作為一位不辭辛勞的人民教師,常常要根據教學需要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。那么教案應該怎么制定才合適呢?下面是小編為大家帶來的優秀教案范文,希望大家可以喜歡。
圓的面積教案人教版圓的面積教案北師大版篇一
2.培養學生動手操作的能力,啟發思維,開闊思路;
3.滲透初步的辯證唯物主義思想。
圓面積公式的推導方法。
已知半徑,圓周長的一半怎么求?
(出示一個整圓)哪部分是圓的面積?(指名用手指一指。)
這節課我們一起來學習圓的面積怎么計算。
(板書課題:圓的面積)
1.我們以前學過的三角形、平行四邊形和梯形的面積公式,都是轉化成已知學過的圖形推導出來的,怎樣計算圓的面積呢?我們也要把圓轉化成已學過的圖形,然后推導出圓面積的計算公式。
決定圓的大小的是什么?(半徑)所以,分割圓時要保留這個數據,沿半徑把圓分成若干等份。
展示曲變直的變化圖。
2.動手操作學具,推導圓面積公式。
為了研究方便,我們把圓等分成16份。圓周部分近似看作線段,其用自己的學具(等分成16份的圓)拼擺成一個你熟悉的、學過的平面圖形。
思考:
(1)你擺的是什么圖形?
(2)所擺的圖形面積與圓面積有什么關系?
(3)圖形的各部分相當于圓的什么?
(4)你如何推導出圓的面積?
(學生開始動手擺,小組討論。)
指名發言。(在幻燈前邊說邊擺。)
①拼出長方形,學生敘述,老師板書:
②還能不能拼出其它圖形?
學生可以拼出:
剛才,我們用不同思路都能推導出圓面積的公式是:s=r2。這幾種思路的共同特點都是將圓轉化成已學過的圖形,并根據轉化后的圖形與圓面積的關系推導出面積公式。
例1 一個圓的半徑是4厘米,它的面積是多少平方厘米?
s=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面積是50.24平方厘米。
想一想;求圓面積s應知道什么?如果給d和c,又怎樣求圓面積?
圓的面積教案人教版圓的面積教案北師大版篇二
2、使學生能夠正確地計算圓的面積,培養學生解決簡單的實際問題的能力,滲透類比、極限的思想。
3、通過圓的面積公式推導過程,培養學生的合作精神和創新意識,培養觀察、猜想、驗證的實驗方法與態度。
圓面積的公式推導的過程。
理解圓經過無數等分剪拼后可以拼成一個近似的長方形。并且發現拼成的長方形的長相當于圓周長的一半。
有關圓面積的課件,彩色圓形紙片(每小組1個),剪刀(每組2把).學生每人準備一個圓形物品。
一、創設情境,提出問題
揭示課題:圓的面積
二、充分感知,理解圓的面積的意義。
課件顯示:圓所占平面的大小叫做圓的面積。
你認為圓面積的大小和什么有關?
三、自主探究,合作交流。
1、引導轉化:
2、動手嘗試探索。
(1)分小組動手操作,剪一剪,拼一拼,看能拼成什么圖形?
如果我們再繼續等分下去,拼成的圖形會怎么樣?
小結:隨著等分的份數無限增加,可以把圓剪拼成一個近似的長方形。
你能否根據圓與剪拼成的長方形之間的關系想出圓的面積公式?
3、學生合作探究,推導公式
圓的面積教案人教版圓的面積教案北師大版篇三
1、通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2、激發學生參與整個課堂教學活動的學習興趣,培養學生的分析、觀察和概括力,發展學生的空間觀念。
3、滲透轉化的數學思想和極限思想。
教學重點:圓面積公式的推導。
教學難點:弄清圓與轉化后的近似圖形之間的關系。
學具:每四人小組一個彩色圓(教師分好8等分點)、兩三個圓、固體膠、卡紙、剪刀。
教具:課件。
一、談話揭題:
出示圖:
你看到了什么?剛才同學們提到的圓的面積就是今天這節課我們要來研究的內容。(出示課題:圓的面積)那么圓的面積和什么有關?(半徑、直徑)
二、新課教學:
1、猜測:
2、驗證:
(1)現在我們都認為圓的面積是r的平方的三倍多一點,那么,圓的面積與r的平方到底有怎樣的關系呢?你們準備用怎樣的方法來研究它呢?下面請四人小組討論一下,可以動用桌子上的學具。(教師巡視)
(2)反饋:(三分鐘后,低到高)
b:這兒有一個圓,我們把它平均分成四份,可以嗎?那么怎么拼呢?(學生拼,投影演示)看看象什么圖形?(平行四邊形)象嗎?我看不象。怎樣使它象呢?(分的份數多一點)剛才我們拼的圖形象平行四邊形,當然,可能還能拼成別的圖形。
c:剛才我們討論研究出來的方法第一步是等分,第二步是想一想拼成什么圖形,再拼一拼,第三步是推導。(板書:等分想、拼推導)當然,也可以用別的方法。(板書箭頭)
(3)操作:
你們想試一試嗎?現在請組長拿出信封,倒出里面的圓片,我們以四人小組為單位動動手。(小組討論操作,師巡回指導:表揚拼出與別組不一樣圖形的小組,提示拼好后可以用膠水粘住。)
3、小組匯報:(舉起把圓等分成8份、16份所拼成的長方形或平行四邊形給學生看一看,再請平均分成16份拼成長方形或平行四邊形的同學匯報)
(1)學生匯報。
(2)有沒有疑問?
拼成的長方形是真正的長方形嗎?為什么?(邊是曲線)
如果把一個圓等分成32份,拼成的長方形會怎樣呢?(課件演示)等分成64份,又會怎么樣呢?(課件演示)如果等分的份數更多,又會怎樣呢?你能得出什么結論?(圓等分的份數越多,拼成的圖形越接近于長方形)
(3)板書:
那么長方形的面積是怎么求的?(板書)它的長相當于圓的什么?怎么用字母表示?寬呢?(課件演示:在長方形或平行四邊形64等分圖的下面出示r,右邊出示r,同時板書)那么圓的面積=rxr=r的平方。
(4)還有補充嗎?
小組匯報:平行四邊形、三角形、梯形面積轉化為圓的面積公式。(實物投影儀下顯示,最后寫成r的平方,14bd的平方)
4、小結:通過剛才我們四人小組的活動,大家有什么結論?(不管拼成什么圖形,都能推導出圓的面積是r的平方)那么知道什么可以求出圓的面積?(半徑、直徑、周長)
三、鞏固練習:
1、出示:課本p1302(1)(3)(課件演示)會嗎?(草稿本上算,投影反饋)
2、現在來看這個圖形(猜測題)如果r=5厘米,你能求什么?(圓面積、正方形的面積、剩下的紙的面積)請你草稿本上算一算。(投影反饋)或口答。
四、機動練習:
五、全課小結:
今天這節課給你印象最深刻的一點是什么?
圓的面積教案人教版圓的面積教案北師大版篇四
(1) 寫出下面各題的最簡整數比。
①圓的半徑和直徑的比是( ),圓的周長和直徑的比是( )。
②小圓的半徑是4厘米,大圓的半徑是6厘米。小圓直徑和大圓直徑的比是( ),小圓周長和大圓周長的比是( ),小圓面積和大圓面積的比是( )。
(2)把圓分成若干等份,然后把它剪開,可以拼成一個近似于長方形的圖形,這個長方形的長相當于圓的( ),長方形的寬相當于圓的( )。
(3)圓的周長是37.68分米,它的面積是( )平方分米。
(4)圓的半徑擴大3倍,它的面積就擴大()。
(5)一個圓的周長、直徑和半徑相加的和是9.28厘米,這個圓的直徑是()厘米;面積是()。
(6)在一個邊長為12厘米的正方形紙板里剪出一個最大的圓,剩下的面積是( )。
(7)要在底面半徑是10厘米的圓柱形水桶外面打上一個鐵絲箍,接頭部分是6厘米,需用鐵絲( )厘米。
(8)用圓規畫一個圓,如果圓規兩腳之間的距離是6厘米,畫出的這個圓的周長是( )厘米。這個圓的面積是( )平方厘米。
7、用一根長12.56厘米的鐵絲圍成一個正方形,正方形的面積是()平方厘米;如果用這根鐵絲圍成一個圓,這個圓的面積是()平方厘米。
(1)在一個圓里,兩端都在圓上的線段叫做圓的直徑。( )
(2)小圓半徑是大圓半徑的12 ,那么小圓周長也是大圓周長的12 。( )
(3)小圓半徑是大圓半徑的12 ,那么小圓面積也是大圓面積的12 。( )
(4)半圓的周長就是這個圓周長的一半。( )
(5)求圓的周長,用字母表示就是c=πd或c=2πr。( )
(1)畫圓時,固定的一點叫()。
① 頂點② 圓心 ③ 字母o
(2)從圓心到圓上任意一點的()叫做半徑。
① 直線② 射線 ③ 線段
(3)周長相等的圖形中,面積最大的是()。
① 圓 ②正方形③長方形
(4)圓周率表示()
① 圓的周長②圓的面積與直徑的倍數關系 ③圓的周長與直徑的倍數關系
(5)半徑為r的圓面積等于()。
① πr2 ② 2πr2 ③πd
(6)圓的直徑長度決定圓的()。
① 位置② 大小 ③ 形狀
(7)圓的半徑擴大3倍,它的面積就擴大()。
① 3倍 ② 6倍 ③ 9倍
(8)已知圓的周長是106.76分米,圓的半徑是()。
① 17分米②8.5分米 ③ 34分米
(3)小明騎的自行車車輪直徑是70厘米,每分鐘轉100周,從家到學校有1300米,小明大約要騎幾分鐘?(得數保留整數)
1、( )決定圓的大小,( )決定圓的位置。
2、圓是( )圖形,它有( )條對稱軸,( )是圓的對稱軸,
3、( )是圓中最長的線段。
4、一個圓周長擴大4倍,半徑擴大( )倍,直徑擴大()倍,面積擴大()倍。
5、大圓的半徑等于小圓的直徑,那么大圓的面積是小圓面積的( )倍。
6、圓的周長公式是( )或( ),圓的面積公式是( ),半圓形的周長公式( ),圓周長的一半公式是( )
7、周長相等的長方形,正方形,圓。( )的面積最大,()的面積最小。
8、π,3.14,3.1414,0.314,31.4,從小到大排列是()。
9、圓的周長總是直徑()倍,是半徑的( )倍。
10、畫出一個圓的周長是18.84厘米,那么圓規兩腳間的距離是( )。
11、在同一個圓里,直徑和半徑的關系用字母表示是()。
12、一個半圓,半徑是r,它的周長是( )。
1、直徑是半徑的2倍。
2、兩端都在圓上的線段,叫半徑。
3、半徑是2厘米的圓周長和面積相等。
4、將一個圓通過切拼,轉化成一個長方形,面積和周長沒有變化。
5、如果圓的直徑是d,它的面積是 πd2 。
6、圓周率就是3.14
7、半圓形的周長就是圓周長的一半。
8、直徑是圓的對稱軸。
9、一個圓的面積和一個正方形的面積相等,它們的周長也相等
1、 一個圓形水池,直徑是20米,在水池周圍圍一圈柵欄,再在水池外圍修一條寬4米的環形小路。
(1)、柵欄的長度是多少?
(2)、這條小路的面積是多少?
3、一輛自行車輪胎外直徑是80厘米,如果平均每分鐘轉動200圈,它要通過一座長1500米的橋,大約需要多少分鐘?(得數保留整數)
6、 一只掛鐘的時針長8厘米,針尖一晝夜走過的路程是多少厘米?
圓的面積教案人教版圓的面積教案北師大版篇五
1.通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2.激發學生參與整個課堂教學活動的學習興趣,培養學生的分析、觀察和概括能力,發展學生的空間觀念。
3.滲透轉化的數學思想和極限思想。
正確計算圓的面積。
圓面積公式的推導。
多媒體課件二套,圓片。
一、情景導入
1、 師:(出示圖)草地上長滿了青草,一只羊被栓在草地的木樁上,請問:它能吃光全部青草嗎?它最多能吃到哪個范圍內的青草?請大家畫出這只羊活動范圍的示意圖,兩位同學到黑板上畫。(一位畫的是周長,另一位畫的是面積。)(動畫演示)
師:這個范圍的大小指圓的周長還是面積?為什么?誰畫的正確,(圓的面積)。
(板書:圓的面積)
2.師:什么是圓的面積?先說,再看書,學生讀,(教師用課件演示)
師:看到這個課題后,你們會想到什么?這堂課要解決什么問題呀?
生:學生圓的面積公式。
師:你們知道圓的面積公式后,你們還想到什么問題?
生:圓的面積公式根據什么推導出來的。
師:對!剛才這幾位同學跟老師想的一樣。這堂課我們要解決兩個問題。
(通過創設情景,激發學生的學習興趣,形成良好的學習動機。通過學生提出問題,明確學習目標。)
二、動手操作,探索新知
1. 猜測(每項用課件出示)
生:不等。
師:為什么?
生:因為,這個圓面積還要加上外面的4小塊,才是4 r2 。
生:這個正方形是由四個同樣大小的三角形組成,每個面積1/2r2,總面積2r2。
生:圓的面積大
師:可以觀察出圓的面積范圍在2r2-4r2
(這里讓學生了解解決問題時要善于觀察、敢于猜想。滲透無限等數學思想,)
2. 回憶舊知,
師:圓能不能直接用面積單位支量呢?為什么?
生: 因為圓是由曲線圍成的,用面積單位直接量是有困難的。
師:該怎么辦呢?(教室沉默)
師: 請同學們看屏幕,(師播放課件)邊看邊回憶:以前我們研究過平行四邊形、三角形和梯形面積的求法,那時我們是怎樣處理的?(用投影機放出幾種圖形的轉化圖解,邊出示,邊討論)
師:這些圖形面積公式的推導方法對我們研究圓的面積有什么啟示呢?
生:我們可以用圖形轉化的方法,求圓的面積。(把未知的轉化為已知的)
師:這個辦法很好。那么把圓形轉化成什么圖形呢?
3.動手操作
(1)師:請同學們動手剪拼一下,看到底能拼成什么圖形。(學生動手操作。)
師:誰能向大家匯報一下,你把圓拼成了什么圖形?(生答:拼成了。請把你拼好的圖形放在實物投影上展示給大家看。一個同學用8等份的圓片擺成近似平行四邊形,一個用不著16等份的圓片擺成近似長方形)
(2)師::請看大屏幕,16等份的和8等份誰拼成更接近長方形?
生:16等份拼成的圖形就會越接近于長方形。如果分的份數越多,每一份就會越細,)
(3)看拼成的長方形與圓有什么聯系?你能根據長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。 (教師要求學生觀察自己在課桌上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)
學生匯報討論結果。生答師繼續演示課件。
生答:能,因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長寬
所以圓的面積=周長的一半半徑
s=r
s=r2
(4)師:這個面積公式是不是正確,我們可以通過其它圖形來驗證一下。有的同學把圓拼成了三角形我們用三角形來驗證一下,你能根據三角形計算公式推導圓的面積計算公式嗎?(課件演示)
生答:三角形的底相當于圓周長的,高相當于圓半徑的4倍。
因為 三角形的面積=底高2
所以 圓的面積=周長的半徑的4倍
s=4r2
s=r2
(5)生:我們把圓轉化成梯形來驗證。(課件演示)
生:梯形的上底與下底的和相當于圓周長的一半,高相當于半徑的2倍。
因為梯形的面積=(上底+下底)高2
所以圓的面積=周長的一半半徑的2倍
s=2r2
s=r2 用梯形的面積
3.小結:剛才你們把圓轉化成為哪些圖形,分別推導出圓的面積計算公式?(s=r2)
我們根據拼成的近似平行四邊形、長方形、三角形、梯形都推導出了同樣的公式:s圓=r2。
唉!我們剛才猜的圓面積是多少?你們真了不起!與r2很接近啊!
圓的面積必需要具備哪些條件?
(三)課后鞏固
1、 現在你可以求出小羊大約最多能吃到多少面積的青草嗎?為什么?請你給它補個條件。
(照應了開頭,又學練習了面積的計算。)
2、 根據下面條件求出圓的面積
r =5分米 d =3米
(用學到的知識來解決生活中的問題,培養學生的應用能力)
(四)師:這堂課大家學到了什么?有什么收獲?
(學生熱烈發言,最后教師總結,解答了課一開始提出的兩個問題。)
圓的面積教案人教版圓的面積教案北師大版篇六
1、學生通過觀察、操作、分析和討論,推導出圓的面積公式。
2、能夠利用公式進行簡單的面積計算。
3、滲透轉化思想,初步了解極限思想,培養學生的觀察能力和動手操作能力。
滲透轉化思想,初步了解極限思想,培養學生的觀察能力和動手操作能力。
一、嘗試轉化,推導公式
1、確定“轉化”的策略。
引導學生明確:我們是用“割補法”將平行四邊形轉化成長方形的方法推導出了平行四邊形的面積計算公式。
師:同學們再想想,我們又是怎樣推導出三角形的面積計算公式的呢?
師:對了,我們將平行四邊形、三角形“轉化”成其它圖形的方法來推導出它們的面積計算公式。
2、嘗試“轉化”。
師:那么,怎樣才能把圓形轉化為我們已學過的其它圖形呢?(板書課題:圓的面積)
請大家看屏幕(利用課件演示),老師先給大家一點提示。
引導學生觀察,明確這個近似三角形的兩條邊其實都是圓的半徑。
師:如果我們用這些近似三角形重新拼組,就可以將這個圓形“轉化”成其它圖形了。同學們,老師為你們每個小組都準備了一個已經等分好了的圓形,請你們動手拼一拼,把這個圓形“轉化”成我們已學過的其它圖形,開始吧!
預設:學生利用這種近似三角形拼組圖形會有一定的難度,教師要加強巡視和有針對性的指導,既鼓勵學生拼出自己想象中的圖形,又要引導他們拼出最簡單、最容易計算面積的圖形。一般情況下,學生會拼出如下幾種圖形(如圖五、圖六、圖七)。
3、探究聯系。
師:同學們,“轉化”完了嗎?好,請大家來展示一下你們“轉化”后的圖形。
預設:
分組逐個展示,并將其中“轉化”成長方形的一組的作品貼在黑板上。如果有小組轉化成了不規則的圖形,教師應及時引導他們轉化為我們已學過的平面圖形。
師:好,各個小組都不錯。現在請同學們思考一個問題:你們把一個圓形“轉化”成了現在的圖形之后,它們的面積有沒有改變?請小組內討論。
師:誰來告訴大家,它們的面積有沒有改變?
師:是的,沒有改變,就是說:這個近似的長方形的面積=圓的面積。
師:雖然我們現在拼成的是一個近似的長方形,但是如果把圓等分成32份、64份、128份、256份……一直這樣下去分成很多很多份,拼成的圖形就變為真正的長方形(課件演示,如圖八)。
4、推導公式。
師:現在我們就來看這個長方形。同學們,如果圓的半徑為r,你們知道這個長方形的長和寬分別是多少嗎?現在請小組為單位進行討論討論。
師:好,同學們,誰能首先告訴老師,這個長方形的寬是多少?
預設:
根據學生的回答,教師演示課件,同時閃爍圓的半徑和長方形的寬,并標示字母r,如圖九。
預設:
教師引導學生明白:這個長方形的長與圓的周長有關,并且是圓的周長的一半(如果學生有困難的話,教師利用課件演示,如圖十二)。并且讓學生通過計算得出長方形的長就是πr。
預設:
老師根據學生的回答進行相關的板書。
師:你們真了不起,學會了“轉化”的方法推導出圓的面積計算公式。現在請大家讀一讀,記一記,寫一寫圓的面積計算公式。
二、運用公式,解決問題
1、教學例1。
師:同學們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?(出示例1)如果我們知道一個圓形花壇的直徑是20m,我們該怎樣求它的面積呢?請大家動筆算一算這個圓形花壇的面積吧!
預設:
教師應加強巡視,發現問題及時指導,并提醒學生注意公式、單位使用是否正確。
2、完成做一做。
師:真不錯!現在請同學們翻開數學課本第69頁,請大家獨立完成做一做的第1題。
訂正。
3、教學例2。
師:(出示例2)這是一張光盤,這張光盤由內、外兩個圓構成。光盤的銀色部分是一個圓環。請同學們小聲地讀一讀題。開始!
師:怎樣求這個圓環的面積呢?大家商量商量,想想辦法吧!
師:找到解決問題的方法了嗎?
師:好的,就按同學們想到的方法算一算這個圓環的面積吧!
預設:
教師繼續對學困生加強巡視,如果還有問題的學生并給予指導。
交流,訂正。
三、課堂作業。
教材第70頁第2、3、4題。
四、課堂小結
師:同學們,通過這節課的學習,你有什么收獲?
課后作業:完成數練第31頁。
圓的面積教案人教版圓的面積教案北師大版篇七
教材第68―69頁含有圓的組合圖形的面積。
1、讓學生結合具體情境認識組合圖形的特征,掌握計算組合圖形的面積的方法,并能準確掌握和計算簡單組合圖形的面積。
2、通過自主合作,培養學生獨立思考、合作探究的意識。
3、讓學生在解決實際問題的過程中,進一步體驗圖形和生活的聯系,感受平面圖形的學習價值,提高數學學習的舉和學習好數學的自信心。
組合圖形的認識及面積計算、圖形分析。
多媒體課件、各種基本圖形紙片。
⊙創設情境,認識圓環
1.師:我們來欣賞一組美麗的圖片。
課件出示圓形花壇、圓形水池外的圓形甬路、奧運五環標志、光盤……
2.同學們,你們從圖中發現了什么?(它們都是環形的)
3.教師拿出環形光盤說明:像這樣的圖形,我們稱它為圓環或環形。
你還知道生活中有哪些環形的物體?它們給我們的生活帶來了怎樣的變化?
(學生結合生活實際談談已經知道的環形物體以及它給我們的生活帶來的樂趣)
4.導入新課:這節課我們一起來探討環形的知識。(板書課題:圓環的面積)
設計意圖:從學生掌握的常識和熟悉的事物入手,使其感受到數學就在我們身邊,學生從直觀上也感受到了環形的特點,為后面學習環形的面積奠定基礎。
⊙探索交流,解決問題
1.畫一畫,剪一剪,發現環形特點。
(1)畫一畫。
讓學生在硬紙板上用同一個圓心分別畫一個半徑為10厘米和5厘米的圓。
(學生按照要求畫圓)
(2)剪一剪。
指導學生先剪下所畫的大圓,再剪下所畫的小圓。
問:剩下的部分是什么圖形?(環形)
師:我們也稱它為圓環。
(3)教師手拿學生剪的圓環提問:這個圓環是怎樣得到的?
生明確:圓環是從外圓中去掉一個內圓得到的。
(4)借助圖示認識圓環的各部分名稱。
你知道圓環各部分的名稱嗎?(出示圖示引導學生明確相關內容并板書)
①外圓:又名大圓,它的半徑用r表示。
②內圓:又名小圓,它的半徑用r表示。
③環寬:指外圓半徑和內圓半徑相差的寬度。
2.探究圓環面積的計算方法。
(1)小組討論,怎樣求圓環的面積?
(2)匯報討論結果。
(3)小結:環形的面積=外圓面積-內圓面積。
設計意圖:以學生的親身實踐貫穿始終,同時在這一過程中滲透一些方法,如動手操作、合作交流、觀察、分析等,使學生在學習中運用、在運用中掌握,學生通過自己動手操作,把環形從一般圖形中分離出來,快速地抓住了環形的本質特征,形成環形的概念,并順利推導出圓環面積的計算公式,發展了學生的空間觀念。
3.課件出示例2。
(1)學生讀題。
(2)學生試做,指生板演。
(3)交流算法,學生將列式板書:
解法一
外圓的面積:πr2=3。14×62
=3。14×36
=113。04(cm2)
內圓的面積:πr2=3。14×22
=3。14×4
=12。56(cm2)
圓環的面積:πr2-πr2=113。04-12。56
=100。48(cm2)
解法二
π×(r2-r2)=3。14×(62-22)=100。48(cm2)
答:圓環的面積是100。48cm2。
(4)比較兩種算法的不同。
(5)小結:圓環的'面積計算公式:s=πr2-πr2或
s=π×(r2-r2)(板書公式)
(6)討論。
知道什么條件可以計算圓環的面積?怎樣計算?(給學生充分的思考時間,引導學生結合圖示多角度解答)
①知道內、外圓的面積,可以計算圓環的面積。
s環=s外圓-s內圓
②知道內、外圓的半徑,可以計算圓環的面積。
s環=πr2-πr2或s環=π×(r2-r2)
③知道內、外圓的直徑,可以計算圓環的面積。
④知道內、外圓的周長,也可以計算圓環的面積。
s環=π×(c外÷π÷2)2-π×(c內÷π÷2)2
或s環=π×[(c外÷π÷2)2-(c內÷π÷2)2]
⑤知道內、外圓的直徑或半徑及環寬,也可以計算圓環的面積。
s環=π×[(r+環寬)2-r2]
或s環=π×[r2-(r-環寬)2]
……
設計意圖:聯系生活,進一步認識圓環;結合圖示理解圓環面積的計算公式。例題主要由學生自己完成,最后老師引導學生列出綜合算式,使學生領會兩種方法間的區別,好中選優,展現學生的創新精神。在合作討論中進一步弄清求圓環面積所需要的條件,培養學生多角度思考的習慣。
⊙鞏固練習,拓展提高
1.完成教材68頁1題。
學生獨立完成,然后在班內說一說解題思路。
3.已知陰影部分的面積是75cm2,求圓環的面積。
設計意圖:練習設計突出重點,由淺入深,由易到難。通過練習不僅鞏固了所學知識,又讓學生把獲得的知識應用于實際生活,提高了學生應用知識解決實際問題的能力,增強了學生的數學應用意識。
⊙反思體驗,總結提高
這節課我們學習了什么?你有哪些收獲?還有什么問題?
⊙布置作業,鞏固應用
1.完成教材72頁8題。
2.找一些關于環形的資料讀一讀。
板書設計
圓環的面積
圓環面積=外圓面積-內圓面積
s環=πr2-πr2或s環=π×(r2-r2)
圓的面積教案人教版圓的面積教案北師大版篇八
北師大版小學數學第十一冊第一單元p16--18圓的面積
1、了解圓的面積的含義,經歷圓面積計算公式的推導過程,掌握圓面積計算公式。
2、能正確運用圓的面積公式計算圓的面積,并能運用圓面積知識解決一些簡單實際的問題。
3、在估一估和探究圓面積公式的活動中,體會化曲為直的思想,初步感受極限思想。
能正確運用圓的面積公式計算圓的面積,并能運用圓面積知識解決一些簡單實際的問題。
投影儀,cai課件,等分好的圓形紙片。
等分好的圓形紙片。
【教學過程】
【教學過程說明】
(投影出示p16中草坪噴水插圖)
師:請同學們觀察這幅插圖,說說從圖中你能發現數學知識嗎?
學生觀察并討論,然后指名回答。
生1:我能發現噴水頭轉動一周所走過的地方剛好是一個圓形。
生3:我補充一點,這個圓形的中心就是噴頭所在的地方。
師:同學們說得很好。晴大家說說這個圓形的面積指的是哪部分呢?
生4:被噴到水的草坪大小就是這個圓形的面積。
師:說得很好,今天這節課我們就來學習如何求噴水頭轉動一周澆灌的面積有多大。(板書:圓的面積)
1、估計圓面積大小
師:請大家估計半徑為5米的圓面積大約是多大?
(讓同學們充分發揮自己感官,估計草坪面積大小)
①投影出示p16方格圖,讓同學們看懂圖意后估算圓的面積,學生可以討論交流。
②指明反饋估算結果,并說明估算方法及依據。
師:同學們的估計很有道理,但是在實際生活中往往要有一個精確的結果,我們接下來就來討論一個能計算圓面積的方法。
1、由舊知引入新知
師:大家還記得我們以前學習的平行四邊形、三角形、
(學生回答,教師訂正。
那么圓形的面積可由什么圖形面積得來呢。
2、探索圓面積公式
師:拿出我們剪好的圖形拼一拼,看看能成為一個什
么圖形?并考慮你拼成的圖形與原來的圓形有什么關系?(同學們開始操作,教師巡視)
生:我拼成的圖形接近一個平行四邊形,平行四邊形的底也就是圓形周長的一半;平行四邊形的'高就是圓形的半徑。
師:說得很好,大家看看自己拼成的圖形與剛才這個同學說的是否一樣呢?
生:我拼成的圖形更接近于長方形,這個長方形的長也就是圓形周長的一半,長方形的寬就是圓形的半徑。
(學生在說的同時教師注意板書)
生:等分為32份的更接近長方形。
生:等分的份數越多,就越接近長方形。
師:下面請大家觀察黑板上的板書,你能否由平行四邊形或者長方形的面積公式得到圓形面積公式呢?并說出你的理由。(生說,教師板書)
生1:因為拼成的平行四邊形的底也就是圓形周長的一半;平行四邊形的高就是圓形的半徑。而平行四邊形面積=底高,那么圓形面積公式=圓周長的1/2半徑即可。
生2:因為拼成的長方形的長也就是圓形周長的一半,長方形的寬就是圓形的半徑。而長方形面積=長寬,那么那么圓形面積=圓周長的1/2半徑即可。
師:用字母怎么表示圓面積公式呢?
生:s=rr
生:還可以寫作s=r2
師:這說明求圓的面積只需要知道半徑即可,那我只告訴你們圓的直徑又如何求出圓的面積呢,請大家自己把這個公式寫出來。教師板書。
3、應用圓面積公式
師:現在請大家用圓面積公式計算噴水頭轉動一周可
以澆灌多大面積的農田。
(學生獨立解答,知名回答)
1、p18,no1
學生獨立解答,集體訂正的時候要求學生說出每一步
計算過程和依據。
2、p18,no2
讓學生理解題意后,鼓勵學生在頭腦中想象,猜一猜
結果,然后在地上畫一個半徑是1米的圓,讓學生看看,并試著站一站。在估計半徑是10米的圓大約有幾個教室大的時候,可以讓學生先估計再算一算。
師:誰能用自己的話說說圓面積的推導過程。
圓的面積教案人教版圓的面積教案北師大版篇九
教學內容
教材第67、第68頁的內容。
1.使學生理解圓的面積公式的推導過程,掌握求圓的面積的方法并能正確計算。
2.培養學生運用轉化的思想解決問題的能力。
重點難點
重點:掌握圓的面積的計算公式,能夠正確地計算圓的面積。
難點:理解圓的面積公式的推導過程。
教具學具
實物投影,各種圖形的紙片。
一導入
1.我們學過哪些平面圖形的面積公式?
2.長方形、平行四邊形和三角形的面積公式分別是什么?
3.平行四邊形的面積公式是如何推導的?小結:平行四邊形面積公式的推導,提供給我們一種研究平面圖形的面積的方法,即把所學的圖形進行分割、拼擺,轉化成學過的圖形,用舊知識解決新問題。今天,我們還要用轉化的思想研究圓的面積。
二教學實施
1.明確圓的面積的概念。
學生回答,老師歸納:圓所圍成的平面的大小叫做圓的面積。
(2)圓的大小是由什么決定的?
(3)展示由“曲”變“直”的漸變圖。
引導學生逐層觀察圓周曲線的變化情況,把圓等分的份數越多,圓周曲線就越來越直,當我們繼續分下去……圓周曲線就變成一條近似的直線段了,用這樣的小塊拼擺的圖形就更近似于我們學過的圖形。
2.學生動手操作,推導圓的面積公式。
(1)指導學生動手擺學具,并思考幾個問題:
你擺的是什么圖形?
所擺圖形的各部分相當于圓的什么?
你如何推導出圓的面積?
(2)學生動手擺學具,然后發言。
拼成長方形:
老師說明:如果分的份數越多,每一份就會越小,拼成的圖形就會越接近長方形。
出示教材第67頁上面的圖加以說明。
拼成的近似長方形的長和寬與圓的各部分有什么關系?
從圖中可以看出圓的半徑是r,長方形的長是πr,寬是r。
長方形的面積=長×寬
↓ ↓↓
圓的面積=πr×r=πr2
如果用s表示圓的面積,那么圓的面積計算公式就是s=πr2。
3.利用公式計算圓的面積。
指名讀題,讓學生試做,提醒學生不用寫公式,直接列算式就可以。
板書:20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:鋪滿草坪需要2512元。
老師強調指出:列出算式后,要先算平方,再與π相乘。
三課堂作業新設計
1.直接寫出得數。
22= 32= 42= 52= 62= 72=
82= 92= 102= 0.22=0.72= 0.92=
2.求下面各圓的面積。
3.一塊圓形鐵板的半徑是3分米。它的面積是多少平方分米?
4.一個圓桌桌面的直徑是1.2米。它的面積是多少平方米?
四思維訓練
計算陰影部分的面積。(單位:分米)參考答案
課堂作業新設計
1.491625364964811000.040.490.81
3.28.26平方分米
4.1.1304平方米
思維訓練
3.44平方分米
板書設計
圓的面積
長方形的面積=長×寬
↓ ↓↓
圓的面積=πr×r=πr2
20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:鋪滿草坪需要2512元。
備課參考教材與學情分析
本部分內容是在初步認識了圓,學習了圓的周長,以及學過幾種常見直線幾何圖形的面積的基礎上進行教學的。學生從學習直線圖形的面積,到學習曲線圖形的面積,不論是內容本身還是研究方法,都是一次質的飛躍。學生掌握了圓面積的計算,不僅能解決簡單的實際問題,也為以后學習圓柱、圓錐的知識打下基礎。學生已經有了平面幾何圖形的經驗,知道運用轉化的思想研究新的圖形的面積,在學習中要鼓勵學生大膽想象、勇于實踐。在操作中將圓轉化成已學過的平面圖形,從中找到圓的面積與半徑、直徑的關系。
課堂設計說明
1.通過實際情境,一方面使學生了解圓的面積的含義,另一方面使學生體會到在實際生活中計算圓面積的必要性。
2.教學時,強調知識遷移的過程。
平行四邊形、三角形和梯形的面積公式推導過程是學生知識遷移的基礎,這一環節的設計既能勾起學生對已有知識的回憶,又能啟發學生運用轉化的思想解決數學問題。
3.組織學生觀察猜想。
先觀察再猜想的方法既培養了學生的空間想象力,又發展了學生的邏輯推理能力。