣用這四個數字,你們能組成是5的倍數嗎?
(教師根據學生組數的情況板書)
師:你們是怎樣想的呢?
生:……
師:那么你可以組一個四位數既是2的倍數也是5的倍數嗎?
生:……
師:分析一下這個四位數有什么特點?
生:……
(設計意圖:這樣采用組數的方法,既復習了2和5的倍數的數的特征,又可為下面學習新的內容打下一定的基礎,同時又激發了學生學習的興趣。)
二、新知學習
(一)設疑引入
師:如果用3、4、5這三個數字,你們能否組成是3的倍數的數嗎?請同學們試一試。
(教師根據學生組數的情況板書)
你組的這些數是根據什么呢?
師:這兩個數是3的倍數嗎?
(學生通過試除驗證,得出結論“是/否”)
(設計意圖:學生已經掌握了2的倍數和5的倍數的數的特征,在研究3的倍數的數的特征時,會很自然地想到“看個位上的數”。這里正是把學生的已有知識經驗作為教學資源,巧妙地通過對比引起學生的思維沖突,促使學生自覺克服思維定勢的負面影響,激發學生強烈的探究欲望。)
(二)制造認知矛盾
師:剛才同學們是從個位上去尋找3的倍數的“特征”的,那么個位上是3的數它就一定是3的倍數嗎?
(我緊接著舉出13、23、46、126、49等數讓學生試除判斷,從而由此引導學生推翻假設。)
師:同學們,注意觀察一下這幾個數個位上的數字,個位的數字都是3的倍數,但它們的結果有的是3的倍數,但有的數卻不是3的倍數,那么我們能從個位上找出是3的倍數的數的特征嗎?
生:不能。
(設計意圖:通過設置這樣一個教學小“陷阱”,引導學生提出3的倍數的特征的假設,然后推翻假設,引發認知矛盾,并再次創設問題情境讓學生進行探究,這樣的設計不僅有效地避免了“2和5的倍數的特征”思維定勢的影響,而且進一步地激發了學生的求知欲望。)
(三)小組合作,自學探究
那么3的倍數有什么特征呢?下面我們同學自讀課本p50的內容,然后小組討論完成黑板的練習題。
□7???????? 4□5???????? □44???????? 65□
(設計意圖:通過層層設疑,讓學生在學習中,學而知困,求甚解的心理,促使他們達到自學最優化,并學會通過小組的合作學習)
(四)增加難度,快樂數學
我們同學現在已經掌握了3倍數的特征,那么1112358537954是不是3的倍數呢?
(小組完成,激發學生的興趣,提高小組合作解決問題的能力)
三、全課總結
通過這節課,說一說你有什么收獲啊?你印象最深的是什么?你對自己在課堂上的表現滿意嗎?
(通過這樣的小結,讓學生對這一節課的表現進行自己的整理,充分的體現了學生學習的主體地位,使學生始終沉浸在一種濃厚的探索氛圍之中。)
板書設計:
3的倍數
2的倍數:2、 4、 6、 8、0?????? 5的倍數:5、0
(看個位)(偶數)?????????????? (看個位)
2和5的倍數:看個位?? 是“0”
3的倍數:345,543 354 534
看個位???? 13 23 26 ……???? 各數位,數的和是3的倍數
21 24 18 54……
3693939393939298(程穎)
1 1 1 2 3 5 8 5 3 7 9 5 4
15??? 12
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇八
教學目標:
1.使學生認識和掌握3的倍數的特點,能判斷或寫出3的倍數,并能說明判斷理由。
2.使學生經歷探索和發現3的倍數的特征的過程,培養觀察、比較和分析、概括等思維能力,積累數學活動的經驗,提高歸納推理的能力,進一步發展數感。
3.使學生主動參與探索、發現規律的活動,獲得探索數學結論的成功感受;體驗數學充滿規律,體會數學的奇妙,增強學習數學的積極情感。
教學重點:
認識3的倍數的特征。
教學難點:
研究并發現3的倍數的特征。
教學準備:
準備計數器教具和學具。
教學過程:
一、激活經驗
1.復習回顧。
提問:2和5的倍數有哪些特征?
回顧一下,我們是怎樣發現2和5的倍數的特征的?(板書:找出倍數——觀察比較——發現特征)
2.引入課題。
談話:我們上節課通過找2和5的倍數,對找出的倍數進行觀察、比較,分別發現了2和5的倍數的特征。今天,我們就按照這樣的過程,探索、尋找3的倍數的特征。(板書課題)
二、學習新知
1.提出猜想,引導質疑。
引導:我們知道2的倍數,個位上是0.2.4.6.8;5的倍數,個位上是5或o.那你能猜想一下3的倍數會有什么特征嗎?為什么這樣想?說說你的想法。(按思維慣性,可能許多學生會猜測個位上是3的倍數)
許多同學認為,3的倍數可能是個位上是3.6.9的數。(板書:3的倍數,個位上是3、6、9)
質疑:利用以前的經驗學習新內容,是不錯的學習方法。今天大家聯系2和5的倍數的特征這樣猜想,想法是很好的,數學學習經常可以這樣類推。那這一次的猜想還對不對呢?大家來看幾個數:13是3的倍數嗎?26和49呢?(根據回答擦去板書內容后半部分)
2.利用經驗,組織探究。
(1)找3的倍數。
(2)探索特征。
3.學生歸納,強化認識。
追問:現在你能告訴大家,經過找出倍數、觀察比較,我們發現3的倍數有什么特征嗎?
讓學生讀一讀板書的結論。
強調:同學們通過自己的思考、探索,發現了一個數各個數位上數字的和是3的倍數,這個數就是3的倍數;反之,一個數各個數位上數字的和不是3的倍數,這個數就一定不是3的倍數。
4.閱讀“你知道嗎”。
啟發:當你發現3的倍數的特征時,你對數學有什么感覺?
談話:是的,數學很神奇、神秘,3的倍數居然和它各個數位上數字的和有這樣密切的關系!數學有許多神奇、有趣的規律,只要我們具有一定基礎,認真探究,這一條條神奇的秘密和規律就會被發現和應用。下面請大家閱讀課本第34頁的“你知道嗎”,看看會有什么神奇的規律告訴你。
交流:你知道了什么?什么樣的數叫完全數?舉例說一說。(結合舉例6和28,先板書因數,再板書表示完全數的等式) 現在發現的完全數都有什么特征?
三、練習鞏固
1.做“練一練”第1題。
2.做“練一練”第2題。
3.做練習五第8題。
4.做練習五第9題。
5.做練習五第10題。
四、課堂總結
提問:今天的學習你又有什么收獲和體會?
判斷3的倍數的方法,和判斷2、5的倍數不同在哪里?
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇九
《3的倍數的特征》教學反思
《3的倍數的特征》的教學是五下數學第二單元“因數與倍數”中一個知識點,是在學生已認識倍數和因數、2和5倍數的特征的基礎上進行教學的。由于2、5的倍數的特征從數的表面的特點就可以很容易看出——根據個位數的特點就可以判斷出來。但是3的倍數的特征卻不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。因而在《3的倍數的特征》的開始階段我復習了2、5的倍數的特征之后就讓學生猜一猜什么樣的數是3的倍數,學生自然而然地會將“2.5的倍數的特征”遷移到“3的倍數特征的問題中, 得出:個位上是3、6、9的數是3的倍數,后被學生補充到“個位上是0-9的任何一個數字都有可能是3的倍數,”其特征不明顯,也就是說3的倍數和一個數的個位數沒有關系,因此要從另外的角度來觀察和思考。在問題情境中讓學生產生認知沖突,萌發疑問,激發強烈的探究欲望。接著提供給每位學生一張百數表,讓他們圈出所有3的倍數,拋出問題:把 3 的倍數的各位上的數相加,看看你有什么發現,引導學生換角度思考3的倍數特征 。學生在經歷了猜測、分析、判斷、驗證、概括、等一系列的數學活動后感悟和理解了3的倍數的特征,引導學生真正發現:3的倍數各位上數的和一定是3的倍數;不是3的倍數各位上數的和一定不是3的倍數。從而,使學生明確3的倍數的特征,然后進行練習與拓展。這樣的探究學習比我們老師直接教給他們答案要扎實許多,之后的知識應用學生就相應比較靈活和自如,效果較好。
這節課結束后,我感覺最大的缺憾之處在最后的拓展練習上,由于自己事先練習下水沒有做足,所以誤導了學生。題目如下:“從3、0、4、5這四個數中,選出兩個數字組成一個兩位數,分別滿足以下條件:1、是3的倍數。2、同時是2和3的倍數。3、同時是3和5的倍數。4、同時是2、3和5的倍數。”學生問要寫幾個時,我回答如果數量很多至少寫3個。呵呵,其實此題不需要如此考慮,因為它們的數量都有限。
3的倍數特征的教學反思
心理學原理表明,新異的刺激可以引起學生的注意和興趣。在教學中,根據不同的教材和要求,采取不同的教學方法,能夠引起學生學習的興趣,有利于創設良好的課堂氣氛。
教學3的倍數特征這一課時,教師組織學生進行下列鞏固練習:
下列數中3的倍數有:(??????? )
14??? 35??? 45??? 100??? 332??? 876??? 74??? 88
學生利用3的倍數的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學生打擂臺怎么樣?看誰說的3的倍數的數最多,我們看誰能考倒老師。”這時同學們興趣盎然,紛紛出題來考老師。
生:42
師:111
生:78
師:57
生:81
師:2037
生:6891
……??? ……
這時師故意出錯:369041
學生馬上發現了這個數不是3的倍數,師問:“你能不能改一改其中的某個數字使它成為3的倍數。”
生:“可以將1改為2。”
生:“可以將4改為5。”
生:“可以將1改為5。”
生:“可以將1改為8。”
生:“可以將4改為2”
生:“可以將4改為8”
學生回答完后,我及時提問:“你們為什么不改其中的3、6、9和0呢?”學生通過思考回答:“因為0、6、3、9每一個數都是3的倍數,所以只要改4和1這兩個數就行了。”這時我及時指出:“判斷一個數是不是3的倍數可以用篩選法來判斷,在各數位的數字中先篩去3的倍數或和為3的倍數的數字,若余下的數字之和是3的倍數,原數就是3的倍數,否則就不是。”這時我逐漸地出示下列這組數要求學生馬上判斷是否3的倍數。
56
561
5617
56178
561784
5617849
……??? ……
這個鞏固練習,有效地調動了學生的積極性,不斷激起學生認知的內驅力,使學生在探索的過程中,主動學習、主動探索,帶來了內心的滿足感。
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇十
學習內容:3的倍數的特征
學習目標:通過觀察、猜測、驗證等活動,讓學生經歷探索3的倍數的特征的過程,能判斷一個數是不是3的倍數。
學習重點:使學生理解和掌握3的倍數的特征,并能熟練地去判斷一個數是否是3的倍數。
學習難點:3的倍數的數的特征的歸納過程。
教學準備:計數器、數位表
學習過程:
自主學習(我能行)
一、知識鏈接:
下面的數,哪些是2的倍數?哪些是5的倍數。
364、420、515、736、1028、905
我們在判斷一個數是否是2、5的倍數,都是從一個數的位上的情況來判定。
二、新知學習
(一)設疑引入:探索活動:3的倍數的特征
師:如果用3、4、5這三個數字,你們能否組成是3的倍數的數嗎? 請同學們試一試。
個位上是3的數,它就一定是3的倍數嗎?
(二)探索數位表
用紅色筆把是3的倍數的數圈起來,觀察它們的特點
溫馨提示:(1)從個位看,這些數有什么共同特征嗎?
(2)將各個數位上的數加起來,你能發現什么?
(三)用計數器:在計數器上撥一個3的倍數的數,觀察所撥珠子的個數與3的關系。
小組交流
我發現:一個數各個數位上的數字的( )是3的倍數,這個數就是3的倍數
三、鞏固新知
1、下面哪些數是3的倍數?
46 24 75 104 304?? 108 111
2、填空
在□中填上一個數字,使這個數是3的倍數。
1□?? 2□6??? 52□ 36□
3、看誰最聰明?
用你的方法判斷下列數是不是3的倍數?
369639693、13693692、121212127
四、學習小結:
闖關達標(我最棒)
輕松第一關:
1、3的倍數的特征是(???????????????????? );請把3的倍數圈起來:
11 12 13 14 15 16 17 18 19 20
91 92 93 94 95 96 97 98 99 100
2、.小小法官
(1)同是2、5和3的倍數的數的個位一定是0.( )
(2)個位上是3、6、9的數,都是3的倍數( )
(3)75既是5的倍數,又是3的倍數( )
跨越第二關:
1、在1——20自然數中,找出3的倍數:(???????????????????????? )?? 找出5的倍數(??????????? );找出既是2的倍數又是5的倍數(?????????????? ),找出同時是2、3、5的倍數的數(?????????? )
2、任意兩個數字組成符合下面要求的數
6、 0、 9、 5
(1)3的倍數:(???????????????????????????????????? )
(2)既是2的倍數又是3的倍數:(???????????????????? )
(3)既是3的倍數又是5的倍數:(???????????????????? )
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇十一
各位老師,大家下午好!我說課的內容是《3的倍數的特征》,它是人教版實驗教材小學數學五年級下冊第19頁的內容。下面我從四個方面來說說:
第一方面:教學內容分析
3的倍數的特征是在因數和倍數的基礎上進行教學的,是求最大公因數、最小公倍數的重要基礎,也是學習約分和通分的必要前提。因此,使學生熟練地掌握2、5、3的倍數的特征,具有十分重要的意義。教材是先教學2、5的倍數的特征,再教學3的倍數的特征。因為2、5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判定,必須把其各位上的數相加,看所得的和是否是3的倍數來判斷,學生理解起來有一定的困難,因此,把它放在2、5的倍數的特征后面教學。
第二方面:重點目標及難點:
本課的教學重點:使學生理解和掌握3的倍數的特征,并能熟練地去判斷一個數是否是3的倍數。
教學難點: 3的倍數的數的特征的歸納過程。
第三方面:過程與方法
本節課型是新授課,課前速算:快速寫出3×1=? 3×2= 3×3= …3×33=
第一環節: 創設情境,生成問題
為了使學生產生探索的興趣,激發學習動機,形成最佳的學習心理狀態,我便充分利用小學生好奇心強這一心理特點,創設了一個《猜一猜》的游戲情境:讓學生出題,隨意說一個數,老師迅速地說出該數是不是3的倍數的,以此來調動學生學習的積極性。那么3的倍數的特征是什么呢?這就是我們將學習新的內容,從而引出課題。(板書:3的倍數的特征)
第二環節? 探索交流,解決問題
1、自主探索:
猜測由于學生在《猜一猜》游戲中產生了急于探索的熱情,我便讓學生去做大膽猜想。猜想“3的倍數可能有什么特征?”,讓學生充分說出他們的猜測,學生可能說出:“個位上是3、6、9的數,都是3的倍數”。 “3的倍數個位上的數有1、2、3、4、5、6、7、8、9、0,沒有什么特別規律,十位上的數字也沒有什么規律。” ……
2、互動交流
(1)小組交流:舉例驗證
學生有可能也會發現以下情況:
①45是3的倍數,但是,個位上的數字是5,不是3、6、9等。
②26個位上的數是6,但它不是3的倍數。
(2)、全班交流:猜測的結論不成立。
師:對于一個結論是否成立,只舉一個正例是不夠的,如舉一個反例就可
以推翻這個結論,這個結論就不能成立。讓學生意識到已經不能用原來的方法(也就是從數的個位上的情況)來判斷一個數是否是3的倍數,而應該換個角度去思考。
3、出示速算表格
(1)請同學們觀察這個表格,你發現3的倍數有什么特征?把你的發現在小組里說一說。(小組交流。)
(2)在教學過程中,教師要巡視,認真傾聽學生有什么發現,有什么不懂的地方。
(3)組織全班交流。在學生觀察思考的基礎上,概括學生的實際情況,提出新的思考問題:觀察每個數各個數位上的數與3有什么關系?將每個數的各個數字加起來看一看會怎樣?
3、共同優化,形成結論:
試著概括出:3的倍數的特征。
一個數各個位上的數字之和如果是3的倍數,那么,這個數一定是3的倍數。否則,這個數就不是3的倍數。
4、檢驗結論。
(1)我們從100以內的數中發現了規律,得出了3的倍數的特征,如果是三位數甚至更大的數,3的倍數的特征是否也相同呢?
(2)利用100以內數表來驗證。
(3)延伸到三位數或更大的數。如:573、753、999、1236、2244、7863……
(4)學生自己寫數并驗證,然后小組交流,觀察得出的結論是否相同。
在本環節,我用充足的時間讓小組代表上講臺展示成果,說出各自的思考過程,對學生的回答我給予充分的肯定和表揚,引導學生驗證自己的發現是否正確,最后達成共識:一個數的各位上的數的和是3的倍數,這個數就 3的倍數(板書)。這樣便巧妙地突出本課的重點,突破了本課的難點。
第三環節 鞏固應用,內化提高
當學生學會了老師猜數所用的竅門,顯然興致極高,個個躍躍欲試,想一顯身手,我設計了三個不同層次的練習。
1、基本練習:課本p19做一做第1題。
下列數中3的倍數有:14?? 35? 45? 100? 332? 876? 74? 88
(這是一個基本練習,使全體學生都能對新知識有進一步的理解,達到鞏固新知的目的。)
2、變式練習:
課本p19做一做第2題.既是2和5的倍數,又是3的倍數的最小三位數是多少?此題是培養學生有序地思考問題的能力
3、綜合練習:p21(7題)在 口里填一個數字,使每個數都是3的倍數。
口7?? 4口2??? 口44? 65口?? 12口1
(出這個練習的目的是檢驗學生綜合運用知識的能力,達到舉一反三的效果,提高思維的靈活性的。)
第四環節 回顧整理,反思提升
為增添課的趣昧性和挑戰性,我讓學生暢談整節課的收獲,并讓學生式寫出一些能同時是2、5的倍數,又是3的倍數,和同伴交流,觀察它們有什么特點?
縱觀整節課的教學流程,體現了數學的教學目標是促進學生全面發展的新課標理念,讓學生在實踐中學會新知,相信能取得良好的教學效果,讓每一個學生都能在數學學習中得到不同程度的提高,促進學生的全面發展。??? 我說課完畢謝謝大家!
第四方面:目標測試:
練習三的第4、5、6、8題。
附:設板書設計:
3的倍數的特征
一個數各位上的數的和是3的倍數,這個數就是3的倍數。
3的倍數的特征教學實錄 3的倍數特征案例分析與反思篇十二
教學目標:
1、理解3的倍數的特征,掌握一個數是否是3的倍數的判斷方法。
2、培養分析、比較及綜合概括能力。
3、培養合作交流的意識,掌握歸納的方法,獲取一定的學習經驗。
教學重點:
掌握3的倍數的特征,正確判斷一個數是否是3的倍數。
教學難點:
探索3的倍數的特征。
教學過程:
一、【創設情景,明確目標】(3分鐘)
(一)創設情景,反饋預習
1、師:課前我們已經完成了導學案自主預習部分,我們已經知道了2、5的倍數特征,下面的數你能判斷出下面的數哪些是2的倍數,哪些是5的倍數,哪些即是2的又是5的倍數呢?
p:16、24、85、102、138、170、
2 的倍數:16、24、102、138、170
5的倍數:85、170
即是2的倍數又是5的倍數:170
師:說一說,你是怎么想的?
生1:個位上是02468就是2的倍數。個位是上0或者5的數就是5的倍數。一個數既是2的倍數,又是5的倍數,它的個位上一定是0.
2、看來要想判斷一個數是否是2或者5的倍數,只需要看這個數個位上的數。可是,為什么只需要觀察個位上的數呢?為什么其他位上的數就不用觀察呢?
生:2的倍數的個位數是0、2、4、6、8;5的倍數個位上是0、5。
師:那么3的倍數有什么特征呢?是不是還看個位數呢?這就是這節課我們要研究的內容。
3、教師板書課題:3的倍數的特征。
(二)明確目標,引領方法
1、出示學習目標(見學案),生自讀目標。
2、同伴說說自己的理解,談談如何實現目標。
【設計意圖】交流預習內容,解決預習中的問題;明確學習目標,帶著目標進行合作學習。
二、【自主學習,同伴合作】(15分鐘)
(一)自主學習,自我感知
1、小棒游戲,探究規律
師:首先我們來做一個擺小棒的游戲,怎么玩呢?(拿6根小棒)找一個同學在這張數位表上隨意用小棒擺出一個數,我能馬上猜出它是不是3的倍數。信不信?
師:你來!
師:為了驗證我猜得對不對,再請一個同學到前面的展臺上用計算器來算一算,跟我比比速度。
學生擺出:51
師:51是3的倍數。我算的比計算器快吧?
師:能擺一個三位數嗎?
學生擺出:312
師:312是3的倍數。
師:再來一個難點的。
學生擺出:1123
師:1123不是3的倍數。
師:想知道老師為什么判斷的這么快嗎?相信通過下面的操作你能發現其中的秘訣。
2、小組合作探究
(1)用3根小棒擺一個數,這些都是3的倍數嗎?
師:我們一起來看探究要求:用相應根數的小棒在數位表上各擺出3個數。
小組內合理分工,請大家看一下導學案的合作要求
①根據要求每人用3根小棒擺一個數,并思考是不是3的倍數,3人擺數,1人記錄。
②用計算器算一算,將3的倍數圈出來。
③仔細觀察表格,從中你發現了什么?
(2)用4根再擺出一些數,這些都是3的倍數嗎?
(3)用6根再擺出一些數,這些都是3的倍數嗎?
(4)擺出3的倍數與所需的小棒的根數有什么聯系?3的倍數有什么特征?
預設
第一組:用3根小棒擺:2、12、102,都分別是3的倍數。
第二組:用4根小棒擺:22、1111、1102,都不是3的倍數。
第三族,用6根小棒擺:都是3的倍數。
問題:你發現了什么?
生:我們發現了3根、6根小棒擺出來的數都是3的倍數。
師評價:關鍵要看小棒的根數,了不起的發現。
生:只要小棒的根數是3的倍數,這個數就是3的倍數。
師:你們認為除了3根、6根,還有其它情況是嗎?具體解釋一下。
生: 9根、12根、15根……都行——
(5)真的是這么回事嗎?以9為例擺擺看。
師:來,說說你們小組擺出了哪個數,它是不是3的倍數?
生:我用9根小棒擺出了36,36是3的倍數。
師:哪個小組還想出三位數、四位數或是更大的數?
生:我用9根小棒擺出了216,216是3的倍數。
生:我用9根小棒擺出了3015,3015是3的倍數。
師:說得完嗎?
生:說不完。
師:大家用九根小棒擺出來的數都是3的倍數嗎?那你認為他們小組的結論合理嗎?
生:很合理。
師:大家說著,我把它記錄下來(板書):只要小棒的根數是3的倍數,擺出來的數就是3的倍數。
師:由擺數所用小棒的根數我們就能快速判斷出一個數是不是3的倍數。
3、總結提升
師:通過擺小棒,我們能判斷出一個數是不是3的倍數,現在不擺了,也不撥了,通過上面的兩次操作,能不能說說什么樣的數是3的倍數?
師:小組內交流一下。
小組活動。
師:誰來說說?
生1:各個數位上的數加起來是3的倍數,這個數就是3的倍數。
生2:各個數位上數的和是3的倍數,這個數就是3的倍數。
生3:只要各個數位上數的和是3的倍數,這個數就是3的倍數。
師:無論是小棒的根數還是各個數位上珠子的顆數,實際上也就是各個數位上數的和。只要各個數位上數的和是3的倍數,這個數就是3的倍數。
4、探究原因,區別理解
(1)要想判斷一個數是否是2或者5的倍數,只需要看這個數個位上的數。可是,為什么只需要觀察個位上的數呢?為什么其他位上的數就不用觀察呢?
研究16
師:上節課我們講過,16是2的倍數,它是由一個十和六個一組成的,那么想想把一個十,兩個兩個的分,會出現什么結果?(也就是說如果把16兩個兩個地分,正好可以分完,沒有余數)
但既然十位上沒有剩余,那十位上的數還需要觀察嗎?(我們只需要觀察個位上的6根小棒就可以,把它兩個兩個地分能正好分完)
用剛才的方法判斷5的倍數為什么也只觀察個位?(因為一個百被5分完沒有余數)
看來判斷2、5不受百位和十位的影響,只需要觀察個位上的數就可以。
通過剛才地研究,我們更加熟練了判斷2、5倍數的方法,還知道了為什么只需要觀察個位上的數就可以了。
(2)問:為什么3的倍數特征要看各個數位相加的和呢?
舉例24是不是3的倍數,但是個位4是嗎?這是為什么?自己分一分,畫一畫,看看24為什么是3的倍數?
一個十3個3個分余1根,第二個余1根,兩個各余1根,在和個位繼續分,
138分一分,試一試,看看是不是3的倍數
一個百3個3個分最后剩1根,三個十3個3個分,每個余1根,所以剩三個一,個位傻上還剩一個8,合起來繼續分,12個繼續分。
(2)總結:梳理一下:24、138,分一遍,你發現什么?(剩余就是3的倍數。數位是幾,余數就是幾)無論百位上是幾,3個3個分完,就剩幾。
p:剩余的小棒正好是每個數位加起來的數。(因為這些數位和剩下的數相同,所以可以直接把數位上的數相加,如果和是3的倍數,那么這個數就是3的倍數,如果不是,就不是3的倍數。)
三、【鞏固拓展,形成能力】(10分鐘)
(一)鞏固訓練,夯實基礎
1、口頭練習:是不是3的倍數都有這個規律呢?隨便寫一個數:先用除法算算是不是3的倍數,再算一算各個數位上的和是不是3的倍數?
把一個數各個數位上的數相加是3的倍數……
2、圈出下面是3的倍數的數:42、78、111、165、655、5988
3、□2,這是一個兩位數,十位被遮蓋住了,如果它是3的倍數,猜一猜,這個數可能是幾?為什么?
(預設:生1:1。
師:可以嗎?還有其他答案嗎?
生2:1,4,7都可以。
師:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍數,所以填1、4、7都可以。
師:恭喜你,三種可能都被你們猜中了!
師:如果它既是2的倍數,又是3的倍數呢?
生:24。
師:為什么只有24可以呢?
生:因為只有24既是2的倍數,又是3的倍數。)
(二)拓展訓練,靈活創新
以前我們用除法來檢驗這個數是不是3的倍數,今天我們又學了3的倍數特征,我們只需要求各個數位上的和是3的倍數就可以,但是如果遇到這樣的題怎么辦?(ppt)
、123456789
老師:如果用各個數位之和是3的倍數,比較麻煩。
但是我們用劃掉3的倍數的方法求,這樣即便是很復雜的數也能特別輕易的解決。比如:,從左開始,1不夠,看13,是3的4倍,余1,和6組成16余1,18算完……
后面的練習我們下課完成,好,這節課不僅發現3的特征,還根據特點發現簡便地判斷方法,更可貴的發現了背后的道理。學習數學就是這樣,不僅要知其然還要知其所以然。希望同學們能在快樂的數學海洋里繼續愉快地暢游。這節課我們就上到這里,下課。
教師巡視,個別輔導。
(二)同伴討論,互助共進
完成學案中“同伴合作,互助共進”內容。
重點交流學生所舉的例子。
教師巡視,個別輔導。
【設計意圖】這一環節由學生自學和同伴合作,完成因數倍數的知識的學習。
四、【師生共學,交流分享】(5分鐘)
(一)小組展示,彰顯風采
指名小組進行匯報。
(二)師生完善,共同提高
1、學生糾正、補充、質疑
2、教師精講、點撥、評價
在學生討論比較充分的基礎上,教師進行點撥來完善學生對比的認識。
【設計意圖】通過教師的點撥完善學生對比的認識。
五、【鞏固拓展,形成能力】(10分鐘)
(一)鞏固訓練,夯實基礎
先由學生自主完成學案中相應的內容,再同桌交流,完善答案。
1、是不是3的倍數都有這個規律呢?隨便寫一個數:先用除法算算是不是是不是3的倍數,再算一算各個數位上的和是不是3的倍數?
把一個數各個數位上的數相加是3的倍數……
2、看一看哪些是3的倍數:42、78、111、165、655、5988
原來判斷是用除法,現在用加法。改革了
3、不用計算,能快速算出來那個式子有余數嗎?
802、3;342、3
4、下面的數是3的倍數嗎?888、555,那這樣的三位數都是三的倍數嗎?p:777、888,可以想成3個8相乘,像這樣的三位數一定是3的倍數
5、下面都是嗎?789、345、654
都是,有什么特點?相鄰、連續三個自然數。
是不是所有都是呢?舉例:123.為什么呢?
654,把大的給小的,把6給4,三個都是5了,把較大數給叫小叔一個,數字和不變,所以一定是3的倍數。
6、是嗎?363、669、993。是。有簡便的方法嗎?每個數學都是3的倍數,這個數字和一定是3的倍數。