教學(xué)工作計(jì)劃能夠幫助教師合理安排教學(xué)時(shí)間和資源,提前預(yù)設(shè)教學(xué)目標(biāo)和教學(xué)步驟,為教學(xué)活動(dòng)提供有序的指導(dǎo)。敬請(qǐng)關(guān)注以下教學(xué)工作計(jì)劃范文,它們有助于提升教學(xué)能力和水平。
平方差公式教學(xué)教案(精選16篇)篇一
指導(dǎo)學(xué)生用語(yǔ)言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個(gè)公式叫做平方差公式。
指導(dǎo)學(xué)生發(fā)現(xiàn)公式的特點(diǎn):
1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個(gè)二項(xiàng)式的積,在這兩個(gè)二項(xiàng)式中有一項(xiàng)(a)完全相同,另一項(xiàng)(b與-b)互為相反數(shù)。右邊為這兩個(gè)數(shù)的平方差即完全相同的項(xiàng)的平方減去符號(hào)相反的平方。
2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項(xiàng)式,多項(xiàng)式等代數(shù)式。
提醒學(xué)生利用平方公式計(jì)算,首先觀察是否符合公式的特點(diǎn),這兩個(gè)數(shù)分別是什么,其次要區(qū)別相同的項(xiàng)和相反的項(xiàng),表示兩數(shù)平方差時(shí)要加括號(hào)。
平方差公式教學(xué)教案(精選16篇)篇二
這節(jié)課學(xué)習(xí)的主要內(nèi)容是運(yùn)用平方差公式進(jìn)行因式分解,學(xué)習(xí)時(shí)如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過(guò)來(lái)運(yùn)用就形成了因式分解的平方差公式,然后就是反復(fù)的運(yùn)用、反復(fù)的操練的話,學(xué)生學(xué)起來(lái)就會(huì)覺(jué)得沒(méi)有味道,對(duì)數(shù)學(xué)有一種厭煩感,所以我就想到了運(yùn)用逆向思維的方法來(lái)學(xué)習(xí)這節(jié)課的內(nèi)容,而且非常不利于學(xué)生理解整式乘法和因式分解之間的互逆的關(guān)系。
在新課引入的過(guò)程中,首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'將剛才用平方差公式計(jì)算得出的三個(gè)多項(xiàng)式作為因式分解的題目請(qǐng)學(xué)生嘗試一下。可以說(shuō),對(duì)新問(wèn)題的引入,是采取了由淺入深的方法,使學(xué)生對(duì)新知識(shí)不產(chǎn)生任何的畏懼感。
在這節(jié)課中就明顯出現(xiàn)了這個(gè)問(wèn)題,許多學(xué)生容易產(chǎn)生的問(wèn)題都集中在一起讓學(xué)生解決,反而將學(xué)生搞得不清不楚。所以,通過(guò)這節(jié)展示課也讓我學(xué)到了很多,比如,化解難點(diǎn)時(shí)要考慮到學(xué)生的思維障礙,不可操之過(guò)急,否則適得其反。
平方差公式教學(xué)教案(精選16篇)篇三
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力。
教學(xué)重點(diǎn)和難點(diǎn)。
難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
教學(xué)過(guò)程設(shè)計(jì)。
我們已經(jīng)學(xué)過(guò)了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子。
讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見(jiàn)解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:
(當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于乘式中這兩個(gè)數(shù)的平方差)。
繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式。
例1計(jì)算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說(shuō)出本題中a,b分別表示什么。
例2計(jì)算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用平方差公式進(jìn)行計(jì)算。
課堂練習(xí)。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3計(jì)算(-4a-1)(-4a+1)。
讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問(wèn)題的本質(zhì),運(yùn)算簡(jiǎn)捷。因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡(jiǎn)捷地得到答案。
課堂練習(xí)。
1、口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、計(jì)算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法。
2、運(yùn)用公式要注意什么?
(1)要符合公式特征才能運(yùn)用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
平方差公式教學(xué)教案(精選16篇)篇四
3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。
以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
(一)創(chuàng)設(shè)問(wèn)題情境,引入新課。
1、你會(huì)做嗎?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡(jiǎn)便方法運(yùn)算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。
交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式,并讓學(xué)生熟記。)。
(三)嘗試探究。
(四)鞏固練習(xí)。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學(xué)生獨(dú)立完成,互評(píng)互改。)。
(五)小結(jié)。
2.運(yùn)用公式要注意什么?
(1)要符合公式特征才能運(yùn)用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。
(學(xué)生回答,教師總結(jié))。
(六)作業(yè)。
p106習(xí)題1—5題。
教學(xué)反思。
通過(guò)精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒(méi)有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過(guò)于注重“收”,而“放”不夠。
平方差公式教學(xué)教案(精選16篇)篇五
《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個(gè)課題,對(duì)大家更熟悉,我深深感到一種壓力。但是,無(wú)論如何,“新”、“實(shí)”是我追求的目標(biāo)。為此,我作了如下努力:
1、把數(shù)學(xué)問(wèn)題“蘊(yùn)藏”在游戲中。
導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開(kāi)始是成功的一半”,首先是一個(gè)智力搶答,學(xué)生通過(guò)搶答初步感知平方差公式,接下來(lái),采用小組合作學(xué)習(xí)的方式,利用“四問(wèn)”讓學(xué)生進(jìn)行試驗(yàn)操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗(yàn)證自己的猜想,同時(shí)也感受和認(rèn)識(shí)知識(shí)的發(fā)生和發(fā)展的過(guò)程,得出(a+b)(a-b)=a2-b2.經(jīng)過(guò)不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會(huì)到,只要我們給學(xué)生創(chuàng)造一個(gè)自由活動(dòng)的空間,學(xué)生便會(huì)還給我們一個(gè)意外的驚喜。
2、充分重視“自主、合作、探究”的教學(xué)方式的運(yùn)用。
把探究的機(jī)會(huì)留給學(xué)生,讓學(xué)生在動(dòng)腦思考中構(gòu)建知識(shí),真正成為教學(xué)活動(dòng)的主體。使他們?cè)诨顒?dòng)中進(jìn)行規(guī)律的總結(jié),并且通過(guò)交流練習(xí)、應(yīng)用,深化了對(duì)規(guī)律的理解。學(xué)生對(duì)知識(shí)的掌握往往通過(guò)練習(xí)來(lái)達(dá)到目的。新授后要有針對(duì)性強(qiáng)的有效訓(xùn)練,讓學(xué)生對(duì)所學(xué)知識(shí)建立初步的表象,以達(dá)到對(duì)知識(shí)的理解、掌握及應(yīng)用,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華。在此設(shè)計(jì)了三個(gè)層次的有效訓(xùn)練,讓學(xué)生體會(huì)平方差公式的特點(diǎn):第一層次是直接運(yùn)用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個(gè)層次是平方差公式的靈活應(yīng)用。通過(guò)做題學(xué)生歸納出平方差公式的運(yùn)用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰(shuí)出得有水平。學(xué)生每人都設(shè)計(jì)了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評(píng)價(jià)結(jié)果都對(duì)了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問(wèn)題的一個(gè)學(xué)習(xí)過(guò)程,使學(xué)生獲得思維之趣,參與之樂(lè),成功之悅。
4、切實(shí)落在實(shí)效上。
本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺(tái)講解、作業(yè)實(shí)物投影的方式來(lái)進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問(wèn)題,然后通過(guò)生生互動(dòng)、師生互動(dòng)解決問(wèn)題,實(shí)現(xiàn)問(wèn)題及時(shí)處理,學(xué)習(xí)效果不錯(cuò)。
5、值得注意的是:
1、節(jié)奏的把握上。
這一節(jié)我覺(jué)得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計(jì)算方法等問(wèn)題上,花了不少時(shí)間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學(xué)生的主體地位上。
這節(jié)課上,我覺(jué)得學(xué)生的積極性不很高,回答問(wèn)題沒(méi)有激情,說(shuō)明我背學(xué)生還不夠,自己想象的比現(xiàn)實(shí)的好。
平方差公式教學(xué)教案(精選16篇)篇六
一、教學(xué)目標(biāo):
1、使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí);
3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
二、重點(diǎn)、難點(diǎn):
重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。
三、教學(xué)方法。
以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
四、教學(xué)過(guò)程。
(一)創(chuàng)設(shè)問(wèn)題情境,引入新課。
1、你會(huì)做嗎?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡(jiǎn)便方法運(yùn)算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。
交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式,并讓學(xué)生熟記。)。
(三)嘗試探究。
(四)鞏固練習(xí)。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學(xué)生獨(dú)立完成,互評(píng)互改。)。
(五)小結(jié)。
2.運(yùn)用公式要注意什么?
(1)要符合公式特征才能運(yùn)用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。
(學(xué)生回答,教師總結(jié))。
(六)作業(yè)。
p106習(xí)題1—5題。
七、板書設(shè)計(jì):
教學(xué)反思。
通過(guò)精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒(méi)有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過(guò)于注重“收”,而“放”不夠。
平方差公式教學(xué)教案(精選16篇)篇七
平方差公式是多項(xiàng)式乘法運(yùn)算中一個(gè)重要的公式,是特殊的多項(xiàng)式與多項(xiàng)式相乘的一種簡(jiǎn)便計(jì)算。通過(guò)復(fù)習(xí)多項(xiàng)式乘以多項(xiàng)式的計(jì)算導(dǎo)入新課,為探究新知識(shí)奠定基礎(chǔ)。在重難點(diǎn)處設(shè)計(jì)問(wèn)題:“觀察以上3個(gè)算式的特點(diǎn)和運(yùn)算結(jié)果的特點(diǎn),對(duì)比等號(hào)兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學(xué)生發(fā)現(xiàn)規(guī)律并嘗試運(yùn)用自己的語(yǔ)言來(lái)描述。
問(wèn)題提出后,學(xué)生能積極進(jìn)行分組討論、交流,各組小組長(zhǎng)闡述自己小組討論的結(jié)果。大多數(shù)的學(xué)生能找出規(guī)律,說(shuō)出大概意思,但是無(wú)法用精準(zhǔn)的語(yǔ)言完整的描述出來(lái),語(yǔ)言表達(dá)無(wú)條理、含糊。針對(duì)這種情況,在以后的課堂教學(xué)過(guò)程中要注意加強(qiáng)對(duì)學(xué)生的邏輯思維能力和語(yǔ)言表達(dá)能力的.培養(yǎng)。最后經(jīng)過(guò)師生的共同努力,得出了平方差公式以及公式的特征。
在例題展示環(huán)節(jié)中,我通過(guò)2道例題的運(yùn)算,訓(xùn)練學(xué)生正確應(yīng)用公式進(jìn)行計(jì)算,體會(huì)公式在簡(jiǎn)化運(yùn)算中的作用。實(shí)踐練習(xí)的設(shè)計(jì),使學(xué)生從不同角度認(rèn)識(shí)平方差公式,進(jìn)一步加強(qiáng)學(xué)生對(duì)公式的理解。在運(yùn)用公式時(shí),學(xué)生基本掌握運(yùn)用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項(xiàng),最后運(yùn)用平方差公式運(yùn)算。
拓展延伸環(huán)節(jié)中,學(xué)生通過(guò)尋找算式中的a,b項(xiàng),慢慢發(fā)現(xiàn)a,b項(xiàng)不僅可以代表數(shù),也可以代表單項(xiàng)式、多項(xiàng)式等代數(shù)式,這樣設(shè)計(jì)可以進(jìn)一步深化學(xué)生對(duì)字母含義的理解。在學(xué)生獨(dú)立完成練習(xí)和堂測(cè)中,經(jīng)過(guò)巡視,我發(fā)現(xiàn)近三分之一的學(xué)生對(duì)較復(fù)雜的多項(xiàng)式不能準(zhǔn)確找出a,b項(xiàng),特別是b項(xiàng)代表多項(xiàng)式時(shí),負(fù)數(shù)去括號(hào)時(shí)出錯(cuò)較多。
最后通過(guò)設(shè)計(jì)遞進(jìn)式的問(wèn)題串,引導(dǎo)學(xué)生自己一步步總結(jié)出本節(jié)課所學(xué)的知識(shí)內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語(yǔ)言表達(dá)能力。
本節(jié)課采用學(xué)習(xí)小組討論、交流的學(xué)習(xí)方式,讓學(xué)優(yōu)生帶動(dòng)學(xué)困生,整體教學(xué)效果良好,學(xué)生基本掌握平方差公式的運(yùn)用,對(duì)于較復(fù)雜的a、b項(xiàng)的運(yùn)算,在自習(xí)課上將加強(qiáng)練習(xí)。
平方差公式教學(xué)教案(精選16篇)篇八
(4)(+3z)(-3z)=_____.
(1)(x+1)(1+x),。
(2)(2x+)(-2x),。
(3)(a-b)(-a+b),。
(4)(-a-b)(-a+b)。
幫助學(xué)生理解公式的特征,掌握公式的特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過(guò)程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
平方差公式教學(xué)教案(精選16篇)篇九
學(xué)習(xí)目標(biāo):
1、能推導(dǎo)平方差公式,并會(huì)用幾何圖形解釋公式;。
3、經(jīng)歷探索平方差公式的推導(dǎo)過(guò)程,發(fā)展符號(hào)感,體會(huì)“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律.
學(xué)習(xí)重難點(diǎn):
難點(diǎn):探索平方差公式,并用幾何圖形解釋公式.
學(xué)習(xí)過(guò)程:
一、自主探索。
1、計(jì)算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、觀察以上算式及其運(yùn)算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).
3、你能用自己的語(yǔ)言敘述你的發(fā)現(xiàn)嗎?
(1)、公式左邊的兩個(gè)因式都是二項(xiàng)式。必須是相同的兩數(shù)的和與差。或者說(shuō)兩個(gè)二項(xiàng)式必須有一項(xiàng)完全相同,另一項(xiàng)只有符號(hào)不同。
(2)、公式中的a與b可以是數(shù),也可以換成一個(gè)代數(shù)式。
二、試一試。
平方差公式教學(xué)教案(精選16篇)篇十
本課的學(xué)習(xí)目的主要是熟練掌握整式的運(yùn)算,并且這些知識(shí)是以后學(xué)習(xí)分式、根式運(yùn)算以及函數(shù)等知識(shí)的基礎(chǔ),同時(shí)也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過(guò)程,才能實(shí)現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用。因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認(rèn)識(shí)上升為理性思維的認(rèn)知規(guī)律,得出抽象的。概念,并在多項(xiàng)式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實(shí)際意義和說(shuō)理性;之后安排了一系列的例題和練習(xí)題,把新知運(yùn)用到實(shí)戰(zhàn)中去,解決簡(jiǎn)單的實(shí)際問(wèn)題,這樣既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的主動(dòng)性,又鍛煉了思維,整個(gè)過(guò)程由淺入深,在對(duì)所得結(jié)論不斷觀察、討論、分析中,加深對(duì)概念的理解,增強(qiáng)學(xué)生應(yīng)用知識(shí)解決問(wèn)題的能力,從而達(dá)到較好的授課效果。
數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來(lái)源于實(shí)際生活的。因此,數(shù)學(xué)教育的目的是將數(shù)學(xué)運(yùn)用到實(shí)際生活中去,讓學(xué)生深切感受到數(shù)學(xué)是有價(jià)值的科學(xué),來(lái)源于生活,是其他科學(xué)的基礎(chǔ)。本節(jié)公式中字母的含義對(duì)學(xué)生來(lái)講很抽象,是本節(jié)的難點(diǎn),也是學(xué)生運(yùn)用公式解決實(shí)際問(wèn)題的最大障礙,通過(guò)鞏固練習(xí),讓學(xué)生逐步體會(huì),為今后學(xué)習(xí)其他乘法公式做好準(zhǔn)備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補(bǔ)充練習(xí)中,已經(jīng)開(kāi)始滲透這部分知識(shí),為后面學(xué)習(xí)因式分解做好鋪墊。
但是,我在教本章內(nèi)容時(shí)卻始終感到困惑。本以為這一章很簡(jiǎn)單,由于教材安排存在一定問(wèn)題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項(xiàng)式乘以單項(xiàng)式、單項(xiàng)式乘以多項(xiàng)式、多項(xiàng)式乘以多項(xiàng)式這么多的內(nèi)容安排在一起,造成學(xué)生沒(méi)掌握好、消化好,知識(shí)間相互混淆,設(shè)置了障礙。所以很多學(xué)生出現(xiàn)下列錯(cuò)誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。
本章教材編者在此安排不太合理,沒(méi)有考慮到學(xué)生的認(rèn)知規(guī)律,不利于學(xué)生很好掌握,所以,我感覺(jué)以后上這章的時(shí)候不能按照教材課時(shí)安排走。否則還會(huì)出現(xiàn)今天的問(wèn)題。
平方差公式教學(xué)教案(精選16篇)篇十一
本節(jié)課采用情景—探究的方式,以猜想、實(shí)驗(yàn)、論證為主要探究方式,得出平方差公式,應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先提醒學(xué)生要注意其特征,其次要做好式子的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái),應(yīng)用公式法因式分解的過(guò)程,實(shí)際上就是轉(zhuǎn)化和化歸的過(guò)程。在解決認(rèn)識(shí)平方差公式的`結(jié)構(gòu)時(shí)候,重點(diǎn)突出學(xué)生自我思想的形成,能夠充分地不公式用自己的語(yǔ)言來(lái)敘述,在整個(gè)教學(xué)設(shè)計(jì)中,教師只作為了一個(gè)點(diǎn)撥者和引路人。然后應(yīng)用有梯度的典型例題加以鞏固,在學(xué)生頭腦中形成一個(gè)清晰完整的數(shù)學(xué)模型,使學(xué)生在今后的練習(xí)中游刃有余。
不足之處:
教學(xué)中時(shí)間把握還是不足,在設(shè)計(jì)的題目中不怎么合理,應(yīng)按題目的難度從易到難。
有些題目的歸納可放手給學(xué)生討論后由學(xué)生說(shuō)出,而不是教師代替。小組評(píng)價(jià)做的不夠,沒(méi)有足夠的小組的活動(dòng),沒(méi)有小組的競(jìng)賽。
教學(xué)語(yǔ)言還太隨意,數(shù)學(xué)的語(yǔ)言應(yīng)該嚴(yán)謹(jǐn)。在語(yǔ)調(diào)上應(yīng)該有所變化。
平方差公式教學(xué)教案(精選16篇)篇十二
1、把數(shù)學(xué)問(wèn)題“蘊(yùn)藏”在游戲中。
導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開(kāi)始是成功的一半”,首先是一個(gè)智力搶答,學(xué)生通過(guò)搶答初步感知平方差公式,接下來(lái),采用小組合作學(xué)習(xí)的方式,利用“四問(wèn)”讓學(xué)生進(jìn)行試驗(yàn)操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗(yàn)證自己的猜想,同時(shí)也感受和認(rèn)識(shí)知識(shí)的發(fā)生和發(fā)展的過(guò)程,得出(a+b)(a-b)=a2-b2.經(jīng)過(guò)不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會(huì)到,只要我們給學(xué)生創(chuàng)造一個(gè)自由活動(dòng)的空間,學(xué)生便會(huì)還給我們一個(gè)意外的驚喜。
2、充分重視“自主、合作、探究”的教學(xué)方式的運(yùn)用。
把探究的機(jī)會(huì)留給學(xué)生,讓學(xué)生在動(dòng)腦思考中構(gòu)建知識(shí),真正成為教學(xué)活動(dòng)的主體。使他們?cè)诨顒?dòng)中進(jìn)行規(guī)律的總結(jié),并且通過(guò)交流練習(xí)、應(yīng)用,深化了對(duì)規(guī)律的理解。學(xué)生對(duì)知識(shí)的掌握往往通過(guò)練習(xí)來(lái)達(dá)到目的。新授后要有針對(duì)性強(qiáng)的有效訓(xùn)練,讓學(xué)生對(duì)所學(xué)知識(shí)建立初步的表象,以達(dá)到對(duì)知識(shí)的理解、掌握及應(yīng)用,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華。在此設(shè)計(jì)了三個(gè)層次的有效訓(xùn)練,讓學(xué)生體會(huì)平方差公式的特點(diǎn):第一層次是直接運(yùn)用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個(gè)層次是平方差公式的靈活應(yīng)用。通過(guò)做題學(xué)生歸納出平方差公式的運(yùn)用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰(shuí)出得有水平。學(xué)生每人都設(shè)計(jì)了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評(píng)價(jià)結(jié)果都對(duì)了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問(wèn)題的一個(gè)學(xué)習(xí)過(guò)程,使學(xué)生獲得思維之趣,參與之樂(lè),成功之悅。
4、切實(shí)落在實(shí)效上。
本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺(tái)講解、作業(yè)實(shí)物投影的方式來(lái)進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問(wèn)題,然后通過(guò)生生互動(dòng)、師生互動(dòng)解決問(wèn)題,實(shí)現(xiàn)問(wèn)題及時(shí)處理,學(xué)習(xí)效果不錯(cuò)。
5、值得注意的是:
1、節(jié)奏的把握上。
這一節(jié)我覺(jué)得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計(jì)算方法等問(wèn)題上,花了不少時(shí)間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學(xué)生的主體地位上。
這節(jié)課上,我覺(jué)得學(xué)生的積極性不很高,回答問(wèn)題沒(méi)有激情,說(shuō)明我背學(xué)生還不夠,自己想象的比現(xiàn)實(shí)的好。
平方差公式教學(xué)教案(精選16篇)篇十三
學(xué)生已經(jīng)掌握了多項(xiàng)式與多項(xiàng)式相乘,但是對(duì)于某些特殊的多項(xiàng)式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點(diǎn)內(nèi)容之一。
平方差公式是第一個(gè)乘法公式,教學(xué)時(shí),我是這樣引入新課的,先計(jì)算下列各題,看誰(shuí)做的又對(duì)又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學(xué)生的好勝心并為進(jìn)一步探索新知搭建好有力的平臺(tái),然后我又讓學(xué)生討論交流上面幾個(gè)等式左、右兩邊各有什么特點(diǎn),你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語(yǔ)言敘述這個(gè)規(guī)律嗎?給學(xué)生充分的觀察、分析、討論交流的時(shí)間,老師應(yīng)及時(shí)的給與必要的指導(dǎo)、鼓勵(lì)和由衷的贊美,這一點(diǎn)我做的還很不夠,今后要多多注意。
然后我有設(shè)計(jì)了這樣一道題:下列多項(xiàng)式乘法中可以用平方差公式計(jì)算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學(xué)生理解公式的特征,掌握公式的。特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過(guò)程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
平方差公式教學(xué)教案(精選16篇)篇十四
平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對(duì)教學(xué)者的一次挑戰(zhàn),通過(guò)教學(xué),我從中領(lǐng)會(huì)到它所蘊(yùn)含的新的教學(xué)理念,新的教學(xué)方式和方法。
1、在教學(xué)設(shè)計(jì)時(shí)應(yīng)提供充分探索與交流的空間,使學(xué)生進(jìn)一步經(jīng)歷觀察,實(shí)驗(yàn)、猜測(cè)、推理、交流、反思等活動(dòng),我在設(shè)計(jì)中讓學(xué)生從計(jì)算花圃面積入手,要求學(xué)生找出不同的計(jì)算方法,學(xué)生欣然接受了挑戰(zhàn),通過(guò)交流,給出了兩種方法,繼而通過(guò)觀察發(fā)現(xiàn)了面積的求法與乘法公式之間的吻合,激發(fā)了學(xué)生學(xué)習(xí)興趣的同時(shí)也激活了學(xué)生的思維,所以這個(gè)探究過(guò)程是很有效的。
2、我知道培養(yǎng)學(xué)生數(shù)形結(jié)合思想方法和能力的重要性,通過(guò)幾何意義說(shuō)明平方差方式的探究過(guò)程,學(xué)生可以切實(shí)感受到兩者之間的聯(lián)系,學(xué)會(huì)一些探究的基本方法與思路,并體會(huì)到數(shù)學(xué)證明的靈巧間法與和諧美是很有必要的。
3、加強(qiáng)師生之間的活動(dòng)也是必要的。在活動(dòng)中,通過(guò)我的組織、引導(dǎo)和鼓勵(lì)下,學(xué)生不斷地思考和探究,并積極地進(jìn)行交流,使活動(dòng)有序進(jìn)行,我始終以平等、欣賞、尊重的態(tài)度參與到學(xué)生活動(dòng)中,營(yíng)造出了一個(gè)和諧,寬松的教學(xué)環(huán)境。
平方差公式教學(xué)教案(精選16篇)篇十五
學(xué)習(xí)方法:歸納、概括、總結(jié)。
創(chuàng)設(shè)問(wèn)題情境,引入新課。
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的一種因式分解的方法——公式法。
1、請(qǐng)看乘法公式。
(a+b)(a-b)=a2-b2(1)。
左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)就是。
a2-b2=(a+b)(a-b)(2)。
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)。
如x2-16。
=(x)2-42。
=(x+4)(x-4)。
9m2-4n2。
=(3m)2-(2n)2。
=(3m+2n)(3m-2n)。
例1、把下列各式分解因式:
例2、把下列各式分解因式:。
(1)9(m+n)2-(m-n)2;(2)2x3-8x.
補(bǔ)充例題:判斷下列分解因式是否正確。
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)(a2-1)。
1、教科書習(xí)題。
2、分解因式:x4-16x3-4x4x2-(y-z)2。
3、若x2-y2=30,x-y=-5求x+y。
平方差公式教學(xué)教案(精選16篇)篇十六
平方差公式本節(jié)課的重點(diǎn)是要學(xué)生明白平方差公式及其推導(dǎo)(含代數(shù)驗(yàn)證和幾何驗(yàn)證),并能應(yīng)用平方差公式簡(jiǎn)化運(yùn)算,其中關(guān)鍵是要學(xué)生明確平方差公式的結(jié)構(gòu)特征,準(zhǔn)確找到a、b。為了讓學(xué)生對(duì)平方差公式有個(gè)全面的認(rèn)識(shí)和了解。先讓學(xué)生計(jì)算符合平方差公式的兩位數(shù)乘法,進(jìn)而將數(shù)轉(zhuǎn)化為字母,從代數(shù)的角度,利用多項(xiàng)式乘多項(xiàng)式的知識(shí),推導(dǎo)出平方差公式,接著從幾何角度讓學(xué)生加以解釋說(shuō)明。在此基礎(chǔ)上,通過(guò)分析公式的結(jié)構(gòu)特征,加深對(duì)公式的理解。之后,設(shè)計(jì)了一個(gè)“尋找a、b”的環(huán)節(jié),通過(guò)這個(gè)練習(xí)進(jìn)行難點(diǎn)突破。引導(dǎo)學(xué)生反思練習(xí)過(guò)程,得出“誰(shuí)是a,誰(shuí)是b,并不以先后為準(zhǔn),而是以符號(hào)為準(zhǔn)”這一結(jié)論。緊接著給出兩組例題,考察學(xué)生對(duì)公式的應(yīng)用。最后通過(guò)一組判斷題和補(bǔ)充練習(xí),拓展學(xué)生的.思維水平。
為了給學(xué)生滲透數(shù)形結(jié)合的思想,要從代數(shù)、幾何兩個(gè)角度證明平方差公式,但是從哪個(gè)角度入手,有利于知識(shí)的銜接,便于學(xué)生理解。最終決定給讓學(xué)生猜想結(jié)論,再用代數(shù)方法加以證明,后給出幾何解釋,符合知識(shí)的發(fā)生過(guò)程。
對(duì)于課本中的公式文字說(shuō)明是“兩數(shù)和與這兩數(shù)差的積”的理解:公式中“a、b不僅表示一個(gè)數(shù)或字母,還可以表示代數(shù)式”。但這里說(shuō)的是“兩數(shù)”,原因是所有的規(guī)律最初都是在具體的數(shù)字中發(fā)現(xiàn)的,然后才推廣到字母。所以這里說(shuō)的數(shù)不再是具體的數(shù),而是代表一個(gè)整體;公式中說(shuō)的“兩數(shù)和與兩數(shù)差的積”,從這個(gè)角度說(shuō),這兩項(xiàng)應(yīng)是完全相同的,差別只在于運(yùn)算符號(hào)上。但由于我們之前介紹過(guò)“代數(shù)和”,(a+b)(a-b)也可以理解為(a+b)[a(-b)],就像許多教參上說(shuō)的,是相同項(xiàng)與互為相反數(shù)的項(xiàng),這樣就與課本定義發(fā)生矛盾。為了避免這個(gè)問(wèn)題,我在介紹公式結(jié)構(gòu)特征時(shí),只說(shuō)“有一項(xiàng)完全相同,另一項(xiàng)只有符號(hào)不同”,學(xué)生可以自己去理解。