總結不僅僅是總結成績,更重要的是為了研究經驗,發現做好工作的規律,也可以找出工作失誤的教訓。這些經驗教訓是非常寶貴的,對工作有很好的借鑒與指導作用,在今后工作中可以改進提高,趨利避害,避免失誤。大家想知道怎么樣才能寫一篇比較優質的總結嗎?下面是小編為大家帶來的總結書優秀范文,希望大家可以喜歡。
人教版一年級數學知識點總結篇一
1.讓學生體驗上下的位置關系;定物體上下的位置和順序,并能用自己的語言表達;
2.比較熟練地口算20以內的退位減法;使學生初步學會用加法和減法解決簡單的問題;
3.使學生知道長方形、正方形的形狀和邊的特點;
6.能夠熟練地口算整十數加一位數和相應的減法。
1.能確定物體上下的位置和順序,并能用自己的語文試表述;
2.讓學生體驗上下位置的相對性;
3.通過操作讓學生明白長方形和正方形各自的特點;
4.理解算理,掌握自己喜歡的計算方法,并能夠正確熟練地進行計算;
5.100以內數的讀法和寫法;
6.數100以內數,特別是數到幾十九、下一個整十數應該數幾十比較困難;
7.了解和掌握個位、十位的數位的概念。理解個位、十位上的數所表示的意義,能夠正確地、熟練地讀、寫100以內的數。
1.位置:所在或所占的地方,有上下、前后、左右之分。
2.上:位置方位名詞,例如:汽車在馬路的上面。
3.下:位置方位名詞,例如:船在橋的下面。
4.前:位置方位名詞。
例如:張三在李四的前排,那么可以說張三在李四的前面。
5.后:位置方位名詞。
例如:李四在張三的后排,那么可以說李四在張三的后面。
7.退位減:減法運算中必須向高位借位的減法運算。
8.20以內的退位減法:
20以內的數字之間的退位減法。例如:12-9=3.
9.圖形的拼組(作風車):
10.數一數
11.讀數
24讀作“二十四”;169讀作“一百六十九”。
12.比較數的大小
先比較高數位的數學,再按照數位的高低依次比較。
例如:39和145比較大小,39百位數字為0,145百位數字為1,0小于1,所以39小于145.
人教版一年級數學知識點總結篇二
1.認識人民幣的單位元、角、分和它們的十進關系,認識各種面值的人民幣,能看懂物品的單價,會進行簡單的計算。
2.結合自己的生活經驗和已經掌握的100以內數的知識,學習、認識人民幣,一方面初步知道人民幣的基本知識和懂得如何使用人民幣,提高社會實踐能力;另一方面加深對100以內數的概念的理解。
3.體會數概念與現實生活的密切聯系。
4.認識各種面值的人民幣,并會進行簡單的計算。
5.使學生認識人民幣的單位元、角、分,知道1元=10角,1角=10分。
6.通過購物活動,使學生初步體會人民幣在社會生活、商品交換中的功能和作用并知道愛護人民幣。
人教版一年級數學知識點總結篇三
分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等n/m。
定義
一般地,在抽樣時,將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。
人教版一年級數學知識點總結篇四
1-5的認識和加減法
一、1--5的認識
1、1—5各數的含義:每個數都可以表示不同物體的數量。有幾個物體就用幾來表示。
2、1—5各數的數序
從前往后數:1、2、3、4、5.
從后往前數:5、4、3、2、1.
3、1—5各數的寫法:根據每個數字的形狀,按數字在田字格中的位置,認真、工整地進行書寫。
二、比大小
1、前面的數等于后面的數,用“=”表示,即3=3,讀作3等于3。前面的數大于后面的數,用“”表示,即32,讀作3大于2。前面的數小于后面的數,用“”表示,即34,讀作3小于4。
2、填“”或“”時,開口對大數,尖角對小數。
三、第幾
1、確定物體的排列順序時,先確定數數的方向,然后從1開始點數,數到幾,它的順序就是“第幾”。第幾指的是其中的某一個。
2、區分“幾個”和“第幾”
“幾個”表示物體的多少,而“第幾”只表示其中的一個物體。
四、分與合
數的組成:一個數(1除外)分成幾和幾,先把這個數分成1和幾,依次分到幾和1為止。例如:5的組成有1和4,2和3,3和2,4和1.
把一個數分成幾和幾時,要有序地進行分解,防止重復或遺漏。
五、加法
1、加法的含義:把兩部分合在一起,求一共有多少,用加法計算。
2、加法的計算方法:計算5以內數的加法,可以采用點數、接著數、數的組成等方法。其中用數的組成計算是最常用的方法。
六、減法
1、減法的含義:從總數里去掉(減掉)一部分,求還剩多少用減法計算。
2、減法的計算方法:計算減法時,可以用倒著數、數的分成、想加算減的方法來計算。
七、0
1、0的意義:0表示一個物體也沒有,也表示起點。
2、0的讀法:0讀作:零
3、0的寫法:寫0時,要從上到下,從左到右,起筆處和收筆處要相連,并且要寫圓滑,不能有棱角。
4、0的加、減法:任何數與0相加都得這個數,任何數與0相減都得這個數,相同的兩個數相減等于0.
如:0+8=89-0=94-4=0
第四單元
認識圖形
1、長方體的特征:長長方方的,有6個平平的面,面有大有小。
如圖:
2、正方體的特征:四四方方的,有6個平平的面,面的大小一樣。
如圖:
3、圓柱的特征:直直的,上下一樣粗,上下兩個圓面大小一樣。放在桌子上能滾動。立在桌子上不能滾動。
如圖:
4、球的特征:圓圓的,很光滑,它的表面是曲面。放在桌子上能向任意方向滾動。
5、立體圖形的拼擺:用長方體或正方體能拼組出不同形狀的立體圖形,在拼好的立體圖形中,有一些部位從一個角度是看不到的,要從多個角度去觀察。用小圓柱可以拼成更大的圓柱。
人教版一年級數學知識點總結篇五
(抽簽法、隨機樣數表法)常常用于總體個數較少時,它的主要特征是從總體中逐個抽取;
優點:操作簡便易行
缺點:總體過大不易實行
方法
(1)抽簽法
一般地,抽簽法就是把總體中的n個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。
(抽簽法簡單易行,適用于總體中的個數不多時。當總體中的個體數較多時,將總體“攪拌均勻”就比較困難,用抽簽法產生的樣本代表性差的可能性很大)
(2)隨機數法
隨機抽樣中,另一個經常被采用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。
人教版一年級數學知識點總結篇六
(1)正數:比0大的數叫做正數;
負數:比0小的數叫做負數;
0既不是正數,也不是負數。
(2)正數和負數表示相反意義的量。
2、有理數的概念及分類
3、有關數軸
(1)數軸的三要素:原點、正方向、單位長度。數軸是一條直線。
(2)所有有理數都可以用數軸上的點來表示,但數軸上的點不一定都是有理數。
(3)數軸上,右邊的數總比左邊的數大;表示正數的點在原點的右側,表示負數的點在原點的左側。
(2)相反數:符號不同、絕對值相等的兩個數互為相反數。
若a、b互為相反數,則a+b=0;
相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。
(3)絕對值最小的數是0;絕對值是本身的數是非負數。
4、任何數的絕對值是非負數。
最小的正整數是1,最大的負整數是-1。
5、利用絕對值比較大小
兩個正數比較:絕對值大的那個數大;
兩個負數比較:先算出它們的絕對值,絕對值大的反而小。
6、有理數加法
加法的結合律:(a+b)+c=a+(b+c)
7、有理數減法:減去一個數,等于加上這個數的相反數。
8、在把有理數加減混合運算統一為最簡的形式,負數前面的加號可以省略不寫.
例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”
9、有理數的乘法
兩個數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。
第一步:確定積的符號 第二步:絕對值相乘
10、乘積的符號的確定
當負因數有偶數個時,積為正。幾個有理數相乘,有一個因數為零,積就為零。
11、倒數:乘積為1的兩個數互為倒數,0沒有倒數。
正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個數符號一定相同)
倒數是本身的只有1和-1。
人教版一年級數學知識點總結篇七
什么是整群抽樣
整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個互不交叉、互不重復的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。
應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。
優缺點
整群抽樣的優點是實施方便、節省經費;
整群抽樣的缺點是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡單隨機抽樣。
實施步驟
先將總體分為i個群,然后從i個群鐘隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:
一、確定分群的標注
二、總體(n)分成若干個互不重疊的部分,每個部分為一群。
三、據各樣本量,確定應該抽取的群數。
四、采用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。
例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。
與分層抽樣的區別
整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。
分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要么整群抽取,要么整群不被抽取。
人教版一年級數學知識點總結篇八
對數函數
對數函數的一般形式為,它實際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。
右圖給出對于不同大小a所表示的函數圖形:
可以看到對數函數的圖形只不過的指數函數的圖形的關于直線y=x的對稱圖形,因為它們互為反函數。
(1)對數函數的定義域為大于0的實數集合。
(2)對數函數的值域為全部實數集合。
(3)函數總是通過(1,0)這點。
(4)a大于1時,為單調遞增函數,并且上凸;a小于1大于0時,函數為單調遞減函數,并且下凹。
(5)顯然對數函數。
【二】
指數函數
(1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。
(2)指數函數的值域為大于0的實數集合。
(3)函數圖形都是下凹的。
(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。
(5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于y軸與x軸的正半軸的單調遞減函數的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數總是在某一個方向上無限趨向于x軸,永不相交。
(7)函數總是通過(0,1)這點。
(8)顯然指數函數。