五年級教案的編寫還需根據學生的學習進度和能力水平,合理安排教學難度和教學方法。接下來,將為大家推薦幾個優秀的五年級教案范文,供大家參考學習。
五年級數學教案因數與倍數(專業18篇)篇一
《因數和倍數》是人教版小學數學五年級下冊第二單元的起始課,也是一節重要的數學概念課,所涉及的知識點較多,內容較為抽象,對于學生來說是比較難掌握的內容,在這樣的前提下,如何能充分發揮學生的主體作用,讓他們自主探索,自己感悟概念的內涵,并靈活地運用“先學后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。
一、領會意圖,做到用教材教。
我覺得作為一名教師,重要的是領會教材的編寫意圖,靈活的運用教材,讓每個細節都能發揮它應有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數,誰是誰的倍數”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數倍數的方法,二是利用數與數之間的關系明確的看到因數倍數這種相互依存的關系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現因數倍數間的關系,更是后面“如何求一個數的因數”的方法的滲透和引導。看來靈活的運用教材,深放領會意圖,才能使教學更為輕松、高效!
二、模式運用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應該大膽嘗試,不斷的積累經驗,使模式不再是僵化的,機械的。只要是能促進學生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應該想方設法,在不知不覺中體現出來。
如本課中例1是“求18的因數有哪些”,例2是“求2的倍數有哪些”教材的設計已經能夠體現學生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學生進入到下面的學習中呢?而沒有必要非要設計出兩個“自學指導”讓學生按步就搬地往下走,而且讓學生對比著去感受一個數“因數和倍數”的求法的不同,比先學例1再學例2的方式更容易讓學生發現不同,得到方法,加深對知識的理解,同時也更加體現了學生的自主性,這才是模式的真正目的所在。內涵比形式更重要,發現比引導更有效!
五年級數學教案因數與倍數(專業18篇)篇二
人教版小學數學五年級下冊第17、18頁。
1.我能掌握2、5的倍數的特征,并利用特征判斷一個數是不是2、5的倍數。
2.我知道什么是奇數和偶數。
了解2、5的倍數的特征及奇數和偶數的含義。
能正確地求出符合要求的數。
收集電影票。
一、導入新課。
二、檢查獨學。
1.互動,檢查獨學部分第1、2題完成情況。
2.質疑探討。
三、合作探究。
(一)2、5的倍數的特征。
1.小組合作。
仔細回顧獨學題2,再與同伴分享自己的收獲。
2.小組代表展示匯報。
3.小組合作交流,驗證規律。
我們的想法:
小組代表匯報、總結。
4.試試身手。
(1)獨立完成第18頁“做一做”。
(2)集體交流。我又發現了:
(二)奇數和偶數。
1.自主閱讀教材。根據自學內容,我知道:
根據是否是2的倍數,可把自然數分為和兩類。是2的倍數的數叫做,不是2的倍數的數叫做。
2.組內交流,并討論:0是不是2的倍數?為什么?
3.匯報總結。
4.我能說出身邊的奇數和偶數。
5.做一做(第17頁)。
五年級數學教案因數與倍數(專業18篇)篇三
尊敬的各位領導、老師大家上午好:我們團隊所執教的是《因數和倍數》。
一、說教材:
《因數和倍數》是小學人教版課程標準實驗教材五年級下冊第二單元的內容,也是小學階段“數與代數”部分最重要的知識之一。《因數和倍數》的學習,是在初步認識自然數的基礎上,探究其性質。其中涉及到的內容屬于初等數論的基本內容,相當抽象。在這一內容的編排上與以往教材不同,沒有數學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數與位數的概念。這節課是因數與倍數的概念的引入,為本單元最后的內容,以及第四單元的最大公因數,最小公倍數提供了必須且重要的鋪墊。
根據教材所處的地位和前后關系,確定了以下目標:
知識技能目標:
掌握因數倍數的概念,理解因數與倍數的意義,掌握找一個數因數與倍數的方法。
情感,價值目標:培養學生合作、觀察、分析和抽象概括能力,體會教學內容的奇妙、有趣,產生對數學的好奇心和求知欲。
教學重點和難點:理解倍數和因數的意義,掌握找出一個數因數和倍數的方法。
二、學情分析:
學生在平時學習中缺少主動性,一部分學生怕困難,缺乏獨立思考的習慣,同時考慮問題也不夠全面。在本堂課的教學中,主要調動學生學習的積極性,提高學生課堂學習的參與性,體驗成功的樂趣,通過學生的親自探索和合作交流,來達到學習知識,掌握所學知識的目的。同時感受數學中的奧妙。
三、教法與學法指導。
當今社會,人類的語言離不開素質教育,而實施素質教育必須“以學生為本”課堂教學要圍繞培養學生的探索精神、創新精神出發,為全面提高學生的綜合素質打下一定的基礎。本節課根據學生的認知能力與心理特征來進行教學策略和方法的設計。
1、遵循學生主體,老師主導,自主探究,合作交流為主線的理念,利用學生對乘法的運算理解概念。
2、小組合作討論法。以學生討論,交流,互相評價,促成學生對找一個數的因數和倍數的方法進行優化處理,提升。鞏固學生方法表達的完整性,有效性,避免學生只掌握方法的理解,而不能全面的正確的表達。
四,教學過程。
1、揭示主題。
老師直接揭示主題,大膽創新,打破了傳統的為了導入而導入的教學模式。為學生的自主合作學習提供了開放的空間。
2、合作交流,理解因數,倍數的概念及其意義。
教師出示前置性作業,小組內交流,匯報學習成果,教師適時點撥,真正把課堂還給學生,也充分體現了教師的主導作用和學生的主體地位。使學生在交流中培養了合作學習的意識,對因數和倍數的概念有了初步的認識,對它們之間的聯系也有了更好的理解。
一個數的因數和倍數是本節課中技能目標中很重要的一部分。使學生在已有的經驗基礎上,獨立的列舉一個數的因數,在小組合作交流中得出。找一個數的因數和倍數的方法。真正地把主動權交給學生,教師通過引導,使學生加深理解,化解難點。
4、引導學生分析,比較歸納尋找共性,找出不同,得出一個數的因數,使學生學會有序思考,從而形成基本技能與方法,做到即關注了過程,又關注了結果。教師的教學水到渠成,學生的學習則是山重水復疑無路,柳暗花明又一村。
5、引導學生置疑,集體交流,化解疑問。
便于學生對本課所學知識更好的消化理解。
三、練習。
練習題設計形式多樣,有梯度。既注重基礎,又有所提高,從而真正實現了課堂教學的有效性。
五年級數學教案因數與倍數(專業18篇)篇四
教學內容:
教材分析:
本節教學是在學生學習掌握了因數和倍數兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數的因數”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數的因數。另外,通過引導學生用集合的形式表示一個數的因數,一方面給學生滲透集合思想,更重要的是為后面教學求兩個數的公因數做準備。
教學目標:
2、逐步培養學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數的因數的方法及規律特點。
教學難點:
用求一個數的因數的方法熟練找全一個數的因數。
教具準備:
投影儀、小黑板、卡片。
教學課時:一課時。
教學設想:
運用嘗試教學法,從學生已有的知識經驗出發,通過教師引導、學生自學例1,自主嘗試、探究求一個數的因數的方法方法,并能運用所獲得的方法、經驗找全一個數的因數。
教學過程:
一、復習舊知。
師:同學們,前面學習了因數和倍數的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數和倍數的相互依存關系說一說下面各組數的相互關系。
21和72×7=1430÷6=5。
2、判斷。
(1)12是倍數,2是因數。()。
(2)1是14的因數,14是1的倍數。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數,3是6和0.5的倍數。()。
教師根據學生完成練習的情況對學生進行恰當的表揚激勵,同時進入新課教學:……。
二、新課教學。
過程一:嘗試訓練。
(一)出示問題。
師:同學們,老師有一個新問題,想請大家幫助解決,行嗎?
生:行!(預設)。
嘗試題:14的因數有哪幾個?
(二)學生解決問題,教師巡視并根據實際適時輔導學困生。
(三)信息反饋。
板書:
1×14。
14 2×7。
14÷2。
14的因數有:1,2,7,14。
過程二:自學課本(p13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數?
2、文中的小朋友是怎樣找出18的因數的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數。
(二)信息反饋。
1、反饋自學要求情況;
板書:
1×18。
182×9。
3×6。
18的因數有1,2,3,6,9,18。
還可以這樣表示:18的因數。
2、知識對比,探索發現規律。
(1)師:同學們,根據求14和18的因數時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動。總結方法、點出課題。
求一個數的因數的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習。
(一)用小黑板出示練習題。
1、找出30的因數有哪些?36的因數有哪些?
(二)信息反饋:師生互動總結特點。
板書:
一個數的因數的個數是有限的。它的最小因數是1,的因數是它本身。
三、課堂作業。
練習二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數的數是誰?
五、課堂小結。
師:今天你學會了求一個數的因數的方法嗎?你知道一個數的因數特點嗎?
生:……。
板書設計:
求一個數的因數的方法。
1×14。
142×7 方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數有:1,2,3,6,9,18特點:一個數的因數的個數是有限的。
還可以表示為:
它的最小因數是1,的因數是它本身。
五年級數學教案因數與倍數(專業18篇)篇五
教科書第25頁,練習四第5~8題。
1、通過練習與對比,使學生發現和掌握求兩個數最小公倍數的一些簡捷方法,進行有條理的思考。
2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。
3、在學生探索與交流的合作過程中,進一步發展學生與同伴合作交流的意識和能力,感受數學與生活的聯系。
一、基本訓練。
1、我們已經掌握了找兩個數的.公倍數和最小公倍數的方法,這節課我們繼續鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
(板書課題:公倍數和最小公倍數練習)。
2、填空。
5的倍數有:()。
7的倍數有:()。
5和7的公倍數有:()。
5和7的最小公倍數是:()。
3、完成練習四第5題。
(1)理解題意,獨立找出每組數的最小公倍數。
(2)匯報結果,集體評講。
(3)觀察第一組中兩個數的最小公倍數,看看有什么發現?
每題中的兩個數有什么特征呢?(倍數關系)可以得出什么結論?
(4)第二組中兩個數的最小公倍數有什么特征?(是這兩個數的乘積)。
在有些情況下,兩個數的最小公倍數是這兩個數的乘積。
4、完成練習四第6題。
你能運用上一題的規律直接寫出每題中兩個數的最小公倍數嗎?
交流,匯報。
說說你是怎么想的?
二、提高訓練。
1、完成練習四第7題。
(1)理解題意,獨立完成填表。
(2)你是怎樣找到這兩路車第二次同時發車的時間的?
你還有其他方法解決這個問題嗎?(7和8的最小公倍數是56)。
2、完成練習四第8題。
(1)理解題意。
你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。
你是怎樣知道的?
要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數)
三、課堂小結。
通過練習,同學們又掌握了一些比較快的求兩個數最小公倍數的方法,并能運用這些方法解決一些實際問題。
在小組中互相說說自己本節課的收獲。
五年級數學教案因數與倍數(專業18篇)篇六
這節課我在教學中充分體現以學生為主體,為學生的探究發現提供足夠的時空和適當的指導,同時,也為提高課堂教學的有效性,我在本課的教學中體現了自主化、活動化、合作化和情意化,具體做到了以下幾點:
教材中首先引導學生理解數與數之間的關系,進而用乘法算式把不同的列法表示出來,再根據乘法算式教學倍數和因數的意義。這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。首先是名稱比較抽象,在現實生活中又不經常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
倍數和因數的意義是本單元的重要知識,其他內容的教學都以此為基礎。在學生得出乘法算式后,首先引導學生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數”,然后啟發學生“看著算式你還能想到什么?”很多學生已經領會12也是4的倍數,指名說后,再強化一下讓學生連起來說說誰是誰的倍數。接著教學“3是12的因數”,再啟發“這時你又能想到什么?”學生很容易聯想到“4也是12的因數”,而且學生的學習興趣濃厚、求知欲強。這時再讓學生完整的說一說誰是誰的倍數,誰是誰的因數,已經“水到渠成”。在初步感受倍數和因數的意義是與乘法有聯系的,表達的是自然數之間的關系之后,接著練一練讓學生根據2×6=12先同桌互相說說哪個數是哪個數的倍數(或因數),在全班交流。最后根據1×12=12先指名說一說哪個數是哪個數的倍數(或因數),再讓學生輕聲地說說有點特別的兩句。
整個過程處理細致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學困生,讓學生在遷移中理解倍數和因數的意義。
找一個數的倍數或因數,既能鞏固倍數和因數的意義,也為研究倍數的特征及意義作準備。探索找一個數的倍數或因數的方法時,重點是幫助學生建立相應的數學模型。
探索求一個數因數的方法是本課的難點,例題直接安排找24的因數更是困難。教學中我還是利用3×4=12做鋪墊,引導學生先找一找12的因數,初步感知了找因數的方法。然后層層推進,先讓學生想一道算式找24的因數,引出根據除法找因數的方法,再讓學生按除法通過自主探究找出24的所有因數,接著組織學生比較、討論、優化提升出找一個數的因數的方法。
教學4的倍數時,學生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數,但是想要“一個不漏且有序的找全,并體會出4的倍數的個數是無限的”卻很難。如何引導學生建構完整的倍數的數學模型呢?我遵循學生的認知規律,然后引導學生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數的特點逐步在學生的腦海中得以完善、合理建構。
這樣搭建了有效的平臺、形成了師生互動生成的過程,學生經歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構了數學模型。
五年級數學教案因數與倍數(專業18篇)篇七
倍數和因數一課是蘇教版數學第八冊中的內容。這一內容是在學生已經分階段認識了百以內、千以內、萬以內、億以內以及一些整億的數,較為系統地掌握了十進制記數法,同時也基本完成了整數四則運算基礎上進行的教學,主要是要使學生初步認識倍數和因數的意義,學會在1-100的自然數中找10以內某個數的所有倍數和100以內某個數的所有因數的方法。這是學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算的基礎,對以后的學習起著重要的作用。
1、知識與技能目標:使學生結合整數乘、除法運算初步認識倍數和因數的含義,探索求一個數的倍數和因數的方法,并能找一個數的倍數和因數。
2、過程與方法目標:引導學生自主探究找一個數倍數和因數的方法,體會數學知識之間的內在聯系,提高數學思考的水平。
3、情感與態度目標:在學習活動中激發學生學習數學的興趣和自信心。
4、重點:理解因數和倍數的含義,知道它們呢的關系是相互依存的。
5、難點:探索并掌握求一個數的倍數和因數的方法。
(一)認識倍數和因數。
認識倍數和因數時,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,引導學生在操作中得到乘積相同的不同乘法算式,并進一步引出倍數和因數的概念。倍數和因數是指兩個數之間的關系,不能單獨說某數倍數或因數,這一點學生往往搞不清,為了使學生明白倍數和因數是一種相互依存的關系,我舉了生活中的兄弟關系,母女關系的例子幫助學生理解,讓學生感受到數學與生活的聯系,同時也讓學生明白,用數學知識解決生活問題是學習數學的真正目的。
(二)探索求一個數的倍數的方法。
從例1中得出:12是3的倍數,又把學生舉的一個3的倍數的例子有目的地寫在黑板上結合起來看,引導學生說出3的倍數還有哪些。學生在舉例子時說出來的數是無序的,這時教師引導學生思考怎樣才能按從小到大的順序有條理地找出3的倍數,促使學生去關注思想方法,并在學生討論交流中感受有序的思想方法。
在學生掌握方法的基礎上,采用比賽的形式要求學生有序地寫出2、5的倍數,然后在整體觀察2、3、5倍數的基礎上通過學生討論,一個數倍數的特點。培養了學生觀察、比較、歸納概念的能力。
(三)探索求一個數的因數的方法。
從例中看出4、3、6、2、12、1都是12的因數,那我們可以怎樣找一個數的因數呢?先讓學生獨自找36的因數,再指名幾個學生說說是怎么找的,通過幾位學生找的方法的比較得出較合理的方法。接著又找了15、16的因數,歸納出一個數因數的特點。
(四)全課小結。
(五)鞏固練習。
為了提高學生學習興趣,鞏固所學知識,我又補充了兩個練習:
1、判斷題目的是強化學生對基礎知識的掌握。
2、出示幾張數字卡片。從中選擇只有倍數和因數關系,比誰選擇得多。
五年級數學教案因數與倍數(專業18篇)篇八
今天聽了唐老師上的《3的倍數的特征》這節課,讓我感受了在新課堂模式中,教師的主導和學生的主體地位的發揮,教師僅僅只是一位組織者,一個幫手,而學生才是主人。課堂上,學生輕松愉悅地學習、交流、展示,讓我覺得這樣的課堂才能培養出全面發展的新型人才來。
這節課的設計從整體上安排了五個環節:
2.導入激趣,通過學生組織的擺卡片組數游戲復習了“2、5的倍數的特征”,同時讓學生擺出是3的倍數的數。學生自然而然地會將“2、5的倍數的特征”遷移到“3的倍數的特征”的問題中,由此產生認知沖突,萌發疑問,激發強烈的探究欲望。
3.自主探究,小組合作這個環節中,通過學生獨立圈數,小組合作討論找規律,來發現3的倍數的特征。給學生提供了生生交流,合作交流的平臺,有了表達和傾聽的機會。
4.展示交流中,學生表現得活躍,組織語言能力強,思維敏捷。這說明唐老師平時充分地給予了學生合作學習,展示自我的機會。
5.達標測評練習,使得課堂學習知識得到了升華,學會了判斷和寫3的倍數的特征,知識掌握情況及時有了反饋。
我們在學習的同時,要找到值得注意和改進的地方。對于這節課,我認為有幾點值得大家一起探討:
4在幾個互動環節中,形式單一化,如:“請一個同學來驗證一下這個數是否是3的倍數。”可以讓每一個學生都參與其中。避免有的學生“沒戲演”就“退場”了。
總之,這一節課讓我們在探究新課堂模式,尋找學生“自主、合作、探究”的學習方法以啟發。
五年級數學教案因數與倍數(專業18篇)篇九
《因數和倍數》這一內容,學生初次接觸。在導入中我創設有效的數學學習情境,數形結合,變抽象為直觀。讓學生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數和倍數的意義。這樣,學生已有的數學知識引出了新知識,減緩難度,效果較好。
放手讓每個同學找出36的所有因數,學生圍繞教師提出的“怎樣才能找全36的所有因數呢?”這個問題,去尋找36的所有因數。由于個人經驗和思維的差異性,出現了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數的因數的思考方法。既留足了自主探究的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發現了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的難點。
在最后的環節中我設計了“找朋友”的游戲,層次是先找因數朋友,再找倍數朋友,最后為兩個數找到共同的朋友。
這堂課我還存在許多不足,我的教學理念很清楚,課堂上學生是主體教師只是合作者。但在教學過程中許多地方還是不由自主的說得過多,給學生的自主探索空間太少。
五年級數學教案因數與倍數(專業18篇)篇十
一、單元主題圖體驗數學化過程。單元主題圖是教材中的一個重要內容,它是選擇某一個主題構建的一幅情境圖,本單元就出現了“數的世界”單元主題圖。在教學中,我是從培養學生的問題意識出發來組織教學的,首先讓學生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學習的成果;最后通過解決問題,體驗獲取知識的過程。教學中學生不僅很快找到了整數、小數、負數,而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學生提出了很多的數學問題,如我有50元可以買多少千克蘋果?學生真正是在自主學習的過程中提出問題、解決問題,體驗“數學化”的過程。
二、數形結合實現有意義建構。教材中對因數概念的認識,設計了“用小正方形拼長方形”的操作活動,引導學生在方格紙上畫一畫,寫出乘法算式,再與同學進行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數與形有機地結合,防止學生進行“機械地學習”;學生對因數和理解不僅是數字上的認識,而且能與操作活動與圖形描述聯系起來,促進了學生的有意義建構,這是一個“先形后數”的過程,是一個知識抽象的過程。
三、探索活動關注解決問題的策略。學生在探索活動中,運用做記號、列表格、畫示意圖等解決問題的策略來發現規律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學會了思考,初步形成了解決問題的一些基本策略。
四、困惑:
1、第一次真正開始教北師大教材,最大的感覺是教學的空間真的擴大了,課堂活躍了,但是同時給學生進行課后輔導的時間也增加了,每節課從學生的反饋看來,卻有相當一部分的學生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎性”題目,整個一個單元只有一個練習一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。
五年級數學教案因數與倍數(專業18篇)篇十一
一.填空題。
1.都是自然數,如果,的最大公約數是(),最小公倍數是()。
2.甲,乙,甲和乙的最大公約數是()×()=(),甲和乙的最小公倍數是()×()×()×()=()。
3.所有自然數的公約數為()。
4.如果m和n是互質數,那么它們的最大公約數是(),最小公倍數是()。
5.在4、9、10和16這四個數中,()和()是互質數,()和()是互質數,()和()是互質數。
6.人教版小學五年級數學下冊因數和倍數測試題:用一個數去除15和30,正好都能整除,這個數最大是()。
*7.兩個連續自然數的和是21,這兩個數的最大公約數是(),最小公倍數是()。
*8.兩個相鄰奇數的和是16,它們的最大公約數是(),最小公倍數是()。
**9.某數除以3、5、7時都余1,這個數最小是()。
10.根據下面的要求寫出互質的兩個數。
(1)兩個質數()和()。(2)連續兩個自然數()和()。
(3)1和任何自然數()和()。(4)兩個合數()和()。
(5)奇數和奇數()和()。(6)奇數和偶數()和()。
二.判斷題。
1.互質的兩個數必定都是質數。()2.兩個不同的奇數一定是互質數。()。
3.最小的質數是所有偶數的最大公約數。()4.有公約數1的兩個數,一定是互質數。()5.a是質數,b也是質數,,一定是質數。()。
三.直接說出每組數的最大公約數和最小公倍數。
26和13()13和6()4和6()5和9()29和87()30和15()13、26和52(2、3和7()。
(1)如果數a能被數b整除,a就叫做b的(),b就叫做a的()。
(2)12的最小的約數是(),最大約數是(),最小的倍數是()。
(3)15的`全部約數有()。
(4)1—20中:奇數是(),偶數是(),
質數是(),合數是()。
(5)1,2,15,17,24各數中,既不是質數也不是合數的是(),
既不是質數又不是偶數的是(),既不是奇數又不是合數的是()。
(6)在66,390,12,165,105,91各數中,
能被2整除的數有(),能被3整除的數有(),
能被5整除的數有(),能同時被2、3整除的數有(),
能同時被2、5整除的數有(),能同時被3、5整除的數有(),
能同時被2、3、5整除的數有(),
(7)a和b是互質數,則a和b最大公約數是(,最小公倍數是()。
(8)用0、1、2、3組成一個能同時被2、3、5整除的最小四位數是()。
(9)a是b的倍數,則a、b最大公約數是(),最小公倍數是()。
將本文的word文檔下載到電腦,方便收藏和打印。
五年級數學教案因數與倍數(專業18篇)篇十二
認識因數和倍數(教材第5頁內容,以及第7頁練習二的第1題)。
【教學目標】。
1、從操作活動中理解因數和倍數的意義,會判斷一個數是不是另一個數的因數或倍數。
2、培養學生抽象、概括的能力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。
3、培養學生的合作意識、探索意識,以及熱愛數學學習的情感。
【重點難點】。
【復習導入】。
1、教師用課件出示口算題。
10÷5=16÷2=。
12÷3=100÷25=。
220÷4=18×4=。
25×4=24×3=。
150×4=20×86=。
學生口算。
2、導入:在乘法算式中,兩個因數相乘,得到的結果叫做它們的積。乘法算式表示的是一種相乘的關系,在除法算式中,兩個數相除,得到的結果叫做它們的商。除法算式表示的是一種相除的關系,在整數乘法和除法中還有另一種關系,這就是我們這一節課要學習探討的內容。
五年級數學教案因數與倍數(專業18篇)篇十三
本單元內容在編排上與老教材有較大的差異,比如在認識“因數、倍數”時,不再運用整除的概念為基礎,引出因數和倍數,而是直接從乘法算式引出因數和倍數的概念,目的是減去“整除”的數學化定義,降低學生的認知難度,雖然課本沒出現“整除”一詞,但本質上仍是以整除為基礎。
本課的教學重點是求一個數的因數,在學生已掌握了因數、倍數的概念及兩者之間的關系的基礎上,對學生而言,怎樣求一個數的因數,難度并不算大,因此教學例題“找出18的因數”時,我先放手讓學生自己找,學生在獨立思考的過程中,自然而然的會結合自己對因數概念的理解,找到解決問題的`方法(培養學生對已有知識的運用意識),然后在交流中不難發現可用乘法或除法來求一個數的因數(列出積是18的乘法算式或列出被除數是18的除法算式)。
在這個學習活動環節中,我留給了學生較充分的思維活動的空間,有了自由活動的空間,才會有思維創造的火花,才能體現教育活動的終極目標。特別是用除法找因數的學生,正是因為他們意識到了因數與倍數之間的整除關系的本質,才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。
在這個環節的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導學生從因數的概念,用乘法來找因數,而我考慮到本班孩子的學情(絕大多數學生能夠運用所學知識,找到求因數的方法),如教師一開始就引導學生:想幾和幾相乘,勢必會造成先入為主,妨礙學生創造性的思維活動?用已有的經驗自主建構新知是提高學生學習能力的有效途徑,讓學生獨立思考、自主探索、促思(促進學生思維發展)、提能(提高學習能力)是我的教學策略主要內容。
至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數字較小的數(口訣表內的),用乘法來求因數還是比較容易,但是超出口訣表范圍的數用除法則更能顯示出它的優勢,如求54的因數有哪些?學生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學生的學習潛力是巨大的,教師是學生學習的引領者,因此教師的觀念和行為決定了學生的學習方式和結果,所以我認為教師要專研教材,充分利用教材,根據學生的實際情況,創造性地使用教材,為學生能力的發展提供素材和創造條件,真正實現學生學習的主體地位。
學生在找一個數的因數時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數這也正是本課教學的難點。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質疑的。教師能像教材中那樣一頭一尾地成對板書因數,這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區間越小,需要考慮的數也就越少。當找到兩個相鄰的自然數時,他們自然就不會再找下去了。書寫格式這一細節的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節,無論于學生、于課堂都是有利無弊的。
五年級數學教案因數與倍數(專業18篇)篇十四
1、因數和倍數:如果整數a能被b整除,那么a就是b的倍數,b就是a的因數。
2、一個數的因數的求法:一個數的因數的個數是有限的,最小的是1,最大的是它本身,方法是成對地按順序找。
3、一個數的倍數的求法:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的,方法時依次乘以自然數。
4、2、5、3的倍數的`特征:個位上是0、2、4、6、8的數,都是2的倍數。個位上是0或5的數,是5的倍數。一個數各位上的數的和是3的倍數,這個數就是3的倍數。
5、偶數與奇數:是2倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。
6、質數和和合數:一個數,如果只有1和它本身兩個因數的數叫做質數(或素數),最小的質數是2。一個數,如果除了1和它本身還有別的因數的數叫做合數,最小的合數是4。
只要大家腳踏實地的復習、一定能夠提高數學應用能力!希望提供的因數與倍數知識點輔導,能幫助大家迅速提高數學成績!
五年級數學教案因數與倍數(專業18篇)篇十五
第一段(引入)。
作為一名五年級學生,因數與倍數是我們學習數學的重要內容,我們需要掌握因數與倍數的概念、性質以及應用。在這一過程中,我有了很多的體會和心得,接下來我將與大家分享。
第二段(因數的理解和應用)。
在學習因數時,我們首先需要理解因數的概念,即一個數可以被另一個數整除,那么這個數就是另一個數的因數。通過這一基本概念,我們可以進一步了解因數的性質,例如,每個數都有1和自身作為因數,還有相同的因數可以組成更大的公因數。在應用方面,我們可以用因數來進行數的分解、判定質數等操作。
第三段(倍數的理解和應用)。
和因數類似,倍數也是數學中的一個重要概念。如果一個數可以被另一個數整除,那么這個數就是另一個數的倍數。同樣地,我們需要了解倍數的基本性質,例如一個數的倍數可以無限制地擴展,而兩個數的公倍數可以通過它們的公因數來求得。在應用方面,我們可以用倍數來進行最小公倍數、數的關系判斷等操作。
因數和倍數雖然是不同的概念,但它們之間存在著密切的聯系。因為如果兩個數互為因數和倍數,那么這兩個數就是相等的。因此,我們可以通過因數和倍數來判斷兩個數之間的大小關系,例如判斷兩個數的大小、比較大小等。
第五段(結論)。
通過學習因數與倍數,我深刻認識到數學知識的重要性和應用價值。而且,在學習的過程中,我們需要通過多種方法進行練習和掌握,例如可以通過題目、游戲、課堂互動等方式,加深對因數與倍數的理解和應用。對于我來說,還有很多需要繼續學習和掌握的內容,我會繼續努力,提高自己的數學水平。
五年級數學教案因數與倍數(專業18篇)篇十六
因數和倍數是小學數學中非常基礎而重要的概念。因數指的是一個數能夠被另一個數整除,而倍數則是指一個數是另一個數的整數倍。在五年級數學學習中,我們已經開始了深入的了解和研究因數和倍數。
第二段:因數的學習和理解。
在學習中,我們首先了解了因數的定義和性質,學會了如何求一個數的因數,還進行了練習,從中歸納如下規律:一個數的因數的個數有限,且其中一半是小于它的數的因數,一半是大于它的數的因數。同時還學會了不同的因數化式,例如質因數分解、因數分解、公因式、最大公因數等。
第三段:倍數的學習和理解。
接著,我們深入學習了倍數的概念和運算,學會了求一個數的倍數以及找到兩個數的公倍數。我們對倍數的認識進行了系統的了解,掌握了描繪倍數之間關系的工具,例如最小公倍數。在這一過程中,我們學會了用圖示或等式描述倍數,以及如何尋找它們的特定模式。
在學習中,我們還積極地了解了因數和倍數之間的聯系,發現了它們之間不可忽視的同一性和區別。因數和倍數是緊密相關的,它們彼此間有著重要的聯系。通過分析它們的聯系,我們發現:我們首先找到數列的公共因數或它們的最大公因數,這樣,我們就能夠快速找到任意一組數的公共倍數。
第五段:對因數和倍數的學習的感想。
搞完這門課程,我深刻認識到因數和倍數的重要性,它們可以方便地解決許多數學問題,并且在實際生活中也非常實用。這門課程也鍛煉了我們的思考能力、計算能力以及分析問題的能力。同時,我也意識到了在學習過程中,做好課前預習是非常重要的。因為難點在前,問題在前,把課前預習做好了,課堂上遇到的也會輕松很多。做好好課前預習,掌握課堂重點,能夠讓我的學習更加高效,提高了學習效率。
總之,學習因數和倍數是我們五年級必修的數學課程,它對我們的日常生活中的數學運算有重要的幫助。深入學習和理解因數和倍數,是我們扎實掌握小學數學的重要體現。我們需要在實踐中繼續加深對因數和倍數的認識,優化學習方法,提高學習效率。
五年級數學教案因數與倍數(專業18篇)篇十七
本單元的重點是讓學生掌握因數、倍數、質數、合數等概念,以及它們之間的聯系和區別。還要掌握2、5、3的倍數的特征。這一單元的內容與原來教材比較有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數倍數,而現在是在未認識整除的情況下直接認識倍數和因數的。從學生學習的情況來看,這一改變并沒有對學生造成任何影響。
本單元的內容較為抽象,很難結合生活實例或具體情境來進行教學,學生理解起來有一定的難度。在教學過程中,本人就忽視了概念的本質,而是讓學生死記硬背相關概念或結論,學生無法理清各概念間的前后承接關系,達不到融會貫通的程度,所以教學效果也不怎么理想。要解決教學中出現的問題,經過反思,我認為要做好兩點:
(1)加強對概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。本單元中因數和倍數是最基本的兩個概念,理解了因數和倍數的含義,對于一個數的因數的個數是有限的、倍數的個數是無限的等結論自然也就掌握了,對于后面的公因數、公倍數等概念的理解也是水到渠成。要引導學生用聯系的觀點去掌握這些知識,而不是機械地記憶一堆支離破碎、毫無關聯的概念和結論。
(2)由于本單元知識特有的抽象性,教學時要注意培養學生的抽象思維能力。雖然我們強調從生活的角度引出數學知識,但本單元不太容易與具體情境結合起來,如質數、合數等概念,很難從生活實際中引入。而學生到了五年級,抽象能力已經有了進一步發展,有意識地培養他們的抽象概括能力也是很有必要的,如讓學生通過幾個特殊的例子,自行總結出任何一個數的倍數個數都是無限的,逐步形成從特殊到一般的歸納推理能力,等等。
五年級數學教案因數與倍數(專業18篇)篇十八
教學目標:
1、同學掌握找一個數的因數,倍數的方法;
2、同學能了解一個數的因數是有限的,倍數是無限的;
3、能熟練地找一個數的因數和倍數;
4、培養同學的觀察能力。
教學重點:掌握找一個數的因數和倍數的方法。
教學難點:能熟練地找一個數的因數和倍數。
教學過程:
一、引入新課。
1、出示主題圖,讓同學各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數,6也是12的因數;。
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
4、你能不能寫一個算式來考考同桌?同學寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數和倍數。(出示課題:因數倍數)。
齊讀p12的注意。
二、新授:
(一)找因數:
1、出示例1:18的因數有哪幾個?
同學嘗試完成:匯報。
(18的因數有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數中,最小的是幾?最大的是幾?我們在寫的.時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數中,最小的是幾,最大的是幾?
看來,任何一個數的因數,最小的一定是(),而最大的一定是()。
3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如。
18的因數。
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的自身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數:
1、我們一起找到了18的因數,那2的倍數你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數最小是幾?最大的你能找到嗎?
2、讓同學完成做一做1、2小題:找3和5的倍數。
匯報3的倍數有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數有:5,10,15,20,……。
師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示。
2的倍數3的倍數5的倍數。
師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?
(一個數的倍數的個數是無限的,最小的倍數是它自身,沒有最大的倍數)。
三、課堂小結:
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業:
完成練習二1~4題。
將本文的word文檔下載到電腦,方便收藏和打印。