工作學習中一定要善始善終,只有總結才標志工作階段性完成或者徹底的終止。通過總結對工作學習進行回顧和分析,從中找出經驗和教訓,引出規律性認識,以指導今后工作和實踐活動。寫總結的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編整理的個人今后的總結范文,歡迎閱讀分享,希望對大家有所幫助。
有關數學必修一知識點總結(精)一
(1)若f(x)是偶函數,那么f(x)=f(-x) ;
(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
(1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由“同增異減”判定;
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像c1與c2的對稱性,即證明c1上任意點關于對稱中心(對稱軸)的對稱點仍在c2上,反之亦然;
(3)曲線c1:f(x,y)=0,關于y=x+a(y=-x+a)的'對稱曲線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線c1:f(x,y)=0關于點(a,b)的對稱曲線c2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈r時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x= 對稱;
(1)y=f(x)對x∈r時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;
(6)y=f(x)對x∈r時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;
7.(1) (a0,a≠1,b0,n∈r+);
(2) l og a n= ( a0,a≠1,b0,b≠1);
(3) l og a b的符號由口訣“同正異負”記憶;
(4) a log a n= n ( a0,a≠1,n0 );
(1)a中元素必須都有象且唯一;(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;
(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為a,值域為b,則有f[f--1(x)]=x(x∈b),f--1[f(x)]=x(x∈a).
處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;
依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題
. 恒成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;
旋轉的特征:
(1)對應點到旋轉中心的距離相等;
(2)對應點與旋轉中心所連線段的夾角等于旋轉角;
(3)旋轉前后的圖形全等。
理解以下幾點:
(1)圖形中的每一個點都繞旋轉中心旋轉了同樣大小的角度。
(2)對應點到旋轉中心的距離相等,對應線段相等,對應角相等。
(3)圖形的大小和形狀都沒有發生改變,只改變了圖形的位置。
有關數學必修一知識點總結(精)二
1、要有學習數學的興趣。“興趣是最好的老師”。做任何事情,只要有興趣,就會積極、主動去做,就會想方設法把它做好。但培養數學興趣的關鍵是必須先掌握好數學基礎知識和基本技能。有的同學老想做難題,看到別人上數奧班,自己也要去。如果這些同學連課內的基礎知識都掌握不好,在里面學習只能濫竽充數,對學習并沒有幫助,反而使自己失去學習數學的信心。我建議同學們可以看一些數學名人小故事、趣味數學等知識來增強學習的自信心。
2、要有端正的學習態度。首先,要明確學習是為了自己,而不是為了老師和父母。因此,上課要專心、積極思考并勇于發言。其次,回家后要認真完成作業,及時地把當天學習的知識進行復習,再把明天要學的內容做一下預習,這樣,學起來會輕松,理解得更加深刻些。
3、要有“持之以恒”的精神。要使學習成績提高,不能著急,要一步一步地進行,不要指望一夜之間什么都學會了。即使進步慢一點,只要堅持不懈,也一定能在數學的學習道路上獲得成功!還要有“不恥下問”的精神,不要怕丟面子。其實無論知識難易,只要學會了,弄懂了,那才是最大的面子!
4、要注重學習的技巧和方法。不要死記硬背一些公式、定律,而是要靠分析、理解,做到靈活運用,舉一反三。特別要重視課堂上學習新知識和分析練習的時候,不能思想開小差,管自己做與學習無關的事情。注意力一定要高度集中,并積極思考,遇到不懂題目時要及時做好記錄,課后和同學進行探討,做好查漏補缺。
5、要有善于觀察、閱讀的好習慣。只要我們做數學的有心人,細心觀察、思考,我們就會發現生活中到處都有數學。除此之外,同學們還可以從多方面、多種渠道來學習數學。如:從電視、網絡、《小學生數學報》、《數學小靈通》等報刊雜志上學習數學,不斷擴展知識面。
6、要有自己的觀點。現在,大部分同學遇到一些較難或不清楚的問題時,就不加思考,輕易放棄了,有的干脆聽從老師、父母、書本的意見。即使是老師、長輩、書籍等權威,也不是沒有一點兒失誤的,我們要重視權威的意見,但絕不等于不加思考的認同。
7、要學會概括和積累。及時總結解題規律,特別是積累一些經典和特殊的題目。這樣既可以學得輕松,又可以提高學習的效率和質量。
8、要重視其他學科的學習。因為各個學科之間是有著密切的聯系,它對學習數學有促進的作用。如:學好語文對數學題目的理解有很大的幫助等等。
有關數學必修一知識點總結(精)三ok3w_ads("s005");
【導語】以下是大海范文網為大家推薦的有關高二數學必修三《三角函數公式》整理,如果覺得很不錯,歡迎點評和分享~感謝你的閱讀與支持!
tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
sinα?cosβ=1/2[sin(α+β)+sin(α-β)]
cosα?sinβ=1/2[sin(α+β)-sin(α-β)]
cosα?cosβ=1/2[cos(α+β)+cos(α-β)]
sinα?sinβ=-1/2[cos(α+β)-cos(α-β)]
sinα+sinβ=2sin(α+β)/2?cos(α-β)/2
sinα-sinβ=2cos(α+β)/2?sin(α-β)/2
cosα+cosβ=2cos(α+β)/2?cos(α-β)/2
cosα-cosβ=-2sin(α+β)/2?sin(α-β)/2
相關熱詞搜索: 高二 必修 公式 ok3w_ads("s006");
ok3w_ads("s007");
有關數學必修一知識點總結(精)四
本章教材分析
算法是數學及其應用的重要組成部分,是計算科學的重要基礎.算法的應用是學習數學的一個重要方面.學生學習算法的應用,目的就是利用已有的數學知識分析問題和解決問題.通過算法的學習,對完善數學的思想,激發應用數學的意識,培養分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助.
本章主要內容:算法與程序框圖、基本算法語句、算法案例和小結.教材從學生最熟悉的算法入手,通過研究程序框圖與算法案例,使算法得到充分的應用,同時也展現了古老算法和現代計算機技術的密切關系.算法案例不僅展示了數學方法的嚴謹性、科學性,也為計算機的應用提供了廣闊的空間.讓學生進一步受到數學思想方法的熏陶,激發學生的學習熱情.
在算法初步這一章中讓學生近距離接近社會生活,從生活中學習數學,使數學在社會生活中得到應用和提高,讓學生體會到數學是有用的,從而培養學生的學習興趣.“數學建模”也是高考考查重點.
本章還是數學思想方法的載體,學生在學習中會經常用到“算法思想” “轉化思想”,從而提高自己數學能力.因此應從三個方面把握本章:
(1)知識間的聯系;
(2)數學思想方法;
(3)認知規律.
本章教學時間約需12課時,具體分配如下(僅供參考):
1.1.1 算法的概念 約1課時
1.1.2 程序框圖與算法的基本邏輯結構 約4課時
1.2.1 輸入語句、輸出語句和賦值語句 約1課時
1.2.2 條件語句 約1課時
1.2.3 循環語句 約1課時
1.3算法案例 約3課時
本章復習 約1課時
1.1 算法與程序框圖
1.1.1 算法的概念
整體設計
教學分析
算法在中學數學課程中是一個新的概念,但沒有一個精確化的定義,教科書只對它作了如下描述:“在數學中,算法通常是指按照一定規則解決某一類問題的明確有限的步驟.”為 了讓學生更好理解這一概念,教科書先從分析一個具體的二元一次方程組的求解過程出發,歸納出了二元一次方程組的求解步驟,這些步驟就構成了解二元一次方程組的算法.教學中,應從學生非常熟悉的例子引出算法,再通過例題加以鞏固.
三維目標
1.正確理解算法的概念,掌握算法的基本特點.
2.通過例題教學,使學生體會設計算法的基本思 路.
3.通過有趣的實例使學生了解算法這一概念的同時,激發學生學習數學的興趣.
重點難點
教學重點:算法的含義及應用.
教學難點:寫出解決一類問題的算法.
課時安排
1課時
教學過程
導入新課
思路1(情境導入)
一個人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個人和兩只動物,沒有人在的時候,如果狼的數量不少于羚羊的數量狼就會吃羚羊.該人如何將動物轉移過河?請同學們寫出解決問題的步驟,解決這一問題將要用到我們今天學習的內容——算法.
思路2(情境導入)
大家都看過趙本山與宋丹丹演的小品吧,宋丹丹說了一個笑話,把大象裝進冰箱總共分幾步?
答案:分三步,第一步:把冰箱門打開;第二步:把大象裝進去;第三步:把冰箱門關上.
上述步驟構成了把大象裝進冰箱的算法,今天我們開始學習算法的概念.
思路3(直接導入)
算法不僅是數學及其應用的重要組成部分,也是計算機科學的重要基礎.在現代社會里,計算機已成為人們日常生活和工作中不可缺少的工具.聽音樂、看電影、玩游戲、打字、畫卡通畫、處理數據,計算機是怎樣工作的呢?要想弄清楚這個問題,算法的學習是一個開始.
推進新課
新知探究
提出問題
(1)解二元一次方程組有幾種方法?
(2)結合教材實例 總結用加減消元法解二元一次方程組的步驟.
(3)結合教材實例 總結用代入消元法解二元一次方程組的步驟.
(4)請寫出解一般二元一次方程組的步驟.
(5)根據上述實例談談你對算法的理解.
(6)請同學們總結算法的特征.
(7)請思考我們學習算法的意義.
討論結果:
(1)代入消元法和加減消元法.
(2)回顧二元一次方程組
的求解過程,我們可以歸納出以下步驟:
第一步,①+②×2,得5x=1.③
第二步,解③,得x= .
第三步,②-①×2,得5y=3.④
第四步,解④, 得y= .
第五步,得到方程組的解為
(3)用代入消元法解二元一次方程組
我們可以歸納出以下步驟:
第一步,由①得x=2y-1.③
第二步,把③代入②,得2(2y-1)+y=1.④
第三步,解④得y= .⑤
第四步,把⑤代入③,得x=2× -1= .
第五步,得到方程組的解為
(4)對于一般的二元一次方程組
其中a1b2-a2b1≠0,可以寫出類似的求解步驟:
第一步,①×b2-②×b1,得
(a1b2-a2b1)x=b2c1-b1c2.③
第二步,解③,得x= .
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④
第四步,解④,得y= .
第五步,得到方程組的解為
(5)算法的定義:廣義的算法是指完成某項工作的方法和步驟,那么我們可以說洗衣機的使用說明書是操作洗衣機的算法,菜譜是做菜的算法等等.
在數學中,算法通常是指按照一定規則解決某一類問題的明確有限的步驟.
現在,算法通常可以編成計算機程序,讓計算機執行并解決問題.
(6)算法的特征:①確定性:算法的每一步都 應當做到準確無誤、不重不漏.“不重”是指不是可有可無的,甚至無用的步驟,“不漏” 是指缺少哪一步都無法完成任務.②邏輯性:算法從開始的“第一步”直到“最后一步”之間做到環環相扣,分工明確,“前一步”是“后一步”的前提, “后一步”是“前一步”的繼續.③有窮性:算法要有明確的開始和結束,當到達終止步驟時所要解決的問題必須有明確的結果,也就是說必須在有限步內完成任務,不能無限制地持續進行.
(7)在解決某些問題時,需要設計出一系列可操作或可計算的步驟來解決問題,這些步驟稱為解決這些問題的算法.也就是說,算法實際上就是解決問題的一種程序性方法.算法一般是機械的,有時需進行大量重復的計算,它的優點是一種通法,只要按部就班地去做,總能得到結果.因此算法是計算科學的重要基礎.
應用示例
思路1
例1 (1)設計一個算法,判斷7是否為質數.
(2)設計一個算法,判斷35是否為質數.
算法分析:(1)根據質數的定義,可以這樣判斷:依次用2—6除7,如果它們中有一個能整除7,則7不是質數,否則7是質數.
算法如下:(1)第一步,用2除7,得到余數1.因為余數不為0,所以2不能整除7.
第二步,用3除 7,得到余數1.因為余數不為0,所以3不能整除7.
第三步,用4除7,得到余數3.因為余數不為0,所以4不能整除7.
第四步,用5除7,得到余數2.因為余數不為0,所以5不能整除7.
第五步,用6除7,得到余數1.因為余數不為0,所以6不能整除7.因此,7是質數.
(2)類似地,可寫出“判斷35是否為質數”的算法:第一步,用2除35,得到余數1.因為余數不為0,所以2不能整除35.
第二步,用3除35,得到余數2.因為余數不為0,所以3不能整除35.
第三步,用4除35,得到余數3.因為余數不為0,所以4不能整除35.
第四步,用5除35,得到余數0.因為余數為0,所以5能整除35.因此,35不是質數.
點評:上述算法有很大的局限性,用上述算法判斷35是否為質數還可以,如果判斷1997是否為質數就麻煩了,因此,我們需要尋找普適性的算法步驟.
變式訓練
請寫出判斷n(n 2)是否為質數的算法.
分析:對于任意的整數n( n2),若用i表示2—(n-1)中的任意整數,則“判斷n是否為質數”的算法包含下面的重復操作:用i除n,得到余數r.判 斷余數r是否為0,若是,則不是質數;否則,將i的值增加1,再執行同樣的操作.
這個操作一直要進行到i的值等于(n-1)為止.
算法如下:第一步,給定大于2的整數n.
第二步,令i=2.
第三步,用i除n,得到余數r.
第四步,判斷“r=0”是否成立.若是,則n不是質數,結束算法;否則,將i的值增加1,仍用i表示.
第五步,判斷“i(n-1)”是否成立.若是,則n是質數,結束算法;否則,返回第三步.
例2 寫出用“二分法”求方程x2-2=0 (x0)的近似解的算法.
分析:令f(x)=x2-2,則方程x2-2=0 (x0)的解就是函數f(x)的零點.
“二分法”的基本思想是:把函數f(x)的零點所在的區間[a,b](滿足f(a)?f(b)0)“一分為二”,得到[a,m]和[m,b].根據“f(a)?f(m)0”是否成立,取出零點所在的區間[a,m]或[m,b],仍記為[a,b].對所得的區間[a,b]重復上述步驟,直到包含零點的區間[a,b]“足夠小”,則[a,b]內的數可以作為方程的近似解.[來源:學&科&網z&x&x&k]
解:第一步,令f(x)=x2-2,給定精確度d.
第二步,確定區間[a,b],滿足f(a)?f(b)0.
第三步,取區間中點m= .
第四步,若f(a)?f(m)0,則含零點的區間為[a,m];否則,含零點的區間為[m,b].將新得到的含零點的區間仍記為[a,b].
第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.
當d=0.005時,按照以上算法,可以得到下表.
a b |a-b|
1 2 1
1 1.5 0.5
1.25 1.5 0.25
1.375 1.5 0.125
1.375 1.437 5 0.062 5
1.406 25 1.437 5 0.031 25
1.406 25 1.421 875 0.015 625
1.414 062 5 1.421 875 0.007 812 5
1.414 062 5 1.417 968 75 0.003 906 25
于是,開區間(1.414 062 5,1.417 968 75)中的實數都是當精確度為0.005時的原方程的近似解.實際上,上述步驟也是求 的近似值的一個算法.
點評:算法一般是機械的,有時需要進行大量的重復計算,只要按部就班地去做,總能算出結果,通常把算法過程稱為“數學機械化”.數學機械化的最大優點是它可以借助計算機來完成,實際上處理任何問題都需要算法.如:中國象棋有中國象棋的棋譜、走法、勝負的評判準則;而國際象棋有國際象棋的棋譜、走法、勝負的評判準則;再比如 申請出國有一系列的先后手續,購買物品也有相關的手續……
思路2
例1 一個人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個人和兩只動物,沒有人在的時候,如果狼的數量不 少于羚羊的數量就會吃羚羊.該人如何將動物轉移過河?請設計算法.
分析:任何動物同船不用考慮動物的爭斗但需考慮承載的數量,還應考慮到兩岸的動物都得保證狼的數量要小于羚羊的數量,故在算法的構造過程中盡可能保證船里面有狼,這樣才能使得兩岸的羚羊數量占到優勢.
解:具體算法如下:
算法步驟:
第一步:人帶兩只狼過河,并自己返回.
第二步:人帶一只狼過河,自己返回.
第三步:人帶兩只羚羊過河,并帶兩只狼返回.
第四步:人帶一只羊過河,自己返回.
第五步:人帶兩只狼過河.
點評:算法是解決某一類問題的精確描述,有些問題使用形式化、程序化的刻畫是最恰當的.這就要求我們在寫算法時應精練、簡練、清晰地表達,要善于分析任何可能出現的情況,體現思維的嚴密性和完整性.本題型解決問題的算法中某些步驟重復進行多次才能解決,在現實生活中,很多較復雜的情境經常遇到這樣的問題,設計算法的時候,如果能夠合適地利用某些步驟的重復,不但可以使得問題變得簡單,而且可以提高工作效率.
例2 喝一杯茶需要這樣幾個步驟:洗刷水壺、燒水、洗刷 茶具、沏茶.問:如何安排這幾個步驟?并給出兩種算法,再加以比較.
分析:本例主要為加深對算法概念的理解,可結合生活常識對問題進行分析,然后解決問題.
解:算法一:
第一步,洗刷水壺.
第二步,燒水.
第三步,洗刷茶具.
第四步,沏茶.
算法二:
第一步,洗刷水壺.
第二步,燒水,燒水的過程當中洗刷茶具.
第三步,沏茶.
點評:解決一個問題可有多個算法,可以選擇其中最優的、最簡單的、步驟盡量少的算法.上面的兩種算法都符合題意,但是算法二運用了統籌方法的原理,因此這個算法要比算法一更科學.
例3 寫出通過尺軌作圖確定線段ab一個5等分點的算法.
分析:我們借助于平行線定理,把位置的比例關系變成已知的比例關系,只要按照規則一步一步去做就能完成任務.
解:算法分析:
第一步,從已知線段的左端點a出發,任意作一條與ab不平行的射線ap.
第二步,在射線上任取一個不同于端點a的點c,得到線段ac.
第三步,在射線上沿ac的方向截取線段ce=ac.
第四步,在射線上沿ac的方向截取線段ef=ac.
第五步,在射線上沿ac的方向截取線段fg=ac.
第六步,在射線上沿ac的方向截取線段gd=ac,那么線段ad=5ac.
第七步,連結db.
第八步,過c作bd的平行線,交線段ab于m,這樣點m就是線段ab的一個5等分點.
點評:用算法解決幾何問題能很好地訓練學生的思維能力,并能幫助我們得到解決幾何問題的一般方法,可謂一舉多得,應多加訓練.
知能訓練
設計算法判斷一元二次方程ax2+bx+c=0是否有實數根.
解:算法步驟如下:
第一步,輸入一元二次方程的系數:a,b,c.
第二步,計算δ=b2-4ac的值.
第三步,判斷δ≥0是否成立.若δ≥0成立,輸出“方程有實根”;否則輸出“方程無實根”,結束算法.
點評:用算法解決問題的特點是:具有很好的程序性,是一種通法.并且具有確定性、邏輯性、有窮性.讓我們結合例題仔細體會算法的特點.
拓展提升
中國網通規定:撥打市內電話時, 如果不超過3分鐘,則收取話費0.22元;如果通話時間超過3分鐘,則超出部分按每分鐘0.1元收取通話費,不足一分鐘按一分鐘計算.設通話時間為t(分鐘),通話費用y(元),如何設計一個程序,計算通話的費用.
解:算法分析:
數學模型實際上為:y關于t的分段函數.
關系式如下:
y=
其中[t-3]表示取不大于t-3的整數部分.
算法步驟如下:
第一步,輸入通話時間t.
第二步,如果t≤3,那么y=0.22;否則判斷t∈z 是否成立,若成立執行
y=0.2+0.1×(t-3);否則執行y=0.2+0.1×([t-3]+1).
第三步,輸出通話費用c.
課堂小結
(1)正確理解算法這一概念.
(2)結合例題掌握算法的特點,能夠寫出常見問題的算法.
作業
課本本節練習1、2.
設計感想
本節的引入精彩獨特,讓學生在感興趣的故事里進入本節的學習.算法是本章的重點也是本章的基 礎,是一個較難理解的概念.為了讓學生正確理解這一概念,本節設置了大量學生熟悉的事例,讓學生仔細體 會反復訓練.本節的事例有古老的經典算法,有幾何算法等,因此這是一節很好的課例.
有關數學必修一知識點總結(精)五
1.并集
(1)并集的定義
由所有屬于集合a或屬于集合b的元素所組成的集合稱為集合a與b的并集,記作a∪b(讀作"a并b");
(2)并集的符號表示
a∪b={x|x∈a或x∈b}.
并集定義的數學表達式中"或"字的意義應引起注意,用它連接的并列成分之間不一定是互相排斥的.
x∈a,或x∈b包括如下三種情況:
①x∈a,但xb;②x∈b,但xa;③x∈a,且x∈b.
由集合a中元素的互異性知,a與b的公共元素在a∪b中只出現一次,因此,a∪b是由所有至少屬于a、b兩者之一的元素組成的集合.
例如,設a={3,5,6,8},b={4,5,7,8},則a∪b={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.
2.交集
利用下圖類比并集的概念引出交集的概念.
(1)交集的定義
由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集,記作a∩b(讀作"a交b").
(2)交集的符號表示
a∩b={x|x∈a且x∈b}.
有關數學必修一知識點總結(精)六
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。
1.通過實例,了解集合的含義,體會元素與集合的屬于關系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。
9.在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數。
10.通過具體實例,了解簡單的分段函數,并能簡單應用。
11.通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。
12.學會運用函數圖象理解和研究函數的性質。
課時分配(14課時)
1.通過具體實例,了解指數函數模型的實際背景。
2.理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。
3.理解指數函數的概念和意義,能借助計算器或計算機畫出具體指數函數的圖象,探索并理解指數函數的單調性與特殊點。
4.在解決簡單實際問題過程中,體會指數函數是一類重要的函數模型。
5.理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及其對簡化運算的作用。
6.通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性和特殊點。
7.通過實例,了解冪函數的概念;結合函數的圖象,了解它們的變化情況。
課時分配(15課時)
1.結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。
根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。
2.利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。
3.收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。
4.根據某個主題,收集17世紀前后發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,采取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數模型的應用實例 | 約2課時 | |
小結 | 約1課時 |
考生只要在全面復習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規范答題,一定會穩中求進,取得優異的成績。
有關數學必修一知識點總結(精)七
一、教學目標:
1、知識與技能
⑴ 理解輾轉相除法與更相減損術中蘊含的數學原理,并能根據這些原理進行算法分析;
⑵ 基本能根據算法語句與程序框圖的知識設計完整的程序框圖并寫出算法程序.
2、過程與方法
在輾轉相除法與更相減損術求最大公約數的學習過程中對比我們常見的約分求公因式的方法,比較它們在算法上的區別,并從程序的學習中體會數學的嚴謹,領會數學算法與計算機處理的結合方式,初步掌握把數學算法轉化成計算機語言的一般步驟.
3、情感與價值觀
⑴ 通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻.
⑵ 在學習古代數學家解決數學問題的方法的過程中培養嚴謹的邏輯思維能力,在利用算法解決數學問題的過程中培養理性的精神和動手實踐的能力.
二、教學重點、難點:
重點:理解輾轉相除法與更相減損術求最大公約數的方法.
難點:把輾轉相除法與更相減損術的方法轉換成程序框圖與程序語言.
三、教學過程:
(一)創設情景、導入課題
1.研究一個實際問題的算法,主要從哪幾方面展開?
算法步驟、程序框圖和編寫程序三方面展開.
2.在程序框圖中算法的基本邏輯結構有哪幾種?
順序結構、條件結構、循環結構
3.在程序設計中基本的算法語句有哪幾種?
輸入語句、輸出語句、賦值語句、條件語句、循環語句
4.思考1:18與30的最大公約數是多少?你是怎樣得到的?
5. 思考2:對于8251與6105這兩個數,它們的最大公約數是多少?你是怎樣得到的?
由于它們公有的質因數較大,利用上述方法求最大公約數就比較困難.有沒有其它的方法可以較簡單的找出它們的最大公約數呢?
(板書課題)
(二)師生互動、探究新知
1. 輾轉相除法
思考3:注意到8251=6105×1+2146,那么8251與6105這兩個數的公約數和6105與2146的公約數有什么關系?
我們發現6105=2146×2+1813,同理,6105與2146的公約數和2146與1813的公約數相等.
思考4:重復上述操作,你能得到8251與6105這兩個數的最大公約數嗎?
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
以上我們求最大公約數的方法就是輾轉相除法,也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的.
利用輾轉相除法求最大公約數的步驟如下:
第一步:用較大的數m除以較小的數n得到一個商 和一個余數 ;
第二步:若 =0,則n為m,n的最大公約數;若 ≠0,則用除數n除以余數 得到一個商 和一個余數 ;
第三步:若 =0,則 為m,n的最大公約數;若 ≠0,則用除數 除以余數 得到一個商 和一個余數 ;
……
依次計算直至 =0,此時所得到的 即為所求的最大公約數.
思考5:你能把輾轉相除法編成一個計算機程序嗎?
第一步,給定兩個正整數m,n(mn).
第二步,計算m除以n所得的余數r.
第三步,m=n,n=r.
第四步,若r=0,則m,n的最大公約數等于m;否則,返回第二步.
input m,n
do
r=m mod n
m=n
n=r
loop until r=0
print m
end
有關數學必修一知識點總結(精)八
教學目標
(1)了解算法的含義,體會算法思想.
(2)會用自然語言和數學語言描述簡單具體問題的算法;
(3)學習有條理地、清晰地表達解決問題的步驟,培養邏輯思維能力與表達能力
教學重難點
重點:算法的含義、解二元一次方程組的算法設計.
難點:把自然語言轉化為算法語言.
情境導入
電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手.作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:
第一步:觀察、等待目標出現(用望遠鏡或瞄準鏡);
第二步:瞄準目標;
第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;
第四步:根據第三步的結果修正彈著點;
第五步:開槍;
第六步:迅速轉移(或隱蔽).
以上這種完成狙擊任務的方法、步驟在數學上我們叫算法.
●課堂探究
預習提升
1.定義:算法可以理解為由基本運算及規定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題.
2.描述方式
自然語言、數學語言、形式語言(算法語言)、框圖.
3.算法的要求
(1)寫出的算法,必須能解決一類問題,且能重復使用;
(2)算法過程要能一步一步執行,每一步執行的操作,必須確切,不能含混不清,而且經過有限步后能得出結果.
4.算法的特征
(1)有限性:一個算法應包括有限的操作步驟,能在執行有窮的操作步驟之后結束.
(2)確定性:算法的計算規則及相應的計算步驟必須是唯一確定的.
(3)可行性:算法中的每一個步驟都是可以在有限的時間內完成的基本操作,并能得到確定的結果.
(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續,且除了最后一步外,每一個步驟只有一個確定的后續.
(5)不唯一性:解決同一問題的算法可以是不唯一的.
課堂典例講練
命題方向1 對算法意義的理解
例1.下列敘述中,
①植樹需要運苗、挖坑、栽苗、澆水這些步驟;
②按順序進行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;
③從青島乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;
④3xx+1;
⑤求所有能被3整除的正數,即3,6,9,12,….
能稱為算法的個數為()
a.2b.3c.4d.5
【解析】根據算法的含義和特征:①②③都是算法;④⑤不是算法.其中④,3xx+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾.
【答案】b
[規律總結]
1.正確理解算法的概念及其特點是解決問題的關鍵.
2.針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內解決這一問題.
【變式訓練】下列對算法的理解不正確的是________
①一個算法應包含有限的步驟,而不能是無限的
②算法可以理解為由基本運算及規定的運算順序構成的完整的解題步驟
③算法中的每一步都應當有效地執行,并得到確定的結果
④一個問題只能設計出一個算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;
由對于同一個問題可以有不同的算法故④不正確.
【答案】④
命題方向2 解方程(組)的算法
例2.給出求解方程組的一個算法.
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質的差別,為了適用于解一般的線性方程組,以便于在計算機上實現,我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組.
[規范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11,
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4,
第四步,輸出4,-1.
方法二:算法如下:
第一步,由①式可以得到y=7-2x,⑤
第二步,把y=7-2x代入②,得x=4.
第三步,把x=4代入⑤,得y=-1.
第四步,輸出4,-1.
[規律總結]1.本題用了2種方法求解,對于問題的求解過程,我們既要強調對“通法、通解”的理解,又要強調對所學知識的靈活運用.
2.設計算法時,經常遇到解方程(組)的問題,一般是按照數學上解方程(組)的方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據求解步驟設計算法步驟.
【變式訓練】
【解】算法如下:s1,①+2×②得5x=1;③
s2,解③得x=;
s3,②-①×2得5y=3;④
s4,解④得y=;
命題方向3 篩選問題的算法設計
例3.設計一個算法,對任意3個整數a、b、c,求出其中的最小值.
[思路分析]比較a,b比較m與c―→最小數
[規范解答]算法步驟如下:
1.比較a與b的大小,若a
2.比較m與c的大小,若m
[規律總結]求最小(大)數就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數中篩選出滿足要求的一個.
【變式訓練】在下列數字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93.
[解析]1.先找到序列中的第一個數m,m=21;
2.將m與89比較,是否相等,如果相等,則搜索到89;
3.如果m與89不相等,則往下執行;
4.繼續將序列中的其他數賦給m,重復第2步,直到搜索到89.
命題方向4 非數值性問題的算法
例4.一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數量不少于羚羊的數量,狼就會吃掉羚羊.
(1)設計安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
[解析](1)
1.人帶兩只狼過河;
2.人自己返回;
3.人帶一只狼過河;
4.人自己返回;
5.人帶兩只羚羊過河;
6.人帶兩只狼返回;
7.人帶一只羚羊過河;
8.人自己返回;
9.人帶兩只狼過河.
(2)在人運送動物過河的過程中,人離開岸邊時必須保證每個岸邊的羚羊的數目大于狼的數目.
[規律總結]1.對于非數值性的問題,在設計算法時,應當先建立過程模型,也就是找到解決問題的方案,再把它細化為一步連接一步組成的步驟.從而設計出算法.
2.首先應想到先運兩只狼,這是唯一的首選步驟,只有這樣才可避免狼吃羊,帶過一只羊后,必須將狼帶回來才行.
【變式訓練】兩個大人和兩個小孩一起渡河,渡口只有一條小船,每次只能渡一個大人或兩個小孩,他們四人都會劃船,但都不會游泳,他們如何渡河?請寫出你的渡河方案及算法.
[解析]因為一次只能渡過一個大人或兩個小孩,而船還要回來渡其他人,所以只能讓兩個小孩先過河,渡河的方案算法為:
1.兩個小孩同船渡過河去;
2.一個小孩劃船回來;
3.一個大人獨自劃船渡過河去;
4.對岸的小孩劃船回來;
5.兩個小孩再同船渡過河去;
6.一個小孩劃船回來;
7.余下的一個大人獨自劃船渡過河去;
8.對岸的小孩劃船回來;
9.兩個小孩再同船渡過河去.
課后習題
1.以下對算法的描述正確的個數是()
①對一類問題都有效;
②對個別問題有效;
③計算可以一步步地進行,每一步都有唯一的結果;
④是一種通法,只要按部就班地做,總能得到結果.
a.1個b.2個 c.3個 d.4個
[答案]c
[解析]①③④正確,均符合算法的概念與要求,②不正確.
2.算法的有限性是指()
a.算法的最后必包含輸出
b.算法中每個操作步驟都是可執行的
c.算法的步驟必須有限
d.以上說法均不正確
[答案]c
[解析]由算法的要求可知,應選c.
3.下列語句中是算法的個數是()
①從廣州到北京旅游,先坐火車,再坐飛機抵達;
②解一元一次方程的步驟是去分母、去括號、移項、合并同類項、系數化為1;
③方程x2-1=0有兩個實根;
④求1+2+3+4的值,先計算1+2=3,再由3+3=6,6+4=10得最終結果10.
a.1個 b.2個
c.3個 d.4個
[答案]c
[分析]解答本題可先正確理解算法的概念及其特點,然后逐一驗證每個語句是否正確.
[解析]①中說明了從廣州到北京的行程安排,完成任務;②中給出了一元一次方程這一類問題的解決方法;④中給出了求1+2+3+4的一個過程,最終得出結果.對于③,并沒有說明如何去算,故①②④是算法,③不是算法.
4.設計一個算法求方程5x+2y=22的正整數解,其最后輸出的結果應為________.
[答案](2,6),(4,1)
[解析]因為求方程的正整數解,所以應將x從1開始輸入,直到方程成立.
x=2時,y==6;
5.已知一個學生的語文成績為89,數學成績為96,外語成績為99. 求它的總分和平均成績的一個算法為:
1.取a=89,b=96,c=99;
2.____①____;
3.____②____;
4.輸出d,e.
[解析]求總分需將三個數相加,求平均分,另需讓總分除以3即可.
x=4時,y==1.
[答案]①計算總分d=a+b+c②計算平均成績e=
有關數學必修一知識點總結(精)九
本章教材分析
算法是數學及其應用的重要組成部分,是計算科學的重要基礎.算法的應用是學習數學的一個重要方面.學生學習算法的應用,目的就是利用已有的數學知識分析問題和解決問題.通過算法的學習,對完善數學的思想,激發應用數學的意識,培養分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助.
本章主要內容:算法與程序框圖、基本算法語句、算法案例和小結.教材從學生最熟悉的算法入手,通過研究程序框圖與算法案例,使算法得到充分的應用,同時也展現了古老算法和現代計算機技術的密切關系.算法案例不僅展示了數學方法的嚴謹性、科學性,也為計算機的應用提供了廣闊的空間.讓學生進一步受到數學思想方法的熏陶,激發學生的學習熱情.
在算法初步這一章中讓學生近距離接近社會生活,從生活中學習數學,使數學在社會生活中得到應用和提高,讓學生體會到數學是有用的,從而培養學生的學習興趣.“數學建模”也是高考考查重點.
本章還是數學思想方法的載體,學生在學習中會經常用到“算法思想” “轉化思想”,從而提高自己數學能力.因此應從三個方面把握本章:
(1)知識間的聯系;
(2)數學思想方法;
(3)認知規律.
本章教學時間約需12課時,具體分配如下(僅供參考):
1.1.1 算法的概念 約1課時
1.1.2 程序框圖與算法的基本邏輯結構 約4課時
1.2.1 輸入語句、輸出語句和賦值語句 約1課時
1.2.2 條件語句 約1課時
1.2.3 循環語句 約1課時
1.3算法案例 約3課時
本章復習 約1課時
1.1 算法與程序框圖
1.1.1 算法的概念
整體設計
教學分析
算法在中學數學課程中是一個新的概念,但沒有一個精確化的定義,教科書只對它作了如下描述:“在數學中,算法通常是指按照一定規則解決某一類問題的明確有限的步驟.”為 了讓學生更好理解這一概念,教科書先從分析一個具體的二元一次方程組的求解過程出發,歸納出了二元一次方程組的求解步驟,這些步驟就構成了解二元一次方程組的算法.教學中,應從學生非常熟悉的例子引出算法,再通過例題加以鞏固.
三維目標
1.正確理解算法的概念,掌握算法的基本特點.
2.通過例題教學,使學生體會設計算法的基本思 路.
3.通過有趣的實例使學生了解算法這一概念的同時,激發學生學習數學的興趣.
重點難點
教學重點:算法的含義及應用.
教學難點:寫出解決一類問題的算法.
課時安排
1課時
教學過程
導入新課
思路1(情境導入)
一個人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個人和兩只動物,沒有人在的時候,如果狼的數量不少于羚羊的數量狼就會吃羚羊.該人如何將動物轉移過河?請同學們寫出解決問題的步驟,解決這一問題將要用到我們今天學習的內容——算法.
思路2(情境導入)
大家都看過趙本山與宋丹丹演的小品吧,宋丹丹說了一個笑話,把大象裝進冰箱總共分幾步?
答案:分三步,第一步:把冰箱門打開;第二步:把大象裝進去;第三步:把冰箱門關上.
上述步驟構成了把大象裝進冰箱的算法,今天我們開始學習算法的概念.
思路3(直接導入)
算法不僅是數學及其應用的重要組成部分,也是計算機科學的重要基礎.在現代社會里,計算機已成為人們日常生活和工作中不可缺少的工具.聽音樂、看電影、玩游戲、打字、畫卡通畫、處理數據,計算機是怎樣工作的呢?要想弄清楚這個問題,算法的學習是一個開始.
推進新課
新知探究
提出問題
(1)解二元一次方程組有幾種方法?
(2)結合教材實例 總結用加減消元法解二元一次方程組的步驟.
(3)結合教材實例 總結用代入消元法解二元一次方程組的步驟.
(4)請寫出解一般二元一次方程組的步驟.
(5)根據上述實例談談你對算法的理解.
(6)請同學們總結算法的特征.
(7)請思考我們學習算法的意義.
討論結果:
(1)代入消元法和加減消元法.
(2)回顧二元一次方程組
的求解過程,我們可以歸納出以下步驟:
第一步,①+②×2,得5x=1.③
第二步,解③,得x= .
第三步,②-①×2,得5y=3.④
第四步,解④, 得y= .
第五步,得到方程組的解為
(3)用代入消元法解二元一次方程組
我們可以歸納出以下步驟:
第一步,由①得x=2y-1.③
第二步,把③代入②,得2(2y-1)+y=1.④
第三步,解④得y= .⑤
第四步,把⑤代入③,得x=2× -1= .
第五步,得到方程組的解為
(4)對于一般的二元一次方程組
其中a1b2-a2b1≠0,可以寫出類似的求解步驟:
第一步,①×b2-②×b1,得
(a1b2-a2b1)x=b2c1-b1c2.③
第二步,解③,得x= .
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④
第四步,解④,得y= .
第五步,得到方程組的解為
(5)算法的定義:廣義的算法是指完成某項工作的方法和步驟,那么我們可以說洗衣機的使用說明書是操作洗衣機的算法,菜譜是做菜的算法等等.
在數學中,算法通常是指按照一定規則解決某一類問題的明確有限的步驟.
現在,算法通常可以編成計算機程序,讓計算機執行并解決問題.
(6)算法的特征:①確定性:算法的每一步都 應當做到準確無誤、不重不漏.“不重”是指不是可有可無的,甚至無用的步驟,“不漏” 是指缺少哪一步都無法完成任務.②邏輯性:算法從開始的“第一步”直到“最后一步”之間做到環環相扣,分工明確,“前一步”是“后一步”的前提, “后一步”是“前一步”的繼續.③有窮性:算法要有明確的開始和結束,當到達終止步驟時所要解決的問題必須有明確的結果,也就是說必須在有限步內完成任務,不能無限制地持續進行.
(7)在解決某些問題時,需要設計出一系列可操作或可計算的步驟來解決問題,這些步驟稱為解決這些問題的算法.也就是說,算法實際上就是解決問題的一種程序性方法.算法一般是機械的,有時需進行大量重復的計算,它的優點是一種通法,只要按部就班地去做,總能得到結果.因此算法是計算科學的重要基礎.
應用示例
思路1
例1 (1)設計一個算法,判斷7是否為質數.
(2)設計一個算法,判斷35是否為質數.
算法分析:(1)根據質數的定義,可以這樣判斷:依次用2—6除7,如果它們中有一個能整除7,則7不是質數,否則7是質數.
算法如下:(1)第一步,用2除7,得到余數1.因為余數不為0,所以2不能整除7.
第二步,用3除 7,得到余數1.因為余數不為0,所以3不能整除7.
第三步,用4除7,得到余數3.因為余數不為0,所以4不能整除7.
第四步,用5除7,得到余數2.因為余數不為0,所以5不能整除7.
第五步,用6除7,得到余數1.因為余數不為0,所以6不能整除7.因此,7是質數.
(2)類似地,可寫出“判斷35是否為質數”的算法:第一步,用2除35,得到余數1.因為余數不為0,所以2不能整除35.
第二步,用3除35,得到余數2.因為余數不為0,所以3不能整除35.
第三步,用4除35,得到余數3.因為余數不為0,所以4不能整除35.
第四步,用5除35,得到余數0.因為余數為0,所以5能整除35.因此,35不是質數.
點評:上述算法有很大的局限性,用上述算法判斷35是否為質數還可以,如果判斷1997是否為質數就麻煩了,因此,我們需要尋找普適性的算法步驟.
變式訓練
請寫出判斷n(n 2)是否為質數的算法.
分析:對于任意的整數n( n2),若用i表示2—(n-1)中的任意整數,則“判斷n是否為質數”的算法包含下面的重復操作:用i除n,得到余數r.判 斷余數r是否為0,若是,則不是質數;否則,將i的值增加1,再執行同樣的操作.
這個操作一直要進行到i的值等于(n-1)為止.
算法如下:第一步,給定大于2的整數n.
第二步,令i=2.
第三步,用i除n,得到余數r.
第四步,判斷“r=0”是否成立.若是,則n不是質數,結束算法;否則,將i的值增加1,仍用i表示.
第五步,判斷“i(n-1)”是否成立.若是,則n是質數,結束算法;否則,返回第三步.
例2 寫出用“二分法”求方程x2-2=0 (x0)的近似解的算法.
分析:令f(x)=x2-2,則方程x2-2=0 (x0)的解就是函數f(x)的零點.
“二分法”的基本思想是:把函數f(x)的零點所在的區間[a,b](滿足f(a)?f(b)0)“一分為二”,得到[a,m]和[m,b].根據“f(a)?f(m)0”是否成立,取出零點所在的區間[a,m]或[m,b],仍記為[a,b].對所得的區間[a,b]重復上述步驟,直到包含零點的區間[a,b]“足夠小”,則[a,b]內的數可以作為方程的近似解.[來源:學&科&網z&x&x&k]
解:第一步,令f(x)=x2-2,給定精確度d.
第二步,確定區間[a,b],滿足f(a)?f(b)0.
第三步,取區間中點m= .
第四步,若f(a)?f(m)0,則含零點的區間為[a,m];否則,含零點的區間為[m,b].將新得到的含零點的區間仍記為[a,b].
第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.
當d=0.005時,按照以上算法,可以得到下表.
a b |a-b|
1 2 1
1 1.5 0.5
1.25 1.5 0.25
1.375 1.5 0.125
1.375 1.437 5 0.062 5
1.406 25 1.437 5 0.031 25
1.406 25 1.421 875 0.015 625
1.414 062 5 1.421 875 0.007 812 5
1.414 062 5 1.417 968 75 0.003 906 25
于是,開區間(1.414 062 5,1.417 968 75)中的實數都是當精確度為0.005時的原方程的近似解.實際上,上述步驟也是求 的近似值的一個算法.
點評:算法一般是機械的,有時需要進行大量的重復計算,只要按部就班地去做,總能算出結果,通常把算法過程稱為“數學機械化”.數學機械化的最大優點是它可以借助計算機來完成,實際上處理任何問題都需要算法.如:中國象棋有中國象棋的棋譜、走法、勝負的評判準則;而國際象棋有國際象棋的棋譜、走法、勝負的評判準則;再比如 申請出國有一系列的先后手續,購買物品也有相關的手續……
思路2
例1 一個人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個人和兩只動物,沒有人在的時候,如果狼的數量不 少于羚羊的數量就會吃羚羊.該人如何將動物轉移過河?請設計算法.
分析:任何動物同船不用考慮動物的爭斗但需考慮承載的數量,還應考慮到兩岸的動物都得保證狼的數量要小于羚羊的數量,故在算法的構造過程中盡可能保證船里面有狼,這樣才能使得兩岸的羚羊數量占到優勢.
解:具體算法如下:
算法步驟:
第一步:人帶兩只狼過河,并自己返回.
第二步:人帶一只狼過河,自己返回.
第三步:人帶兩只羚羊過河,并帶兩只狼返回.
第四步:人帶一只羊過河,自己返回.
第五步:人帶兩只狼過河.
點評:算法是解決某一類問題的精確描述,有些問題使用形式化、程序化的刻畫是最恰當的.這就要求我們在寫算法時應精練、簡練、清晰地表達,要善于分析任何可能出現的情況,體現思維的嚴密性和完整性.本題型解決問題的算法中某些步驟重復進行多次才能解決,在現實生活中,很多較復雜的情境經常遇到這樣的問題,設計算法的時候,如果能夠合適地利用某些步驟的重復,不但可以使得問題變得簡單,而且可以提高工作效率.
例2 喝一杯茶需要這樣幾個步驟:洗刷水壺、燒水、洗刷 茶具、沏茶.問:如何安排這幾個步驟?并給出兩種算法,再加以比較.
分析:本例主要為加深對算法概念的理解,可結合生活常識對問題進行分析,然后解決問題.
解:算法一:
第一步,洗刷水壺.
第二步,燒水.
第三步,洗刷茶具.
第四步,沏茶.
算法二:
第一步,洗刷水壺.
第二步,燒水,燒水的過程當中洗刷茶具.
第三步,沏茶.
點評:解決一個問題可有多個算法,可以選擇其中最優的、最簡單的、步驟盡量少的算法.上面的兩種算法都符合題意,但是算法二運用了統籌方法的原理,因此這個算法要比算法一更科學.
例3 寫出通過尺軌作圖確定線段ab一個5等分點的算法.
分析:我們借助于平行線定理,把位置的比例關系變成已知的比例關系,只要按照規則一步一步去做就能完成任務.
解:算法分析:
第一步,從已知線段的左端點a出發,任意作一條與ab不平行的射線ap.
第二步,在射線上任取一個不同于端點a的點c,得到線段ac.
第三步,在射線上沿ac的方向截取線段ce=ac.
第四步,在射線上沿ac的方向截取線段ef=ac.
第五步,在射線上沿ac的方向截取線段fg=ac.
第六步,在射線上沿ac的方向截取線段gd=ac,那么線段ad=5ac.
第七步,連結db.
第八步,過c作bd的平行線,交線段ab于m,這樣點m就是線段ab的一個5等分點.
點評:用算法解決幾何問題能很好地訓練學生的思維能力,并能幫助我們得到解決幾何問題的一般方法,可謂一舉多得,應多加訓練.
知能訓練
設計算法判斷一元二次方程ax2+bx+c=0是否有實數根.
解:算法步驟如下:
第一步,輸入一元二次方程的系數:a,b,c.
第二步,計算δ=b2-4ac的值.
第三步,判斷δ≥0是否成立.若δ≥0成立,輸出“方程有實根”;否則輸出“方程無實根”,結束算法.
點評:用算法解決問題的特點是:具有很好的程序性,是一種通法.并且具有確定性、邏輯性、有窮性.讓我們結合例題仔細體會算法的特點.
拓展提升
中國網通規定:撥打市內電話時, 如果不超過3分鐘,則收取話費0.22元;如果通話時間超過3分鐘,則超出部分按每分鐘0.1元收取通話費,不足一分鐘按一分鐘計算.設通話時間為t(分鐘),通話費用y(元),如何設計一個程序,計算通話的費用.
解:算法分析:
數學模型實際上為:y關于t的分段函數.
關系式如下:
y=
其中[t-3]表示取不大于t-3的整數部分.
算法步驟如下:
第一步,輸入通話時間t.
第二步,如果t≤3,那么y=0.22;否則判斷t∈z 是否成立,若成立執行
y=0.2+0.1×(t-3);否則執行y=0.2+0.1×([t-3]+1).
第三步,輸出通話費用c.
課堂小結
(1)正確理解算法這一概念.
(2)結合例題掌握算法的特點,能夠寫出常見問題的算法.
作業
課本本節練習1、2.
設計感想
本節的引入精彩獨特,讓學生在感興趣的故事里進入本節的學習.算法是本章的重點也是本章的基 礎,是一個較難理解的概念.為了讓學生正確理解這一概念,本節設置了大量學生熟悉的事例,讓學生仔細體 會反復訓練.本節的事例有古老的經典算法,有幾何算法等,因此這是一節很好的課例.