范文為教學(xué)中作為模范的文章,也常常用來(lái)指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來(lái)看看吧。
數(shù)學(xué)思考教學(xué)反思篇一
新課程改革以后,每?jī)?cè)教材中都增設(shè)了一個(gè)內(nèi)容,那就是《數(shù)學(xué)廣角》。這個(gè)內(nèi)容的增設(shè),滲透了一些數(shù)學(xué)思想方法:排列、組合、集合、等量代換、統(tǒng)籌優(yōu)化、數(shù)學(xué)編碼、抽屜原因等,這些數(shù)學(xué)思想方法對(duì)于開(kāi)發(fā)學(xué)生的智力,發(fā)展學(xué)生的能力,促進(jìn)學(xué)生的進(jìn)一步發(fā)展都是有利的。
總復(fù)習(xí)中也有這一塊內(nèi)容,由于這部分內(nèi)容涉及的`知識(shí)多,且難度比較大,所以在復(fù)習(xí)時(shí)不可能像前面那些知識(shí)一樣進(jìn)行系統(tǒng)的整理,只能對(duì)一些主要的內(nèi)容進(jìn)行必要的復(fù)習(xí),所以在這個(gè)內(nèi)容的復(fù)習(xí)中,我關(guān)鍵就滲透一個(gè)重要思想:化難為易。
復(fù)習(xí)中選取的找規(guī)律、排列組合、邏輯推理都是學(xué)生今后學(xué)習(xí)數(shù)學(xué)要用到的重要的數(shù)學(xué)思想方法。為了降低學(xué)生的思維難度,教學(xué)中采用了列表、圖示等方式,把抽象的數(shù)學(xué)思想方法盡可能直觀地顯示給學(xué)生。在學(xué)習(xí)這個(gè)內(nèi)容前,我請(qǐng)孩子們對(duì)這個(gè)內(nèi)容進(jìn)行了預(yù)習(xí),課堂上進(jìn)行有效的交流,尤其重視方法的的歸納和應(yīng)用,加深學(xué)生對(duì)這些知識(shí)的理解,從而提高學(xué)生對(duì)這些數(shù)學(xué)思想方法的掌握水平,把培養(yǎng)學(xué)生解決問(wèn)題的能力這個(gè)目標(biāo)落到實(shí)處。如找規(guī)律這個(gè)內(nèi)容,6個(gè)點(diǎn)可以連成多少條線段?8個(gè)點(diǎn)呢?點(diǎn)少的時(shí)候,咱們可以動(dòng)手連一連來(lái)數(shù)出線段數(shù),但關(guān)鍵還是要從連線的過(guò)程中發(fā)現(xiàn)連線時(shí)的規(guī)律。書(shū)中的算式是1+2+3+4+5=15(條),而有一個(gè)學(xué)生是這樣列的:5+4+3+2+1=15(條),他有自己的理解:6個(gè)點(diǎn),開(kāi)始可以從其中一個(gè)點(diǎn)出發(fā)與另外5個(gè)點(diǎn)相連,連5條線段,換個(gè)點(diǎn)與其它點(diǎn)相連,只能連4條,依此類推。相當(dāng)ok的想法,規(guī)律也很快就找到了,化難為易成功了!
數(shù)學(xué)思考教學(xué)反思篇二
20xx級(jí)高一學(xué)生是我校歷史上招生人數(shù)最多、層次較為復(fù)雜的一屆學(xué)生。個(gè)人的知識(shí)水平和能力水平也參差不齊。如何讓學(xué)生學(xué)有所成,學(xué)有所得?如何因人施教,因材施教?傳統(tǒng)的教學(xué)模式顯然已不能適應(yīng)新課程下的新要求。如何面向全體學(xué)生,全面提高教學(xué)質(zhì)量,讓學(xué)生人人有所獲,既要讓優(yōu)秀生出類拔萃,又要讓后進(jìn)生學(xué)有進(jìn)步,也成了我們教學(xué)探索過(guò)程中所面臨的一個(gè)重要課題。
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問(wèn)題,這些問(wèn)題主要表現(xiàn)在以下方面:
1、進(jìn)一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.教材中學(xué)生自主探究的內(nèi)容增多,如二次函數(shù)在閉區(qū)間上的最值問(wèn)題,三角公式的變形與靈活運(yùn)用等??陀^上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動(dòng)學(xué)習(xí)。許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門道”,沒(méi)有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。
3、對(duì)自己學(xué)習(xí)數(shù)學(xué)的好差(或成?。┎涣私猓粫?huì)去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。
4、不能計(jì)劃學(xué)習(xí)行動(dòng),不會(huì)安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時(shí)監(jiān)控每一步驟,對(duì)學(xué)習(xí)結(jié)果不會(huì)正確地自我評(píng)價(jià)。
5、不重視基礎(chǔ)。一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書(shū)寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。
針對(duì)我校高一學(xué)生的具體情況,我們?cè)诟咭粩?shù)學(xué)新課程教學(xué)實(shí)踐與探究中,貫徹“因人施教,因材施教”原則。以學(xué)法指導(dǎo)為突破口;著重在“讀、講、練、輔、作業(yè)”等方面下功夫,取得一定效果。
俗話說(shuō)“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內(nèi)涵和外延及辨析概念。例如,集合是數(shù)學(xué)中的一個(gè)原始概念,是不加定義的。它從常見(jiàn)的“我校高一年級(jí)學(xué)生”、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數(shù)”等事物中抽象出來(lái),但集合的概念又不同于特殊具體的實(shí)物集合,集合的確定及性質(zhì)特征是由一組公理來(lái)界定的?!按_定性、無(wú)序性、互異性”常常是“集合”的代名詞。再如象限角的概念,要向?qū)W生解釋清楚,角的始邊與x軸的非負(fù)半軸重合和與x軸的正半軸重合的細(xì)微差別;根據(jù)定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導(dǎo)學(xué)生從多層次,多角度去認(rèn)識(shí)和掌握數(shù)學(xué)概念。其次讀好定理公式和例題。閱讀定理公式時(shí),要分清條件和結(jié)論。如高一必修2直線與平面平行的判斷中由三個(gè)條件推導(dǎo)出一個(gè)結(jié)論;對(duì)數(shù)計(jì)算中的一個(gè)公式,其中要求讀例題時(shí),要注重審題分析,注意題中的隱含條件,掌握解題的方法和書(shū)寫規(guī)范。讀書(shū)要鼓勵(lì)學(xué)生相互議論。俗語(yǔ)說(shuō)“議一議知是非,爭(zhēng)一爭(zhēng)明道理”。新課程教材中每一節(jié)內(nèi)容都輔以相應(yīng)的探究?jī)?nèi)容和思考的內(nèi)容。例如,讓學(xué)生議論分別通過(guò)圖象與單位圓的三角函數(shù)線分別掌握正余弦函數(shù)的性質(zhì)等。
外國(guó)有一位教育家曾經(jīng)說(shuō)過(guò):教師的作用在于將“冰冷”的知識(shí)加溫后傳授給學(xué)生。講是實(shí)踐這種傳授的最直接和最有效的教學(xué)手段。首先講要注意循序漸進(jìn)的原則。循序漸進(jìn),防止急躁。
每堂新授課中,在復(fù)習(xí)必要知識(shí)和展示教學(xué)目標(biāo)的基礎(chǔ)上,老師著重揭示知識(shí)的產(chǎn)生、形成、發(fā)展過(guò)程,解決學(xué)生疑惑。比如在學(xué)習(xí)兩角和差公式之前,學(xué)生已經(jīng)掌握五套誘導(dǎo)公式,可以將求任意角三角函數(shù)值問(wèn)題轉(zhuǎn)化為求某一個(gè)銳角三角函數(shù)值的問(wèn)題。此時(shí)教師應(yīng)進(jìn)一步引導(dǎo)學(xué)生:對(duì)于一些半特殊的教(750度,150度等)能不能不通過(guò)查表而求出精確值呢?這樣兩角和差的三角函數(shù)就呼之欲出了,極大激發(fā)了學(xué)生的學(xué)習(xí)興趣。講授中注意從簡(jiǎn)單到復(fù)雜的過(guò)程,要讓學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí)。鼓勵(lì)學(xué)生應(yīng)積極、主動(dòng)參與課堂活動(dòng)的全過(guò)程,教、學(xué)同步。讓學(xué)生自己真正做學(xué)習(xí)的主人。例如,講解函數(shù)的圖象應(yīng)從振幅、周期、相位依次各自進(jìn)行變化,然后再綜合,并盡可能利用多媒體輔助教學(xué),使學(xué)生容易接受。其次講要注重突出數(shù)學(xué)思想方法的教學(xué),注重學(xué)生數(shù)學(xué)能力的培養(yǎng)。
訓(xùn)練是很有必要的。課本的例題、練習(xí)題和習(xí)題要求學(xué)生要題題過(guò)關(guān);補(bǔ)充的練習(xí),應(yīng)先是課本中練習(xí)及習(xí)題的簡(jiǎn)單改造題,這有利于學(xué)生鞏固基礎(chǔ)知識(shí)和基本技能。讓學(xué)生通過(guò)認(rèn)真思考可以完成。即讓學(xué)生“跳一跳可以摸得著”。一定要讓學(xué)生在練習(xí)中強(qiáng)化知識(shí)、應(yīng)用方法,在練習(xí)中分步達(dá)到教學(xué)目標(biāo)要求并獲得再練習(xí)的興趣和信心。同時(shí)老師們?cè)诂F(xiàn)有習(xí)題的基礎(chǔ)上基礎(chǔ)上簡(jiǎn)單地做一些改造,便可以變化出各種不同的題目;其次要講練結(jié)合。學(xué)生要練習(xí),老師要評(píng)講。多講解題思路和解題方法,其中包括成功的與錯(cuò)誤的。特別是注意要充分暴露錯(cuò)誤的思維發(fā)生過(guò)程,在課堂造就民主氣氛,充分傾聽(tīng)學(xué)生意見(jiàn),哪怕走點(diǎn)“彎路”,吃點(diǎn)“苦頭”;另一方面,則引導(dǎo)學(xué)生各抒己見(jiàn),評(píng)判各方面之優(yōu)劣,最后選出大家公認(rèn)的最佳方法。還可適當(dāng)讓學(xué)生涉及一些一題多解的題目,拓展思維空間,培養(yǎng)學(xué)生思維的多面性和深刻性。要求學(xué)生掌握通解通法同時(shí),也要講究特殊解法。最后練習(xí)要增強(qiáng)應(yīng)用性。例如用函數(shù)、、三角、向量等相關(guān)知識(shí)解實(shí)際應(yīng)用題。引導(dǎo)學(xué)生學(xué)會(huì)建立數(shù)學(xué)模型,并應(yīng)用所學(xué)知識(shí),研究此數(shù)學(xué)模型。
鑒于學(xué)生現(xiàn)有的知識(shí)、能力水平差異較大,為了使每一位學(xué)生都能在自己的“最近發(fā)展區(qū)”更好地學(xué)習(xí)數(shù)學(xué),得到最好的發(fā)展,制定“分層次作業(yè)”。即將作業(yè)難度和作業(yè)量由易到難分成a、b、c三檔,由學(xué)生根據(jù)自身學(xué)習(xí)情況自主選擇,然后在充分尊重學(xué)生意見(jiàn)的基礎(chǔ)上再進(jìn)行協(xié)調(diào)。以后的時(shí)間里,根據(jù)學(xué)生實(shí)際學(xué)習(xí)情況,隨時(shí)進(jìn)行調(diào)整。
以上是我這近一年來(lái)的教學(xué)體會(huì)。新課程下制約高中數(shù)學(xué)教學(xué)的因素很多,影響學(xué)生學(xué)習(xí)的因素也很多,有智力因素和非智力因素。但要相信“沒(méi)有失敗的學(xué)生,只有有問(wèn)題的教育?!蔽覀?cè)诮虒W(xué)實(shí)踐中,要用最優(yōu)的教學(xué)促進(jìn)學(xué)生的發(fā)展。注重學(xué)生能力培養(yǎng)。由此可見(jiàn),只要我們立足于課堂教學(xué)改革,就能活躍課堂氣氛,能充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。防止學(xué)生出現(xiàn)“高分低能,低分無(wú)能”以及一聽(tīng)就懂,一看就會(huì),一做就錯(cuò)的不良現(xiàn)象。使每個(gè)學(xué)生得到不同層次的發(fā)展,是全面提高教學(xué)質(zhì)量的有效途徑。
數(shù)學(xué)思考教學(xué)反思篇三
在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,教師精心設(shè)計(jì)好問(wèn)題是有效地組織好課堂提問(wèn)的前提。要使提問(wèn)收到較好的效果,還必須講究提問(wèn)的技巧。
a:創(chuàng)設(shè)懸念。教師提問(wèn)時(shí),要使學(xué)生對(duì)問(wèn)題產(chǎn)生“欲知后事如何”的好奇心,帶著一種心理上的期待去學(xué)習(xí)。例如,在講解《比例尺》時(shí),可以先讓學(xué)生思考:拿一張地圖,量一量建德到杭州的圖上距離有多長(zhǎng)?學(xué)生量出后,教師進(jìn)一步追問(wèn),建德到杭州的距離是否就是你所量的這樣長(zhǎng)呢?此刻,學(xué)生有一種“追下去”的懸念心理,從而跳動(dòng)了學(xué)生探究新知的興趣和欲望。
b:相機(jī)誘導(dǎo)。抓住時(shí)機(jī),采取循循善誘、點(diǎn)撥啟迪的方法提出問(wèn)題,使學(xué)生在教師的誘導(dǎo)下,獨(dú)立解決問(wèn)題。特別是當(dāng)學(xué)生的思維活動(dòng)出現(xiàn)停滯、阻塞時(shí),教師要善于提出問(wèn)題來(lái)誘導(dǎo)學(xué)生調(diào)整思路。使思維活動(dòng)能順利開(kāi)展。c:變換角度。在學(xué)生能夠接受的前提下,要從不同角度提問(wèn),做到深文淺問(wèn),淺問(wèn)深究,引導(dǎo)學(xué)生多方面去思考問(wèn)題,從中選擇解決問(wèn)題的最佳方法。
課堂提問(wèn)的效果直接與提問(wèn)的時(shí)機(jī)有關(guān)。在一節(jié)課的不同階段,學(xué)生思維的緊張程度是不同的,教師要善于抓住時(shí)機(jī)采用不同方式提問(wèn)。例如,在課的開(kāi)始,學(xué)生的思維由平靜趨向活潑狀態(tài),這是可采用激發(fā)式提問(wèn),多提一些回憶的問(wèn)題,有助于培養(yǎng)學(xué)生學(xué)習(xí)的積極性。當(dāng)學(xué)生思維處于高度活躍狀態(tài)時(shí),可采用探究式提問(wèn),有助于學(xué)生全面、深入理解教學(xué)內(nèi)容,促進(jìn)學(xué)生思維的深刻性和創(chuàng)造性。
對(duì)學(xué)生的答問(wèn)進(jìn)行評(píng)價(jià),有利于促進(jìn)師生交流,形成良好的雙響反饋,創(chuàng)設(shè)生動(dòng)活潑的課堂氣氛。學(xué)生回答后急切想知道對(duì)錯(cuò),其余學(xué)生的心理狀態(tài)也一樣。因此,教師要及時(shí)準(zhǔn)確地對(duì)答問(wèn)進(jìn)行評(píng)價(jià)。同時(shí)在評(píng)價(jià)中,鼓勵(lì)學(xué)生提出疑難問(wèn)題,師生共同幫助解決。
數(shù)學(xué)思考教學(xué)反思篇四
現(xiàn)代教學(xué)論認(rèn)為,教學(xué)過(guò)程不是單純的傳授和學(xué)習(xí)知識(shí)的過(guò)程,而是促進(jìn)學(xué)生全面發(fā)展(包括思維能力的發(fā)展)的過(guò)程。從小學(xué)數(shù)學(xué)教學(xué)過(guò)程來(lái)說(shuō),數(shù)學(xué)知識(shí)和技能的掌握與思維能力的發(fā)展也是密不可分的。一方面,學(xué)生在理解和掌握數(shù)學(xué)知識(shí)的過(guò)程中,不斷地運(yùn)用著各種思維方法和形式,如比較、分析、綜合、抽象、概括、判斷、推理;另一方面,在學(xué)習(xí)數(shù)學(xué)知識(shí)時(shí),為運(yùn)用思維方法和形式提供了具體的內(nèi)容和材料。
本節(jié)課我注重了數(shù)學(xué)思想方法的教學(xué),開(kāi)課時(shí),出示一個(gè)點(diǎn),問(wèn):可以連幾條線段?學(xué)生不假思索的說(shuō):一條。在片刻安靜之后,學(xué)生突然恍然大悟,立刻反應(yīng):不能連成線段,因?yàn)榫€段有兩個(gè)端點(diǎn)……接著在黑板上又點(diǎn)一個(gè)點(diǎn),問(wèn),兩個(gè)點(diǎn)之間可以連幾條線段?(一條)。在學(xué)生及其興奮的時(shí)候,我不再一個(gè)一個(gè)添點(diǎn),而是一下點(diǎn)了8個(gè)點(diǎn),問(wèn):8個(gè)點(diǎn)之間可以連多少條線段?學(xué)生喊著8條、10條……然后是相互的爭(zhēng)論,互不相讓。在學(xué)生興奮的時(shí)候,我說(shuō):究竟是幾條呢?給你們一個(gè)建議:在紙上畫(huà)一畫(huà)、數(shù)一數(shù)。由于點(diǎn)比較多,想一下子數(shù)清楚并不是一件容易的事。大約1分鐘之后,我又說(shuō):點(diǎn)多了,想比較快的數(shù)出可以連多少條線段不容易,怎么辦?有的學(xué)生根據(jù)以前的學(xué)習(xí)經(jīng)驗(yàn),想到先研究點(diǎn)比較少的情況,找到規(guī)律后,再應(yīng)用規(guī)律研究點(diǎn)比較多的情況。在這里我給學(xué)生建議,利用表格的形式記錄是否更清楚呢?滲透了由難化易的數(shù)學(xué)思考方法。學(xué)生從2個(gè)點(diǎn)開(kāi)始連線,逐步經(jīng)歷連線過(guò)程,隨著點(diǎn)數(shù)的增多,得出每次增加的線段數(shù)和總線段數(shù),初步感知點(diǎn)數(shù)、增加的線段數(shù)和總線段數(shù)之間的聯(lián)系。讓學(xué)生經(jīng)歷豐富的連線過(guò)程后,整體觀察和對(duì)比表格中的數(shù)據(jù),從而進(jìn)一步發(fā)現(xiàn)每次增加條數(shù)就是點(diǎn)數(shù)-1,接著讓學(xué)生在發(fā)現(xiàn)中提升規(guī)律,從而解決復(fù)雜的問(wèn)題。學(xué)生不僅學(xué)到了點(diǎn)連線段的方法和知識(shí),還體會(huì)到了研究數(shù)學(xué)問(wèn)題的方法,真是受益匪淺。
學(xué)習(xí)數(shù)學(xué)的目的,不僅僅是應(yīng)用所發(fā)現(xiàn)的規(guī)律來(lái)解決簡(jiǎn)單的數(shù)學(xué)問(wèn)題,更重要的是滲透數(shù)學(xué)思想,指導(dǎo)學(xué)生的研究的方法,使學(xué)生能夠應(yīng)用所學(xué)的方法,自主的解決在學(xué)習(xí)和生活中遇到的更多的數(shù)學(xué)問(wèn)題,體會(huì)成功的喜悅,從而體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性。所以在教學(xué)數(shù)學(xué)思想時(shí),在引導(dǎo)學(xué)生研究了“以平面上幾個(gè)點(diǎn)為端點(diǎn),可以連多少條線段”之后,出示了練習(xí)十八的第3題:多邊形的內(nèi)角和。在研究的時(shí)候,為學(xué)生學(xué)生提供了畫(huà)有“三角形、四邊形、五邊形……”的表格,學(xué)生根據(jù)剛才研究的經(jīng)驗(yàn),以小組為單位研究其中蘊(yùn)含的規(guī)律。在交流的過(guò)程中,學(xué)生說(shuō)說(shuō)自己是怎樣的研究的,為什么多邊形的內(nèi)角和是(邊數(shù)-2)×1800。在學(xué)生發(fā)現(xiàn)規(guī)律之后還要學(xué)生反過(guò)來(lái)思考這樣的規(guī)律所形成的原因。這樣的教學(xué)讓學(xué)生學(xué)會(huì)用數(shù)學(xué)思維方式去解決日常生活中的問(wèn)題,進(jìn)而培養(yǎng)學(xué)生的應(yīng)用技能及創(chuàng)新精神。并且讓學(xué)生學(xué)以致用,靈活運(yùn)用之前發(fā)現(xiàn)的連線問(wèn)題的規(guī)律,解決新的數(shù)學(xué)問(wèn)題,培養(yǎng)學(xué)生遷移能力。整個(gè)過(guò)程都在逐步地讓學(xué)生去體會(huì)化難為易的數(shù)學(xué)思想,更深刻的理解如何將數(shù)學(xué)問(wèn)題化繁為簡(jiǎn),運(yùn)用數(shù)據(jù)學(xué)的不完全歸納法總結(jié)規(guī)律、驗(yàn)證規(guī)律并運(yùn)用規(guī)律去解決較復(fù)雜的數(shù)學(xué)問(wèn)題。
數(shù)學(xué)的這種抽象性,使得有些孩子學(xué)習(xí)數(shù)學(xué)時(shí),會(huì)有困難。在研究數(shù)學(xué)規(guī)律的過(guò)程中,可以為學(xué)生提供多種操作的手段??梢允菍?shí)物操作、可以是在紙上的寫寫畫(huà)畫(huà),使學(xué)生在動(dòng)手的過(guò)程中,將抽象的數(shù)學(xué)問(wèn)題具體化。在實(shí)際的觀察、分析、提煉的過(guò)程中,才能更深刻的理解問(wèn)題的本質(zhì),發(fā)現(xiàn)有價(jià)值的規(guī)律,從而也培養(yǎng)了學(xué)生的解決問(wèn)題的能力,滲透了問(wèn)題研究的方法。并且常年的實(shí)踐證明,孩子自己操作并從中有所得,學(xué)生從實(shí)踐操作中找到規(guī)律,同時(shí)也獲得發(fā)現(xiàn)規(guī)律后的快樂(lè)。所以在教學(xué)中,根據(jù)學(xué)生的年齡的特點(diǎn)及數(shù)學(xué)知識(shí)的基礎(chǔ),給學(xué)生充足的時(shí)間,在圖中連線,將多邊形分割成若干個(gè)三角形,根據(jù)三角形的內(nèi)角和來(lái)研究多邊形的內(nèi)角和。在這個(gè)過(guò)程中,鼓勵(lì)學(xué)生多角度思考問(wèn)題,培養(yǎng)學(xué)生從不同角度去觀察問(wèn)題、解決問(wèn)題,讓學(xué)生思維得到訓(xùn)練。
在教學(xué)設(shè)計(jì)的時(shí)候,我關(guān)注了這些問(wèn)題。但在實(shí)際教學(xué)的過(guò)程中,由于學(xué)生的課堂生成是隨機(jī)的,在研究若干個(gè)點(diǎn)之間可以連多少條線段的過(guò)程中,注重了學(xué)生的規(guī)律的總結(jié),但是忽略了存在這種規(guī)律的原因。比如:”每增加一個(gè)點(diǎn),所增加的線段的條數(shù)就是點(diǎn)數(shù)-1”,終于等到學(xué)生發(fā)現(xiàn)了規(guī)律,我就迫不及待的引導(dǎo)學(xué)生總結(jié)最終的規(guī)律,而沒(méi)有引導(dǎo)學(xué)生反思一下,為什么會(huì)有這樣的現(xiàn)象,使學(xué)生更清楚的理解規(guī)律,進(jìn)而進(jìn)一步應(yīng)用規(guī)律靈活的解決后續(xù)遇到的各種數(shù)學(xué)問(wèn)題。這個(gè)失誤也說(shuō)明,在公開(kāi)課中,教師還是沒(méi)有沉住氣,仍然有走教案的跡象,我還要繼續(xù)不斷的修煉自己,以使自己的駕馭課堂的感覺(jué)更游刃有余。
數(shù)學(xué)思考教學(xué)反思篇五
近日整理聽(tīng)課筆記,發(fā)現(xiàn)這樣一個(gè)現(xiàn)象:課堂上諸如“對(duì)不對(duì)?”、“可不可以這樣?”、“好不好”等的封閉型問(wèn)題少了,取而代之的是“你認(rèn)為如何?”、“你是怎樣想的?”、“你能想出幾種方法?”等極具開(kāi)放性的提問(wèn)。不可以不說(shuō)這樣的轉(zhuǎn)變體現(xiàn)了教學(xué)的開(kāi)放,反映了新課程的理念。筆者對(duì)此做了一些思考。
思考一:“你發(fā)現(xiàn)了什么?”應(yīng)是理念的轉(zhuǎn)變
案例一:揭示比例意義的概念(學(xué)生計(jì)算各比的比值后,教師板書(shū))
3∶5=18∶30 0.4∶0.2=1.8∶0.9 ∶=7.5∶3
師:這就是今天我們要研究的比例。觀察這三道等式,你發(fā)現(xiàn)了什么?
生:我發(fā)現(xiàn)3∶5=18∶30中3到18擴(kuò)大6倍,5到30也擴(kuò)大6倍。
生:我發(fā)現(xiàn)0.4∶0.2=1.8∶0.9中,0.4是0.2的2倍,1.8是0.9的2倍。
生:我發(fā)現(xiàn)前項(xiàng)擴(kuò)大幾倍,為保持比值不變,后項(xiàng)也應(yīng)擴(kuò)大幾倍。
師(面露難色)我們看看表現(xiàn)形式,直觀看有什么特點(diǎn)?
(生疑惑)
師:(無(wú)奈,分別指向三個(gè)等號(hào))這些等號(hào)說(shuō)明了什么?
終于有個(gè)學(xué)生說(shuō)出表示兩個(gè)比相等。
師:對(duì)了,像這樣兩個(gè)比相等的式子叫比例。
案例中“觀察這三道等式,你發(fā)現(xiàn)了什么”這一開(kāi)放性提問(wèn)“一石激起千層浪”,學(xué)生的思維十分活躍,答案五花八門,課堂氣氛很熱鬧??晌覀円膊浑y發(fā)現(xiàn),教學(xué)效果不盡理想,雖然學(xué)生的回答可以說(shuō)十分精彩,但離教學(xué)目標(biāo)相差甚遠(yuǎn),最后執(zhí)教老師不得不“無(wú)奈地分別指向三個(gè)等號(hào)問(wèn):這些等號(hào)說(shuō)明了什么?”這樣生澀地把教學(xué)帶向下一步。
應(yīng)該說(shuō)開(kāi)放性的提問(wèn)正符合了新課程提出的“數(shù)學(xué)學(xué)習(xí)內(nèi)容要有利于學(xué)生主動(dòng)地進(jìn)行觀察、實(shí)驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng)……數(shù)師應(yīng)激發(fā)學(xué)生在自主探索和合作交流的過(guò)程中真正理解和掌握基本數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)”等理念。但本案例中的“你發(fā)現(xiàn)了什么”卻阻礙了教學(xué)。可見(jiàn),開(kāi)放性的提問(wèn)應(yīng)是一種教學(xué)理念的轉(zhuǎn)變。這樣轉(zhuǎn)變未嘗不是一件好事,課堂開(kāi)放了,學(xué)生靈動(dòng)起來(lái)了,智慧在師生互動(dòng)中流淌。但任何一件事都是一把“雙刃劍”,“你發(fā)現(xiàn)了什么”的開(kāi)放性提問(wèn)如果用在了不適當(dāng)?shù)膬?nèi)容,不恰當(dāng)?shù)牡胤?,就起不到積極的作用,反而會(huì)像上述案例那樣適得其反。
思考二:構(gòu)建“發(fā)現(xiàn)”平臺(tái),在過(guò)程中建構(gòu)知識(shí)
案例二:乘法分配率教學(xué)片段
教師出示三道題請(qǐng)同學(xué)們至少選擇一題,用兩種方法解答。
(1)上衣每件114元,褲子86元。如果購(gòu)買50套需要多少元?
(2)桌子每張56元,椅子每把24元,買三套需要多少元?
同桌互相說(shuō)說(shuō)自己是怎樣算的?哪種方法簡(jiǎn)便,為什么?
(約5分鐘后,學(xué)生說(shuō)明思路及計(jì)算方法,師板書(shū)。)
(114+86)×50 114×50+86×50
(56+24)×3 56×3+24×3
(65+5)×48 65×48+5×48
生:左右相等。
師:請(qǐng)仔細(xì)觀察、分析這三個(gè)等式,你能從中發(fā)現(xiàn)什么規(guī)律嗎?
生:我們小組的同學(xué)發(fā)現(xiàn)這三個(gè)等式左右兩邊都有加法和乘法。
生:我們發(fā)現(xiàn)左右兩個(gè)算式都有相同的數(shù)。
生:我們發(fā)現(xiàn):左邊算式先求和再求積,有小括號(hào);而右邊的算式先求兩個(gè)積,再求和,沒(méi)有小括號(hào)。
生:我們發(fā)現(xiàn)每道題的兩種方法,在計(jì)算時(shí)有一種方法簡(jiǎn)便,另一種不簡(jiǎn)便。
生:左邊的數(shù)50、3、48只用一次,而右邊的算式中用了2次。
生:我補(bǔ)充,我們發(fā)現(xiàn)左邊的算式中先求兩個(gè)的和,再乘一個(gè)數(shù),而另邊的算式只不過(guò)用兩個(gè)數(shù)分別去乘這個(gè)數(shù)。
生:分別。
師:對(duì)了,那么誰(shuí)來(lái)結(jié)合例子具體說(shuō)說(shuō)“分別”的意思。
……
問(wèn)引導(dǎo)學(xué)生經(jīng)歷從實(shí)際問(wèn)題抽象出數(shù)學(xué)問(wèn)題、把生活原型轉(zhuǎn)化為數(shù)學(xué)模型的過(guò)程,讓學(xué)生親身經(jīng)知識(shí)發(fā)生并逐步構(gòu)建數(shù)學(xué)模型的過(guò)程。
同樣是觀察幾道算式,問(wèn)學(xué)生有什么發(fā)現(xiàn),比起案例一來(lái)講,案例二顯然是成功的,教學(xué)效果是有效的。為什么會(huì)這樣呢?關(guān)鍵是為學(xué)生構(gòu)建一個(gè)發(fā)現(xiàn)的平臺(tái)。案例一中只讓學(xué)生計(jì)算了一下各個(gè)比的比值,初步看了一下后就問(wèn)學(xué)生你有什么發(fā)現(xiàn),此時(shí)學(xué)生的觀察體會(huì)都是淺層次的,浮淺的,再加上提問(wèn)沒(méi)有明確的指向性,學(xué)生抓不住教師的要點(diǎn),自然回答不到點(diǎn)子上。而在案例二中,教師創(chuàng)設(shè)了生活情境,在解決問(wèn)題中列出算式。教師適時(shí)提出要求:同桌互相說(shuō)說(shuō)自己是怎樣算的?哪種方法簡(jiǎn)便,為什么?讓學(xué)生深入思考,充分交流。在此基礎(chǔ)上,教師再拋出“仔細(xì)觀察、分析這三個(gè)等式,你能從中發(fā)現(xiàn)什么規(guī)律嗎?”這一問(wèn)題,學(xué)生的交流自然是精彩的,發(fā)現(xiàn)當(dāng)然是繽紛的,生成必然是創(chuàng)新的。
其實(shí),“你發(fā)現(xiàn)了什么”這樣的問(wèn)題設(shè)計(jì),目的是為了課堂教學(xué)的精彩生成,而這當(dāng)然少不了教師課前的精心預(yù)設(shè),這是一個(gè)師生互動(dòng)、互學(xué)的過(guò)程。案例一中的設(shè)計(jì),如果能放在比例意義概念揭示以后,讓學(xué)生多寫幾組比例,然后仔細(xì)觀察寫出的比,體會(huì)寫比的過(guò)程。在此基礎(chǔ)上教師可以提問(wèn):比例表示兩個(gè)比相等,其實(shí)它有著很多有趣的特征。請(qǐng)仔細(xì)觀察,看看你有什么發(fā)現(xiàn)?這樣教學(xué)就會(huì)事半功倍了。
思考三:提供“發(fā)現(xiàn)”時(shí)空,在操作中尋找規(guī)律
案例三:
6÷3=2(盤)……0(個(gè))
7÷3=2(盤)……1(個(gè))
8÷3=2(盤)……2(個(gè))
9÷3=3(盤)……0(個(gè))
10÷3=3(盤)……1(個(gè))
11÷3=3(盤)……2(個(gè))
師:根據(jù)上面這一組算式,你們能發(fā)現(xiàn)什么?
生:除數(shù)都是3。
生:被除數(shù)一個(gè)比一個(gè)大1。
生:余數(shù)只會(huì)出現(xiàn)0、1、2三個(gè)數(shù)。
師:那么,余數(shù)會(huì)不會(huì)出現(xiàn)3呢?
生:不會(huì)。因?yàn)槿绻€余3個(gè)的話,那么就可以再裝一“盤”了,這樣余數(shù)又為0了。
師:除數(shù)為3時(shí),余數(shù)有0、1、2三種可能,這說(shuō)明了什么?
生:我猜,余數(shù)要比除數(shù)小。
師:是這樣嗎?大家再舉一些例子,比如我們現(xiàn)在令除數(shù)為4,寫幾道算式,研究研究。
(學(xué)生操作)
師:你現(xiàn)在又有什么發(fā)現(xiàn)?能用一句話概括嗎?
生(高興地):余數(shù)必須比除數(shù)小。
……
這一教學(xué)片斷以學(xué)生活動(dòng)為主,學(xué)生親自參與探究過(guò)程,而教師的作用主要體現(xiàn)在創(chuàng)設(shè)親自動(dòng)手操作的情境,充分提供給學(xué)生發(fā)現(xiàn)的時(shí)空,讓學(xué)生積累一些感性認(rèn)識(shí)。教師通過(guò)兩個(gè)開(kāi)放性提問(wèn):“根據(jù)上面這一組算式,你們能發(fā)現(xiàn)什么?”、“大家再舉一些例子,比如我們現(xiàn)在令除數(shù)為4,寫幾道算式,研究研究。你現(xiàn)在又有什么發(fā)現(xiàn)?能用一句話概括嗎?”引領(lǐng)學(xué)生觀察、比較、討論。使學(xué)生的自主探索、小組合作有的放矢,有章可循。
教學(xué)實(shí)踐給我們這樣的啟示:書(shū)本上的知識(shí)是前人總結(jié)出來(lái),但對(duì)于學(xué)生來(lái)說(shuō),又是有待發(fā)現(xiàn)的新知識(shí)。因此,在小學(xué)數(shù)學(xué)教學(xué)中,教師要善于引領(lǐng)(你發(fā)現(xiàn)了什么只是其中一種有效的手段)學(xué)生按一定的步驟去自學(xué)地提出問(wèn)題、研究問(wèn)題、解決問(wèn)題、發(fā)現(xiàn)新知,從而使他們?cè)趯W(xué)習(xí)過(guò)程中獲得成功的精神體驗(yàn)。即使學(xué)生一時(shí)不能發(fā)現(xiàn)問(wèn)題,教師也要有足夠的耐心,給學(xué)生充足的時(shí)間,等待學(xué)生去思考,去操作,去交流,去發(fā)現(xiàn)知識(shí),尋找規(guī)律。
思考四:提高“發(fā)現(xiàn)”質(zhì)量,在思考中發(fā)展思維
案例四:組兩位數(shù)
生:12、23、34、45、42、
生:21、24、13、51、35
……
學(xué)生們七嘴八舌地說(shuō)著,教師一一板書(shū)在黑板上。
師:還有其他答案嗎?
生:想不出來(lái)了。
師:很好,一起來(lái)數(shù)一數(shù),一共有幾個(gè)?
生:20個(gè)。
很顯然,這是一道開(kāi)放式練習(xí)題,有利于培養(yǎng)學(xué)生的發(fā)散性思維。答案找到了,一共有20個(gè)。但本案的教學(xué)似乎總?cè)绷它c(diǎn)什么?用我們現(xiàn)在流行的話說(shuō):味道沒(méi)有做足,蛋糕沒(méi)有做大。開(kāi)放練習(xí)可以從質(zhì)和量?jī)蓚€(gè)方面來(lái)發(fā)展學(xué)生的思維。量指學(xué)生在解決問(wèn)題時(shí)“想得多”和“想得快”;質(zhì)指學(xué)生在解決問(wèn)題時(shí)“想得全”,即不重復(fù)、不遺漏,有規(guī)律地尋找解決問(wèn)題的方法或全部答案。這是對(duì)學(xué)生思維的更高的要求。而本案例中學(xué)生的表現(xiàn)卻是想到什么說(shuō)什么,思維是零散、無(wú)序的。教師也僅僅停留在從量的方面上發(fā)展學(xué)生的思維,忽視了對(duì)“質(zhì)”的追求,忽視了習(xí)題中隱含的規(guī)律,忽視了對(duì)學(xué)生有序思維的培養(yǎng)。利用開(kāi)放性問(wèn)題的獨(dú)特作用,我們可以這樣組織教學(xué)。
(讓學(xué)生也感覺(jué)到這樣零散地想,不夠系統(tǒng),容易遺漏或重復(fù)。一個(gè)人想的話,就更不容易想全了。)
師:讓我們把剛才大家寫出來(lái)的兩位數(shù)排排順序。
12、13、14、15;
21、23、24、25;
31、32、34、35;
41、42、43、45;
51、52、53、54。
師:仔細(xì)觀察我們排列好的數(shù),你有什么發(fā)現(xiàn)呢?
過(guò)這樣的調(diào)整,即培養(yǎng)了學(xué)生思維的靈活性,發(fā)散性,更能培養(yǎng)學(xué)生思維的嚴(yán)密性和科學(xué)性。
思考五:體驗(yàn)“發(fā)現(xiàn)”快樂(lè),在感受中健康成長(zhǎng)
案例五:求兩個(gè)數(shù)的最大公約數(shù)和最小公倍數(shù)。
出示題目:求12和30的最大公約數(shù)和最小公倍數(shù)。
(學(xué)生很快都用短除法的形式求出12和30的最大公約數(shù)是6,最小公倍數(shù)是60。這顯然不是本節(jié)課探求的重點(diǎn)。本節(jié)課的目的是要讓學(xué)生通過(guò)深入的觀察、分析、比較、總結(jié),發(fā)現(xiàn)最大公約數(shù)和最小公倍數(shù)的異同。于是執(zhí)教老師提出了新的要求。)
集體交流時(shí),學(xué)生發(fā)言很踴躍。
生:我們小組得出求最大公約數(shù)和求最小公倍數(shù)的相同點(diǎn)有:都是用短除法的形式分解質(zhì)因數(shù)的,都要用它們公有的質(zhì)因數(shù)或公約數(shù)去除,都要一直除到兩個(gè)商互質(zhì)數(shù)為止。
生:我們發(fā)現(xiàn)了不同點(diǎn)是:最大公約數(shù)是將所有的除數(shù)乘起來(lái),也就是公有的質(zhì)因數(shù)相乘,而最小公倍數(shù)要將除數(shù)和商都乘起來(lái),也就是公有的質(zhì)因數(shù)和它們每個(gè)獨(dú)有的質(zhì)因數(shù)相乘。
師:分析地很好,這是它們最本質(zhì)的區(qū)別,正是求最大公約數(shù)和最小公倍數(shù)方法不同的地方,最容易混淆,咱們?cè)谧龅臅r(shí)候要注意別乘錯(cuò)了。
生:老師,我們小組有一個(gè)發(fā)現(xiàn),12和30的最小公倍數(shù)60是它們最大公約數(shù)6的10倍,這正好是除到的兩個(gè)商2和5的乘積。
師:有意思,還有什么發(fā)現(xiàn)呢?
生:我也有個(gè)發(fā)現(xiàn),不知對(duì)不對(duì)。我想可以用12×5或30×2,積都是60,這就是它們的最小公倍數(shù)。
師:將這兩個(gè)數(shù)和短除法后所得的商交差相乘,還真能得到這兩個(gè)數(shù)的最小公倍數(shù)。
生(高興地):這樣不就可以用來(lái)檢驗(yàn)了嗎?
生:我們可以舉例驗(yàn)證一下。
師:這是個(gè)好提意,大家動(dòng)手做吧,也許你還會(huì)有新的發(fā)現(xiàn)呢?……
學(xué)生興致勃勃地投入到新的探索中去,爭(zhēng)辯聲、笑聲不時(shí)回蕩在教室內(nèi)。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)有好奇心與求知欲;在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自信心。”在課堂上,教師通過(guò)創(chuàng)設(shè)一定的情境,讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探究與創(chuàng)造。學(xué)生通過(guò)積極思考、自主探究與合作交流,獲得了成功的喜悅,同時(shí)也增強(qiáng)了學(xué)好數(shù)學(xué)的自信心。
在上述案例中,學(xué)生之所以會(huì)有那樣的發(fā)現(xiàn),開(kāi)放性的提問(wèn)(幾次問(wèn)你有什么發(fā)現(xiàn))、教師的鼓勵(lì)無(wú)疑起到了推波助瀾的作用。學(xué)生不但自己首先品嘗到了“發(fā)現(xiàn)――成功”的快樂(lè),同時(shí)還引領(lǐng)其他學(xué)生進(jìn)入更深層次的思考,于是便有了更精彩的發(fā)現(xiàn)。在這樣的教學(xué)中,學(xué)生的思維過(guò)程得以盡情展示,情感得以盡情宣泄。這樣良好的氛圍,積極的心理場(chǎng),激勵(lì)著學(xué)生向科學(xué)的殿堂攀登。
教學(xué)需要關(guān)注細(xì)節(jié),讓我們進(jìn)一步思考“你發(fā)現(xiàn)了什么?”,也許你會(huì)有新的發(fā)現(xiàn)。
數(shù)學(xué)思考教學(xué)反思篇六
小學(xué)數(shù)學(xué)是一門基礎(chǔ)學(xué)科。在培養(yǎng)具有實(shí)事求是、獨(dú)立思考、勇于創(chuàng)造的科學(xué)精神,個(gè)性鮮明、各具特色的人才方面,小學(xué)數(shù)學(xué)教學(xué)擔(dān)負(fù)著重要的責(zé)任。而現(xiàn)實(shí)的小學(xué)數(shù)學(xué)課堂教學(xué)確實(shí)有幾點(diǎn)是需要我們?nèi)ド钏嫉摹?/p>
小學(xué)數(shù)學(xué)課堂所講授的是知識(shí)更是知識(shí)和能力的形成過(guò)程,但更重要的是在過(guò)程中體會(huì)知識(shí)的形成,而不是簡(jiǎn)單的告訴或講述,知識(shí)只有在形成后才能凸顯其作用和價(jià)值。離開(kāi)了知識(shí)形成過(guò)程一切都是空中樓閣。
小學(xué)生在課堂上特別是在大型的公開(kāi)課上不敢向教師提出真正有實(shí)質(zhì)內(nèi)涵的數(shù)學(xué)問(wèn)題就在于他們的問(wèn)題在講課之前就被教師分門別類的進(jìn)行了“有效”的刪減,許多課堂就會(huì)呈現(xiàn)出教師的過(guò)人才會(huì)和學(xué)生精彩配合,著就讓課堂失去了其本為和特色。從而讓生成課堂遠(yuǎn)離了我們。
課堂是需要實(shí)效的但更重要的是數(shù)學(xué)思想和數(shù)學(xué)能力的培養(yǎng)。練習(xí)能提高學(xué)生的許多能力,但過(guò)多的練習(xí)會(huì)讓學(xué)生失去了學(xué)習(xí)和研究數(shù)學(xué)的快樂(lè),更不用說(shuō)培養(yǎng)學(xué)生的數(shù)學(xué)思想和數(shù)學(xué)思維。
那么,該如何去擺脫這些現(xiàn)象呢?筆者認(rèn)為還是要按照事物的發(fā)展規(guī)律,依照事物的變化來(lái)解決這類問(wèn)題。
小學(xué)數(shù)學(xué)課堂應(yīng)是動(dòng)態(tài)的有趣的和高效的,教師在講數(shù)學(xué)課時(shí)應(yīng)首先意識(shí)到學(xué)生的主體地位,那么他在講課時(shí)會(huì)根據(jù)講授內(nèi)容、對(duì)象特點(diǎn)和時(shí)機(jī)來(lái)有效的選擇教法、教具。讓學(xué)生在最佳的教法和最合適教具和最好的時(shí)機(jī)上充分體會(huì)數(shù)學(xué)的魅力,從而保證數(shù)學(xué)課堂的高效性。
數(shù)學(xué)知識(shí)的形成是動(dòng)態(tài)的學(xué)生不僅要知其言,還要知其所以言。要將數(shù)學(xué)知識(shí)的動(dòng)態(tài)形成過(guò)程利用最有效的手段傳授給學(xué)生,讓學(xué)生在知理明言中學(xué)習(xí)和體驗(yàn)數(shù)學(xué)。例如在講體積時(shí)教師通過(guò)面積引入,再來(lái)討論體積,讓學(xué)生明白體積是什么?為什么要用體積?和如何使用體積等等,這樣學(xué)生的知識(shí)就建構(gòu)在動(dòng)態(tài)的基礎(chǔ)上,這對(duì)于學(xué)生知識(shí)體系的完整建構(gòu)起著非常重要的作用。
小學(xué)數(shù)學(xué)就多讓學(xué)生問(wèn)幾個(gè)為什么?教師也應(yīng)該積極的引導(dǎo)學(xué)生多問(wèn)幾個(gè)為什么?讓學(xué)生自己學(xué)會(huì)去觀察、去思考、去推導(dǎo)、去計(jì)算、去驗(yàn)證。這樣讓數(shù)學(xué)的“張力”引導(dǎo)學(xué)生去追求更高的數(shù)學(xué)境界。
數(shù)學(xué)思想和數(shù)學(xué)思維品質(zhì)是對(duì)學(xué)生的一生發(fā)展起著至關(guān)重要的作用,在小學(xué)階段教師可有效的培養(yǎng)學(xué)生的數(shù)學(xué)”轉(zhuǎn)化”思想即把未知問(wèn)題通過(guò)向已有知識(shí)的合理有效轉(zhuǎn)化來(lái)不斷提高學(xué)生的數(shù)學(xué)思想,同時(shí)教師還可利用練習(xí)題來(lái)培養(yǎng)具有實(shí)事求是、獨(dú)立思考、勇于創(chuàng)造的數(shù)學(xué)思維品質(zhì)。
在小學(xué)課堂上如果教師能注意好以上幾個(gè)問(wèn)題依照數(shù)學(xué)的本身發(fā)展規(guī)律來(lái)構(gòu)建生動(dòng)、優(yōu)質(zhì)、高效的數(shù)學(xué)課堂,那我們的數(shù)學(xué)課堂將更加精彩!