五年級教案的編寫還需根據(jù)學(xué)生的學(xué)習(xí)進度和能力水平,合理安排教學(xué)難度和教學(xué)方法。接下來,將為大家推薦幾個優(yōu)秀的五年級教案范文,供大家參考學(xué)習(xí)。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇一
《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學(xué)后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。
一、領(lǐng)會意圖,做到用教材教。
我覺得作為一名教師,重要的是領(lǐng)會教材的編寫意圖,靈活的運用教材,讓每個細節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導(dǎo)??磥盱`活的運用教材,深放領(lǐng)會意圖,才能使教學(xué)更為輕松、高效!
二、模式運用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的。只要是能促進學(xué)生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計出兩個“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇二
人教版小學(xué)數(shù)學(xué)五年級下冊第17、18頁。
1.我能掌握2、5的倍數(shù)的特征,并利用特征判斷一個數(shù)是不是2、5的倍數(shù)。
2.我知道什么是奇數(shù)和偶數(shù)。
了解2、5的倍數(shù)的特征及奇數(shù)和偶數(shù)的含義。
能正確地求出符合要求的數(shù)。
收集電影票。
一、導(dǎo)入新課。
二、檢查獨學(xué)。
1.互動,檢查獨學(xué)部分第1、2題完成情況。
2.質(zhì)疑探討。
三、合作探究。
(一)2、5的倍數(shù)的特征。
1.小組合作。
仔細回顧獨學(xué)題2,再與同伴分享自己的收獲。
2.小組代表展示匯報。
3.小組合作交流,驗證規(guī)律。
我們的想法:
小組代表匯報、總結(jié)。
4.試試身手。
(1)獨立完成第18頁“做一做”。
(2)集體交流。我又發(fā)現(xiàn)了:
(二)奇數(shù)和偶數(shù)。
1.自主閱讀教材。根據(jù)自學(xué)內(nèi)容,我知道:
根據(jù)是否是2的倍數(shù),可把自然數(shù)分為和兩類。是2的倍數(shù)的數(shù)叫做,不是2的倍數(shù)的數(shù)叫做。
2.組內(nèi)交流,并討論:0是不是2的倍數(shù)?為什么?
3.匯報總結(jié)。
4.我能說出身邊的奇數(shù)和偶數(shù)。
5.做一做(第17頁)。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇三
尊敬的各位領(lǐng)導(dǎo)、老師大家上午好:我們團隊所執(zhí)教的是《因數(shù)和倍數(shù)》。
一、說教材:
《因數(shù)和倍數(shù)》是小學(xué)人教版課程標準實驗教材五年級下冊第二單元的內(nèi)容,也是小學(xué)階段“數(shù)與代數(shù)”部分最重要的知識之一?!兑驍?shù)和倍數(shù)》的學(xué)習(xí),是在初步認識自然數(shù)的基礎(chǔ)上,探究其性質(zhì)。其中涉及到的內(nèi)容屬于初等數(shù)論的基本內(nèi)容,相當(dāng)抽象。在這一內(nèi)容的編排上與以往教材不同,沒有數(shù)學(xué)化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數(shù)與位數(shù)的概念。這節(jié)課是因數(shù)與倍數(shù)的概念的引入,為本單元最后的內(nèi)容,以及第四單元的最大公因數(shù),最小公倍數(shù)提供了必須且重要的鋪墊。
根據(jù)教材所處的地位和前后關(guān)系,確定了以下目標:
知識技能目標:
掌握因數(shù)倍數(shù)的概念,理解因數(shù)與倍數(shù)的意義,掌握找一個數(shù)因數(shù)與倍數(shù)的方法。
情感,價值目標:培養(yǎng)學(xué)生合作、觀察、分析和抽象概括能力,體會教學(xué)內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學(xué)的好奇心和求知欲。
教學(xué)重點和難點:理解倍數(shù)和因數(shù)的意義,掌握找出一個數(shù)因數(shù)和倍數(shù)的方法。
二、學(xué)情分析:
學(xué)生在平時學(xué)習(xí)中缺少主動性,一部分學(xué)生怕困難,缺乏獨立思考的習(xí)慣,同時考慮問題也不夠全面。在本堂課的教學(xué)中,主要調(diào)動學(xué)生學(xué)習(xí)的積極性,提高學(xué)生課堂學(xué)習(xí)的參與性,體驗成功的樂趣,通過學(xué)生的親自探索和合作交流,來達到學(xué)習(xí)知識,掌握所學(xué)知識的目的。同時感受數(shù)學(xué)中的奧妙。
三、教法與學(xué)法指導(dǎo)。
當(dāng)今社會,人類的語言離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學(xué)生為本”課堂教學(xué)要圍繞培養(yǎng)學(xué)生的探索精神、創(chuàng)新精神出發(fā),為全面提高學(xué)生的綜合素質(zhì)打下一定的基礎(chǔ)。本節(jié)課根據(jù)學(xué)生的認知能力與心理特征來進行教學(xué)策略和方法的設(shè)計。
1、遵循學(xué)生主體,老師主導(dǎo),自主探究,合作交流為主線的理念,利用學(xué)生對乘法的運算理解概念。
2、小組合作討論法。以學(xué)生討論,交流,互相評價,促成學(xué)生對找一個數(shù)的因數(shù)和倍數(shù)的方法進行優(yōu)化處理,提升。鞏固學(xué)生方法表達的完整性,有效性,避免學(xué)生只掌握方法的理解,而不能全面的正確的表達。
四,教學(xué)過程。
1、揭示主題。
老師直接揭示主題,大膽創(chuàng)新,打破了傳統(tǒng)的為了導(dǎo)入而導(dǎo)入的教學(xué)模式。為學(xué)生的自主合作學(xué)習(xí)提供了開放的空間。
2、合作交流,理解因數(shù),倍數(shù)的概念及其意義。
教師出示前置性作業(yè),小組內(nèi)交流,匯報學(xué)習(xí)成果,教師適時點撥,真正把課堂還給學(xué)生,也充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體地位。使學(xué)生在交流中培養(yǎng)了合作學(xué)習(xí)的意識,對因數(shù)和倍數(shù)的概念有了初步的認識,對它們之間的聯(lián)系也有了更好的理解。
一個數(shù)的因數(shù)和倍數(shù)是本節(jié)課中技能目標中很重要的一部分。使學(xué)生在已有的經(jīng)驗基礎(chǔ)上,獨立的列舉一個數(shù)的因數(shù),在小組合作交流中得出。找一個數(shù)的因數(shù)和倍數(shù)的方法。真正地把主動權(quán)交給學(xué)生,教師通過引導(dǎo),使學(xué)生加深理解,化解難點。
4、引導(dǎo)學(xué)生分析,比較歸納尋找共性,找出不同,得出一個數(shù)的因數(shù),使學(xué)生學(xué)會有序思考,從而形成基本技能與方法,做到即關(guān)注了過程,又關(guān)注了結(jié)果。教師的教學(xué)水到渠成,學(xué)生的學(xué)習(xí)則是山重水復(fù)疑無路,柳暗花明又一村。
5、引導(dǎo)學(xué)生置疑,集體交流,化解疑問。
便于學(xué)生對本課所學(xué)知識更好的消化理解。
三、練習(xí)。
練習(xí)題設(shè)計形式多樣,有梯度。既注重基礎(chǔ),又有所提高,從而真正實現(xiàn)了課堂教學(xué)的有效性。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇四
教學(xué)內(nèi)容:
教材分析:
本節(jié)教學(xué)是在學(xué)生學(xué)習(xí)掌握了因數(shù)和倍數(shù)兩個概念的基礎(chǔ)上,在教師的引導(dǎo)下,讓學(xué)生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓(xùn)練,使學(xué)生能熟練找全一個數(shù)的因數(shù)。另外,通過引導(dǎo)學(xué)生用集合的形式表示一個數(shù)的因數(shù),一方面給學(xué)生滲透集合思想,更重要的是為后面教學(xué)求兩個數(shù)的公因數(shù)做準備。
教學(xué)目標:
2、逐步培養(yǎng)學(xué)生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學(xué)重點:
探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
教學(xué)難點:
用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
教具準備:
投影儀、小黑板、卡片。
教學(xué)課時:一課時。
教學(xué)設(shè)想:
運用嘗試教學(xué)法,從學(xué)生已有的知識經(jīng)驗出發(fā),通過教師引導(dǎo)、學(xué)生自學(xué)例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
教學(xué)過程:
一、復(fù)習(xí)舊知。
師:同學(xué)們,前面學(xué)習(xí)了因數(shù)和倍數(shù)的概念,老師很想考考你們學(xué)得怎么樣,可以嗎?
生:(預(yù)設(shè))可以!
師:出示小黑板。
1、利用因數(shù)和倍數(shù)的相互依存關(guān)系說一說下面各組數(shù)的相互關(guān)系。
21和72×7=1430÷6=5。
2、判斷。
(1)12是倍數(shù),2是因數(shù)。()。
(2)1是14的因數(shù),14是1的倍數(shù)。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
教師根據(jù)學(xué)生完成練習(xí)的情況對學(xué)生進行恰當(dāng)?shù)谋頁P激勵,同時進入新課教學(xué):……。
二、新課教學(xué)。
過程一:嘗試訓(xùn)練。
(一)出示問題。
師:同學(xué)們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
生:行?。A(yù)設(shè))。
嘗試題:14的因數(shù)有哪幾個?
(二)學(xué)生解決問題,教師巡視并根據(jù)實際適時輔導(dǎo)學(xué)困生。
(三)信息反饋。
板書:
1×14。
14 2×7。
14÷2。
14的因數(shù)有:1,2,7,14。
過程二:自學(xué)課本(p13例1)。
(一)學(xué)生自學(xué)例1。
教師提出自學(xué)要求(投影):
1、18有哪些因數(shù)?
2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
(二)信息反饋。
1、反饋自學(xué)要求情況;
板書:
1×18。
182×9。
3×6。
18的因數(shù)有1,2,3,6,9,18。
還可以這樣表示:18的因數(shù)。
2、知識對比,探索發(fā)現(xiàn)規(guī)律。
(1)師:同學(xué)們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學(xué)生思考,教師適時引導(dǎo)。
(3)同桌交流思考結(jié)果。
(4)師生互動。總結(jié)方法、點出課題。
求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習(xí)。
(一)用小黑板出示練習(xí)題。
1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
(二)信息反饋:師生互動總結(jié)特點。
板書:
一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
三、課堂作業(yè)。
練習(xí)二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
五、課堂小結(jié)。
師:今天你學(xué)會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
生:……。
板書設(shè)計:
求一個數(shù)的因數(shù)的方法。
1×14。
142×7 方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數(shù)有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
還可以表示為:
它的最小因數(shù)是1,的因數(shù)是它本身。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇五
教科書第25頁,練習(xí)四第5~8題。
1、通過練習(xí)與對比,使學(xué)生發(fā)現(xiàn)和掌握求兩個數(shù)最小公倍數(shù)的一些簡捷方法,進行有條理的思考。
2、通過練習(xí),使學(xué)生建立合理的認識結(jié)構(gòu),形成解決問題的多樣策略。
3、在學(xué)生探索與交流的合作過程中,進一步發(fā)展學(xué)生與同伴合作交流的意識和能力,感受數(shù)學(xué)與生活的聯(lián)系。
一、基本訓(xùn)練。
1、我們已經(jīng)掌握了找兩個數(shù)的.公倍數(shù)和最小公倍數(shù)的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
(板書課題:公倍數(shù)和最小公倍數(shù)練習(xí))。
2、填空。
5的倍數(shù)有:()。
7的倍數(shù)有:()。
5和7的公倍數(shù)有:()。
5和7的最小公倍數(shù)是:()。
3、完成練習(xí)四第5題。
(1)理解題意,獨立找出每組數(shù)的最小公倍數(shù)。
(2)匯報結(jié)果,集體評講。
(3)觀察第一組中兩個數(shù)的最小公倍數(shù),看看有什么發(fā)現(xiàn)?
每題中的兩個數(shù)有什么特征呢?(倍數(shù)關(guān)系)可以得出什么結(jié)論?
(4)第二組中兩個數(shù)的最小公倍數(shù)有什么特征?(是這兩個數(shù)的乘積)。
在有些情況下,兩個數(shù)的最小公倍數(shù)是這兩個數(shù)的乘積。
4、完成練習(xí)四第6題。
你能運用上一題的規(guī)律直接寫出每題中兩個數(shù)的最小公倍數(shù)嗎?
交流,匯報。
說說你是怎么想的?
二、提高訓(xùn)練。
1、完成練習(xí)四第7題。
(1)理解題意,獨立完成填表。
(2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?
你還有其他方法解決這個問題嗎?(7和8的最小公倍數(shù)是56)。
2、完成練習(xí)四第8題。
(1)理解題意。
你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。
你是怎樣知道的?
要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數(shù))
三、課堂小結(jié)。
通過練習(xí),同學(xué)們又掌握了一些比較快的求兩個數(shù)最小公倍數(shù)的方法,并能運用這些方法解決一些實際問題。
在小組中互相說說自己本節(jié)課的收獲。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇六
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會12也是4的倍數(shù),指名說后,再強化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強。這時再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點特別的兩句。
整個過程處理細致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。
找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。
探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進,先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。
教學(xué)4的倍數(shù)時,學(xué)生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。
這樣搭建了有效的平臺、形成了師生互動生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構(gòu)了數(shù)學(xué)模型。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇七
倍數(shù)和因數(shù)一課是蘇教版數(shù)學(xué)第八冊中的內(nèi)容。這一內(nèi)容是在學(xué)生已經(jīng)分階段認識了百以內(nèi)、千以內(nèi)、萬以內(nèi)、億以內(nèi)以及一些整億的數(shù),較為系統(tǒng)地掌握了十進制記數(shù)法,同時也基本完成了整數(shù)四則運算基礎(chǔ)上進行的教學(xué),主要是要使學(xué)生初步認識倍數(shù)和因數(shù)的意義,學(xué)會在1-100的自然數(shù)中找10以內(nèi)某個數(shù)的所有倍數(shù)和100以內(nèi)某個數(shù)的所有因數(shù)的方法。這是學(xué)生進一步學(xué)習(xí)公倍數(shù)和公因數(shù),以及分數(shù)的約分、通分和四則運算的基礎(chǔ),對以后的學(xué)習(xí)起著重要的作用。
1、知識與技能目標:使學(xué)生結(jié)合整數(shù)乘、除法運算初步認識倍數(shù)和因數(shù)的含義,探索求一個數(shù)的倍數(shù)和因數(shù)的方法,并能找一個數(shù)的倍數(shù)和因數(shù)。
2、過程與方法目標:引導(dǎo)學(xué)生自主探究找一個數(shù)倍數(shù)和因數(shù)的方法,體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
3、情感與態(tài)度目標:在學(xué)習(xí)活動中激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和自信心。
4、重點:理解因數(shù)和倍數(shù)的含義,知道它們呢的關(guān)系是相互依存的。
5、難點:探索并掌握求一個數(shù)的倍數(shù)和因數(shù)的方法。
(一)認識倍數(shù)和因數(shù)。
認識倍數(shù)和因數(shù)時,利用學(xué)生對乘法運算以及長方形的長、寬和面積關(guān)系的已有認識,引導(dǎo)學(xué)生在操作中得到乘積相同的不同乘法算式,并進一步引出倍數(shù)和因數(shù)的概念。倍數(shù)和因數(shù)是指兩個數(shù)之間的關(guān)系,不能單獨說某數(shù)倍數(shù)或因數(shù),這一點學(xué)生往往搞不清,為了使學(xué)生明白倍數(shù)和因數(shù)是一種相互依存的關(guān)系,我舉了生活中的兄弟關(guān)系,母女關(guān)系的例子幫助學(xué)生理解,讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系,同時也讓學(xué)生明白,用數(shù)學(xué)知識解決生活問題是學(xué)習(xí)數(shù)學(xué)的真正目的。
(二)探索求一個數(shù)的倍數(shù)的方法。
從例1中得出:12是3的倍數(shù),又把學(xué)生舉的一個3的倍數(shù)的例子有目的地寫在黑板上結(jié)合起來看,引導(dǎo)學(xué)生說出3的倍數(shù)還有哪些。學(xué)生在舉例子時說出來的數(shù)是無序的,這時教師引導(dǎo)學(xué)生思考怎樣才能按從小到大的順序有條理地找出3的倍數(shù),促使學(xué)生去關(guān)注思想方法,并在學(xué)生討論交流中感受有序的思想方法。
在學(xué)生掌握方法的基礎(chǔ)上,采用比賽的形式要求學(xué)生有序地寫出2、5的倍數(shù),然后在整體觀察2、3、5倍數(shù)的基礎(chǔ)上通過學(xué)生討論,一個數(shù)倍數(shù)的特點。培養(yǎng)了學(xué)生觀察、比較、歸納概念的能力。
(三)探索求一個數(shù)的因數(shù)的方法。
從例中看出4、3、6、2、12、1都是12的因數(shù),那我們可以怎樣找一個數(shù)的因數(shù)呢?先讓學(xué)生獨自找36的因數(shù),再指名幾個學(xué)生說說是怎么找的,通過幾位學(xué)生找的方法的比較得出較合理的方法。接著又找了15、16的因數(shù),歸納出一個數(shù)因數(shù)的特點。
(四)全課小結(jié)。
(五)鞏固練習(xí)。
為了提高學(xué)生學(xué)習(xí)興趣,鞏固所學(xué)知識,我又補充了兩個練習(xí):
1、判斷題目的是強化學(xué)生對基礎(chǔ)知識的掌握。
2、出示幾張數(shù)字卡片。從中選擇只有倍數(shù)和因數(shù)關(guān)系,比誰選擇得多。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇八
今天聽了唐老師上的《3的倍數(shù)的特征》這節(jié)課,讓我感受了在新課堂模式中,教師的主導(dǎo)和學(xué)生的主體地位的發(fā)揮,教師僅僅只是一位組織者,一個幫手,而學(xué)生才是主人。課堂上,學(xué)生輕松愉悅地學(xué)習(xí)、交流、展示,讓我覺得這樣的課堂才能培養(yǎng)出全面發(fā)展的新型人才來。
這節(jié)課的設(shè)計從整體上安排了五個環(huán)節(jié):
2.導(dǎo)入激趣,通過學(xué)生組織的擺卡片組數(shù)游戲復(fù)習(xí)了“2、5的倍數(shù)的特征”,同時讓學(xué)生擺出是3的倍數(shù)的數(shù)。學(xué)生自然而然地會將“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此產(chǎn)生認知沖突,萌發(fā)疑問,激發(fā)強烈的探究欲望。
3.自主探究,小組合作這個環(huán)節(jié)中,通過學(xué)生獨立圈數(shù),小組合作討論找規(guī)律,來發(fā)現(xiàn)3的倍數(shù)的特征。給學(xué)生提供了生生交流,合作交流的平臺,有了表達和傾聽的機會。
4.展示交流中,學(xué)生表現(xiàn)得活躍,組織語言能力強,思維敏捷。這說明唐老師平時充分地給予了學(xué)生合作學(xué)習(xí),展示自我的機會。
5.達標測評練習(xí),使得課堂學(xué)習(xí)知識得到了升華,學(xué)會了判斷和寫3的倍數(shù)的特征,知識掌握情況及時有了反饋。
我們在學(xué)習(xí)的同時,要找到值得注意和改進的地方。對于這節(jié)課,我認為有幾點值得大家一起探討:
4在幾個互動環(huán)節(jié)中,形式單一化,如:“請一個同學(xué)來驗證一下這個數(shù)是否是3的倍數(shù)?!笨梢宰屆恳粋€學(xué)生都參與其中。避免有的學(xué)生“沒戲演”就“退場”了。
總之,這一節(jié)課讓我們在探究新課堂模式,尋找學(xué)生“自主、合作、探究”的學(xué)習(xí)方法以啟發(fā)。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇九
《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
放手讓每個同學(xué)找出36的所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點。
在最后的環(huán)節(jié)中我設(shè)計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。
這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十
一、單元主題圖體驗數(shù)學(xué)化過程。單元主題圖是教材中的一個重要內(nèi)容,它是選擇某一個主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗獲取知識的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗“數(shù)學(xué)化”的過程。
二、數(shù)形結(jié)合實現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認識,設(shè)計了“用小正方形拼長方形”的操作活動,引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機地結(jié)合,防止學(xué)生進行“機械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認識,而且能與操作活動與圖形描述聯(lián)系起來,促進了學(xué)生的有意義建構(gòu),這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。
三、探索活動關(guān)注解決問題的策略。學(xué)生在探索活動中,運用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學(xué)會了思考,初步形成了解決問題的一些基本策略。
四、困惑:
1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴大了,課堂活躍了,但是同時給學(xué)生進行課后輔導(dǎo)的時間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個一個單元只有一個練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十一
一.填空題。
1.都是自然數(shù),如果,的最大公約數(shù)是(),最小公倍數(shù)是()。
2.甲,乙,甲和乙的最大公約數(shù)是()×()=(),甲和乙的最小公倍數(shù)是()×()×()×()=()。
3.所有自然數(shù)的公約數(shù)為()。
4.如果m和n是互質(zhì)數(shù),那么它們的最大公約數(shù)是(),最小公倍數(shù)是()。
5.在4、9、10和16這四個數(shù)中,()和()是互質(zhì)數(shù),()和()是互質(zhì)數(shù),()和()是互質(zhì)數(shù)。
6.人教版小學(xué)五年級數(shù)學(xué)下冊因數(shù)和倍數(shù)測試題:用一個數(shù)去除15和30,正好都能整除,這個數(shù)最大是()。
*7.兩個連續(xù)自然數(shù)的和是21,這兩個數(shù)的最大公約數(shù)是(),最小公倍數(shù)是()。
*8.兩個相鄰奇數(shù)的和是16,它們的最大公約數(shù)是(),最小公倍數(shù)是()。
**9.某數(shù)除以3、5、7時都余1,這個數(shù)最小是()。
10.根據(jù)下面的要求寫出互質(zhì)的兩個數(shù)。
(1)兩個質(zhì)數(shù)()和()。(2)連續(xù)兩個自然數(shù)()和()。
(3)1和任何自然數(shù)()和()。(4)兩個合數(shù)()和()。
(5)奇數(shù)和奇數(shù)()和()。(6)奇數(shù)和偶數(shù)()和()。
二.判斷題。
1.互質(zhì)的兩個數(shù)必定都是質(zhì)數(shù)。()2.兩個不同的奇數(shù)一定是互質(zhì)數(shù)。()。
3.最小的質(zhì)數(shù)是所有偶數(shù)的最大公約數(shù)。()4.有公約數(shù)1的兩個數(shù),一定是互質(zhì)數(shù)。()5.a是質(zhì)數(shù),b也是質(zhì)數(shù),,一定是質(zhì)數(shù)。()。
三.直接說出每組數(shù)的最大公約數(shù)和最小公倍數(shù)。
26和13()13和6()4和6()5和9()29和87()30和15()13、26和52(2、3和7()。
(1)如果數(shù)a能被數(shù)b整除,a就叫做b的(),b就叫做a的()。
(2)12的最小的約數(shù)是(),最大約數(shù)是(),最小的倍數(shù)是()。
(3)15的`全部約數(shù)有()。
(4)1—20中:奇數(shù)是(),偶數(shù)是(),
質(zhì)數(shù)是(),合數(shù)是()。
(5)1,2,15,17,24各數(shù)中,既不是質(zhì)數(shù)也不是合數(shù)的是(),
既不是質(zhì)數(shù)又不是偶數(shù)的是(),既不是奇數(shù)又不是合數(shù)的是()。
(6)在66,390,12,165,105,91各數(shù)中,
能被2整除的數(shù)有(),能被3整除的數(shù)有(),
能被5整除的數(shù)有(),能同時被2、3整除的數(shù)有(),
能同時被2、5整除的數(shù)有(),能同時被3、5整除的數(shù)有(),
能同時被2、3、5整除的數(shù)有(),
(7)a和b是互質(zhì)數(shù),則a和b最大公約數(shù)是(,最小公倍數(shù)是()。
(8)用0、1、2、3組成一個能同時被2、3、5整除的最小四位數(shù)是()。
(9)a是b的倍數(shù),則a、b最大公約數(shù)是(),最小公倍數(shù)是()。
將本文的word文檔下載到電腦,方便收藏和打印。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十二
認識因數(shù)和倍數(shù)(教材第5頁內(nèi)容,以及第7頁練習(xí)二的第1題)。
【教學(xué)目標】。
1、從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。
3、培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
【重點難點】。
【復(fù)習(xí)導(dǎo)入】。
1、教師用課件出示口算題。
10÷5=16÷2=。
12÷3=100÷25=。
220÷4=18×4=。
25×4=24×3=。
150×4=20×86=。
學(xué)生口算。
2、導(dǎo)入:在乘法算式中,兩個因數(shù)相乘,得到的結(jié)果叫做它們的積。乘法算式表示的是一種相乘的關(guān)系,在除法算式中,兩個數(shù)相除,得到的結(jié)果叫做它們的商。除法算式表示的是一種相除的關(guān)系,在整數(shù)乘法和除法中還有另一種關(guān)系,這就是我們這一節(jié)課要學(xué)習(xí)探討的內(nèi)容。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十三
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。
本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的`方法(培養(yǎng)學(xué)生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。
在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標。特別是用除法找因數(shù)的學(xué)生,正是因為他們意識到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。
在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運用所學(xué)知識,找到求因數(shù)的方法),如教師一開始就引導(dǎo)學(xué)生:想幾和幾相乘,勢必會造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動?用已有的經(jīng)驗自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨立思考、自主探索、促思(促進學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。
至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實現(xiàn)學(xué)生學(xué)習(xí)的主體地位。
學(xué)生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點,我相信像這樣潤物無聲的細節(jié),無論于學(xué)生、于課堂都是有利無弊的。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十四
1、因數(shù)和倍數(shù):如果整數(shù)a能被b整除,那么a就是b的倍數(shù),b就是a的因數(shù)。
2、一個數(shù)的因數(shù)的求法:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身,方法是成對地按順序找。
3、一個數(shù)的倍數(shù)的求法:一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的,方法時依次乘以自然數(shù)。
4、2、5、3的倍數(shù)的`特征:個位上是0、2、4、6、8的數(shù),都是2的倍數(shù)。個位上是0或5的數(shù),是5的倍數(shù)。一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
5、偶數(shù)與奇數(shù):是2倍數(shù)的數(shù)叫做偶數(shù)(0也是偶數(shù)),不是2的倍數(shù)的數(shù)叫做奇數(shù)。
6、質(zhì)數(shù)和和合數(shù):一個數(shù),如果只有1和它本身兩個因數(shù)的數(shù)叫做質(zhì)數(shù)(或素數(shù)),最小的質(zhì)數(shù)是2。一個數(shù),如果除了1和它本身還有別的因數(shù)的數(shù)叫做合數(shù),最小的合數(shù)是4。
只要大家腳踏實地的復(fù)習(xí)、一定能夠提高數(shù)學(xué)應(yīng)用能力!希望提供的因數(shù)與倍數(shù)知識點輔導(dǎo),能幫助大家迅速提高數(shù)學(xué)成績!
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十五
第一段(引入)。
作為一名五年級學(xué)生,因數(shù)與倍數(shù)是我們學(xué)習(xí)數(shù)學(xué)的重要內(nèi)容,我們需要掌握因數(shù)與倍數(shù)的概念、性質(zhì)以及應(yīng)用。在這一過程中,我有了很多的體會和心得,接下來我將與大家分享。
第二段(因數(shù)的理解和應(yīng)用)。
在學(xué)習(xí)因數(shù)時,我們首先需要理解因數(shù)的概念,即一個數(shù)可以被另一個數(shù)整除,那么這個數(shù)就是另一個數(shù)的因數(shù)。通過這一基本概念,我們可以進一步了解因數(shù)的性質(zhì),例如,每個數(shù)都有1和自身作為因數(shù),還有相同的因數(shù)可以組成更大的公因數(shù)。在應(yīng)用方面,我們可以用因數(shù)來進行數(shù)的分解、判定質(zhì)數(shù)等操作。
第三段(倍數(shù)的理解和應(yīng)用)。
和因數(shù)類似,倍數(shù)也是數(shù)學(xué)中的一個重要概念。如果一個數(shù)可以被另一個數(shù)整除,那么這個數(shù)就是另一個數(shù)的倍數(shù)。同樣地,我們需要了解倍數(shù)的基本性質(zhì),例如一個數(shù)的倍數(shù)可以無限制地擴展,而兩個數(shù)的公倍數(shù)可以通過它們的公因數(shù)來求得。在應(yīng)用方面,我們可以用倍數(shù)來進行最小公倍數(shù)、數(shù)的關(guān)系判斷等操作。
因數(shù)和倍數(shù)雖然是不同的概念,但它們之間存在著密切的聯(lián)系。因為如果兩個數(shù)互為因數(shù)和倍數(shù),那么這兩個數(shù)就是相等的。因此,我們可以通過因數(shù)和倍數(shù)來判斷兩個數(shù)之間的大小關(guān)系,例如判斷兩個數(shù)的大小、比較大小等。
第五段(結(jié)論)。
通過學(xué)習(xí)因數(shù)與倍數(shù),我深刻認識到數(shù)學(xué)知識的重要性和應(yīng)用價值。而且,在學(xué)習(xí)的過程中,我們需要通過多種方法進行練習(xí)和掌握,例如可以通過題目、游戲、課堂互動等方式,加深對因數(shù)與倍數(shù)的理解和應(yīng)用。對于我來說,還有很多需要繼續(xù)學(xué)習(xí)和掌握的內(nèi)容,我會繼續(xù)努力,提高自己的數(shù)學(xué)水平。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十六
因數(shù)和倍數(shù)是小學(xué)數(shù)學(xué)中非?;A(chǔ)而重要的概念。因數(shù)指的是一個數(shù)能夠被另一個數(shù)整除,而倍數(shù)則是指一個數(shù)是另一個數(shù)的整數(shù)倍。在五年級數(shù)學(xué)學(xué)習(xí)中,我們已經(jīng)開始了深入的了解和研究因數(shù)和倍數(shù)。
第二段:因數(shù)的學(xué)習(xí)和理解。
在學(xué)習(xí)中,我們首先了解了因數(shù)的定義和性質(zhì),學(xué)會了如何求一個數(shù)的因數(shù),還進行了練習(xí),從中歸納如下規(guī)律:一個數(shù)的因數(shù)的個數(shù)有限,且其中一半是小于它的數(shù)的因數(shù),一半是大于它的數(shù)的因數(shù)。同時還學(xué)會了不同的因數(shù)化式,例如質(zhì)因數(shù)分解、因數(shù)分解、公因式、最大公因數(shù)等。
第三段:倍數(shù)的學(xué)習(xí)和理解。
接著,我們深入學(xué)習(xí)了倍數(shù)的概念和運算,學(xué)會了求一個數(shù)的倍數(shù)以及找到兩個數(shù)的公倍數(shù)。我們對倍數(shù)的認識進行了系統(tǒng)的了解,掌握了描繪倍數(shù)之間關(guān)系的工具,例如最小公倍數(shù)。在這一過程中,我們學(xué)會了用圖示或等式描述倍數(shù),以及如何尋找它們的特定模式。
在學(xué)習(xí)中,我們還積極地了解了因數(shù)和倍數(shù)之間的聯(lián)系,發(fā)現(xiàn)了它們之間不可忽視的同一性和區(qū)別。因數(shù)和倍數(shù)是緊密相關(guān)的,它們彼此間有著重要的聯(lián)系。通過分析它們的聯(lián)系,我們發(fā)現(xiàn):我們首先找到數(shù)列的公共因數(shù)或它們的最大公因數(shù),這樣,我們就能夠快速找到任意一組數(shù)的公共倍數(shù)。
第五段:對因數(shù)和倍數(shù)的學(xué)習(xí)的感想。
搞完這門課程,我深刻認識到因數(shù)和倍數(shù)的重要性,它們可以方便地解決許多數(shù)學(xué)問題,并且在實際生活中也非常實用。這門課程也鍛煉了我們的思考能力、計算能力以及分析問題的能力。同時,我也意識到了在學(xué)習(xí)過程中,做好課前預(yù)習(xí)是非常重要的。因為難點在前,問題在前,把課前預(yù)習(xí)做好了,課堂上遇到的也會輕松很多。做好好課前預(yù)習(xí),掌握課堂重點,能夠讓我的學(xué)習(xí)更加高效,提高了學(xué)習(xí)效率。
總之,學(xué)習(xí)因數(shù)和倍數(shù)是我們五年級必修的數(shù)學(xué)課程,它對我們的日常生活中的數(shù)學(xué)運算有重要的幫助。深入學(xué)習(xí)和理解因數(shù)和倍數(shù),是我們扎實掌握小學(xué)數(shù)學(xué)的重要體現(xiàn)。我們需要在實踐中繼續(xù)加深對因數(shù)和倍數(shù)的認識,優(yōu)化學(xué)習(xí)方法,提高學(xué)習(xí)效率。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十七
本單元的重點是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別。還要掌握2、5、3的倍數(shù)的特征。這一單元的內(nèi)容與原來教材比較有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識倍數(shù)和因數(shù)的。從學(xué)生學(xué)習(xí)的情況來看,這一改變并沒有對學(xué)生造成任何影響。
本單元的內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進行教學(xué),學(xué)生理解起來有一定的難度。在教學(xué)過程中,本人就忽視了概念的本質(zhì),而是讓學(xué)生死記硬背相關(guān)概念或結(jié)論,學(xué)生無法理清各概念間的前后承接關(guān)系,達不到融會貫通的程度,所以教學(xué)效果也不怎么理想。要解決教學(xué)中出現(xiàn)的問題,經(jīng)過反思,我認為要做好兩點:
(1)加強對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。本單元中因數(shù)和倍數(shù)是最基本的兩個概念,理解了因數(shù)和倍數(shù)的含義,對于一個數(shù)的因數(shù)的個數(shù)是有限的、倍數(shù)的個數(shù)是無限的等結(jié)論自然也就掌握了,對于后面的公因數(shù)、公倍數(shù)等概念的理解也是水到渠成。要引導(dǎo)學(xué)生用聯(lián)系的觀點去掌握這些知識,而不是機械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。
(2)由于本單元知識特有的抽象性,教學(xué)時要注意培養(yǎng)學(xué)生的抽象思維能力。雖然我們強調(diào)從生活的角度引出數(shù)學(xué)知識,但本單元不太容易與具體情境結(jié)合起來,如質(zhì)數(shù)、合數(shù)等概念,很難從生活實際中引入。而學(xué)生到了五年級,抽象能力已經(jīng)有了進一步發(fā)展,有意識地培養(yǎng)他們的抽象概括能力也是很有必要的,如讓學(xué)生通過幾個特殊的例子,自行總結(jié)出任何一個數(shù)的倍數(shù)個數(shù)都是無限的,逐步形成從特殊到一般的歸納推理能力,等等。
五年級數(shù)學(xué)教案因數(shù)與倍數(shù)(專業(yè)18篇)篇十八
教學(xué)目標:
1、同學(xué)掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2、同學(xué)能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4、培養(yǎng)同學(xué)的觀察能力。
教學(xué)重點:掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
教學(xué)難點:能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
教學(xué)過程:
一、引入新課。
1、出示主題圖,讓同學(xué)各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);。
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?同學(xué)寫算式。
師:誰來出一個算式考考全班同學(xué)?
5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
同學(xué)嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的.時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的自身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓同學(xué)完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。
2的倍數(shù)3的倍數(shù)5的倍數(shù)。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它自身,沒有最大的倍數(shù))。
三、課堂小結(jié):
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業(yè):
完成練習(xí)二1~4題。
將本文的word文檔下載到電腦,方便收藏和打印。