作為一名專為他人授業解惑的人民教師,就有可能用到教案,編寫教案助于積累教學經驗,不斷提高教學質量。寫教案的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編帶來的優秀教案范文,希望大家能夠喜歡!
七年級數學教案設計篇一
(一).教材地位、作用
本節課選自華東師大版《數學》七年級上§3.4節第2課時內容,是一堂探究活動課。是在結合學生已有的生活經驗,引入用字母表示有理數,繼而介紹了代數式、代數式的值、整式、同類項以及有理數運算律的基礎上,對同類項進行合并的探索、研究。合并同類項是本章的一個知識重點,其法則以及去括號與添括號的法則應用是整式加減的重點,是以后學習解方程、解不等式的基礎。因此學好本節知識是學好后續知識的主要紐帶,同時在合并同類項過程中不斷運用數的運算,又合并同類項是建立在數的運算律的基礎上,讓學生體會到認識事物是一個由特殊到一般,又由一般到特殊的過程,從而培養學生初步的辯證唯物主義思想。
(二)、教學重點、難點
1、重點:合并同類項的法則的運用。
2、難點:合并同類項的法則的形成過程。
(三)、教學目標
根據上述教材結構特點與教學重、難點,考慮到學生已有的認知結構、心理特征,結合新課改理念,特制定如下教學目標:
1.知識目標
(1)、掌握了什么樣的項是同類項的基礎上,通過具體情境探究得出同類項可以合并,并形成合并同類項的法則。
(2)、能運用合并同類項的法則進行合并同類項。
2.能力目標
(1)、通過具體情境的觀察、思考、類比、探索、交流和反思等數學活動培養學生創新意識和分類思想,使學生掌握研究問題的方法,從而學會學習。
(2)、通過具體情境貼近學生生活,讓學生在生活中挖掘數學問題,解決數學問題,使數學生活化,生活數學化。會利用合并同類項的知識解決一些實際問題。
(3)、通過知識梳理,培養學生的概括能力、表達能力和邏輯思維能力。
3.德育目標
(1)、通過由數的加減推廣到同類項的合并,可以培養學生由特殊到一般的思維認知規律。
(2)、通過具體情境的探索、交流等數學活動培養學生的團體合作精神和積極參與、勤于思考意識。
4.美育目標
通過合并同類項,學生們能明顯地感覺到數學的形式美、簡潔美,感悟到學數學是一種美的享受,愛學、樂學數學。
二、 教學方法、手段
1. 教學設想
突出以學生的“數學活動”為主線,激發學生學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流過程中真正理解和掌握基本的數學知識與技能、數學思想與方法,獲得廣泛的數學活動經驗。
2. 教學方法
利用引導發現法、討論法,引導學生從具體生活情境及已有的知識和生活經驗出發,提出問題與學生共同探索、學生與學生共同探索,以調動學生求知欲望,培養探索能力、創新意識。
3. 教學手段
利用多媒體創設教學情境,引導學生觀察、探索、發現、歸納來激發學生學習興趣、激活學生思維,以利于突破教學重點和難點,提高課堂教學效益。新課標提倡教學中要重視現代教育技術、要引導學生獨立思考、自主探索與合作交流,讓學生掌握知識的發生發展過程,主動去獲得新的知識,學會獲取知識的方法,因而在教學中創設情境讓學生樂意并全身心投入到現實的、探索性的數學活動中去。
三、學法指導
自主探究法:主動觀察→分析→思考→比較→探索→聯想→猜測→類比→歸納→例題探索→練習挑戰、鞏固提高→總結
七年級數學教案設計篇二
首先我用蘇軾的《題西林壁》巧妙地喚起學生的生活感受,讓他們認識到視圖的知識在生活中我們早有親身體驗,只是還沒有形成概念,然后我再用“粉筆”這一簡單的教具,讓學生再次體會,加深認識,這樣,教學與生活緊密相連,既有自然地導入課題,又消除學生對新知識的恐懼,同時還激發了學生濃厚的學習興趣。
然后,我不適時地出示“三視圖”這一概念,通過實驗,讓學生認識到視圖就是由立體圖形轉化成的平面圖形,并不斷地訓練、討論、總結,得出畫三視圖的正確方法。這時教師要巧妙點撥,學生如何從正面、上面、側面三個角度來觀察,既體現了學生的主體地位,又突出了教師的主導作用,鍛煉了學生的動手操能力。
由視圖到立體圖形與上面的過程恰恰相反,需要學生根據視圖進行想象,在大腦中構建一個立體形象。我引導學生利用直觀形象與生活中的實物進行聯系,通過歸納、總結、對比的方法,有效的突破這一難點。
為了進一步地激發學生的學習興趣,培養學生的想象能力和思維能力,可以讓學生用一些小立方體隨意擺出幾種組合并描繪出它的視圖,再由視圖到立體圖形的課堂訓練。
最后,讓學生歸納所學知識,進一步鍛煉學生的概括能力,使知識系統化。
以上設計如有不妥之處,望老師們不吝賜教,我不勝感激。
評課記錄
開發區李玉:于坤老師這節課有幾個突出特點:
1、給學生創設了生動的問題情境。本節課用宋朝文學家蘇軾的一首的詩《題西林壁》。“橫看成嶺側成峰,遠近高低各不同……”來引入課題,從橫、側、遠、近、高、低等不同角度來觀察廬山,引出如何觀察生活中的立體圖形,這個切入點非常好,一下子就能抓住學生的心,吸引學生的注意力。在平日的教學中,我們也應該多找這樣的例子。如在教七年級《代數式》時,有的老師這樣引入“童年是美好而幸福的,大家還記得那首“唱不完的兒歌吧”,然后同學們一起念“一只青蛙一張嘴,兩只眼睛四條腿,撲騰一聲跳下水;兩只青蛙兩張嘴,四只眼睛八條腿,撲騰兩聲跳下水;三只青蛙三張嘴,六只眼睛12條腿,撲騰三聲跳下水……”,然后問:你能不能用一句話來唱完這首兒歌?引發學生思考的興趣,有的學生通過思考得出:n只青蛙n張嘴,2n只眼睛4n條腿,撲騰n聲跳下水,將字母表示數的優點一下子表現出來,令學生頓覺耳目一新。
2、注重過程教學和學法指導
在教學畫圓柱體、長方體、球體和圓錐體的三視圖時,老師不是直接給學生講解它們的三視圖是什么,然后讓學生記憶、變式練習,而是引導學生通過看書、觀察老師手中的教具、學生自己的學具或學生自制的模型,再找學生回答、小組討論,然后教師和學生一起確定答案。這種教學模式:提出問題,創設問題情境———觀察實物或學生看書、計算、畫圖、獨立思考、猜想———小組討論交流———讓一個小組代表發言,其它小組補充說明———師生交流總結———拓展應用的模式,比較符合學生的認知規律,能讓學生經歷探索知識的發生發展過程及在合作學習中學會與他人交流,不僅學會了知識,而且能鍛煉學生的各種能力。
3、體現學生主體地位,注重學法指導
教師在本節課上處處關注學生學習的主觀能動性,學生自始至終處于被肯定、被激勵之中,時時感受到自己是學習的主人,教師給學生留有較大的學習的空間:如觀察、討論、動手擺放學具等,提出問題后讓學生充分思考并給予適時的點撥。
教科院李洪光老師:
1、周六研究課的定位:本學期的周六研究課不再是一節公開課,而是為解決我們在平日教學中存在的問題而開設的研究、研討課。
2、在平日的教學中,不少學校和老師存在這樣的現象:課堂上老師講的多,學生學的少;學生聽明白的多,學會的少。究其原因,是我們只注重了終端的結果,而忽視了學習知識的過程。因此在今后的課堂教學中,我們應該讓學生掌握知識的發生、發展的過程,讓教師和學生充分暴露思維的過程,另外讓學生學會學習數學的方法,這也是我們的任務之一。這兩節課在這些方面都做了有益的探索。如王長山老師給學生提供了豐富的材料讓學生思考、探索,在教學過程中滲透數學思想和方法。于坤老師抓住本節課的核心問題,處處讓學生參與到學習探究活動中,教學生觀察事物的方法,尋找數學與生活的聯系等作法,就很好地體現了新課改的理念。當然并不是所有的課型都讓學生探究、討論,如果講解能引發學生思維的就用講解法,討論交流能引發思維的就用討論法,總之,在教學中要充分調動學生思維的積極主動性。另外一定要突出數學自身的特點,在我們的老師的課上,多數老師在一節課的結尾都讓學生談談本節課學會了哪些知識、方法,有什么體會,對本節的內容進行概括性總結,這樣做就讓學生對本節課有了整體認識。另外不少老師強調嚴密的邏輯思維、嚴格的解題步驟等作法都值得發揚。
七年級數學教案設計篇三
一:教材分析:(說教材)
1:教材所處的地位和作用:
本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節的重點和難點,同時也是本章節的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數,幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養他們對數學的興趣
以及對他們進行思想教育方面有獨特的意義,同時,對后續教學內容起到奠基作用。
2:教育教學目標:
(1)知識目標:
(a)通過教學使學生了解應用題的一個重要步驟是根據題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。
(b)
通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數,其余字母表示已知數的情況下,列出一元一次方程解簡單的應用題。
(2)能力目標:
通過教學初步培養學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯系實際的能力。
(3)思想目標:
通過對一元一次方程應用題的教學,讓學生初步認識體會到代數方法的優越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數學家對一元一次方程的研究成果,激發學生熱愛中國共產黨,熱愛社會主義,決心為實現社會主義四個現代化而學好數學的思想;同時,通過理論聯系實際的方式,通過知識的應用,培養學生唯物主義的思想觀點。
3:重點,難點以及確定的依據:
根據題意尋找和;差;倍;分問題的相等關系是本課的重點,根據題意列出一元一次方程是本課的難點,其理論依據是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯系實際的問題的理解難度大。
二:學情分析:(說學法)
1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數就直接進行列方程或在設未知數時,有單位卻忘記寫單位等。
2:學生在列方程解應用題時,可能存在三個方面的困難:
(1)抓不準相等關系;
(2)找出相等關系后不會列方程;
(3)習慣于用小學算術解法,得用代數方法分析應用題不適應,不知道要抓怎樣的相等關系。
3:
學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。
4:
學生在學習中可能習慣于用算術方法分析已知數與未知數,未知數與已知數之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。
5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。
三:教學策略:(說教法)
如何突出重點,突破難點,從而實現教學目標。我在教學過程中擬計劃進行如下操作:
1:“讀(看)——議——講”結合法
2:圖表分析法
3:教學過程中堅持啟發式教學的原則
教學的理論依據是:
1:必須先明確根據應用題題意列方程是重點,同時也是
難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相
等關系,并列出代數式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓
學生大致了解列出一元一次方程解應用題的方法。
2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表
示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數,再根據相等關系列出需要的代數式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數時,如有單位,必須讓學生寫在字母后,如例
1中,不能把“設原來有x千克面粉”寫成“設原來有x”。另外,在列方程中,各代數式的單位應該是相同的,如例1中,代數式“x
”“—15%x”“42500
”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數設為未知數,其余的數用已知數或含有已知數與未知數的代數式表示,從而列出方程。在例
1中的相等關系比較簡單明顯,可通過啟發式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。
七年級數學教案設計篇四
一、素質教育目標
(一)知識教學點
1.理解有理數乘方的意義.
2.掌握有理數乘方的運算.
(二)能力訓練點
1.培養學生觀察、分析、比較、歸納、概括的能力.
2.滲透轉化思想.
(三)德育滲透點:培養學生勤思、認真和勇于探索的精神.
(四)美育滲透點
把記成,顯示了乘方符號的簡潔美.
二、學法引導
1.教學方法:引導探索法,嘗試指導,充分體現學生主體地位.
2.學生學法:探索的性質→練習鞏固
三、重點、難點、疑點及解決辦法
1.重點:運算.
2.難點:運算的符號法則.
3.疑點:①乘方和冪的區別.
②與的區別.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片.
六、師生互動活動設計
教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.
七、教學步驟
(一)創設情境,導入 新課
師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?
生:可以記作,讀作的四次方.
師:呢?
生:可以記作,讀作的五次方.
師:(為正整數)呢?
生:可以記作,讀作的次方.
師:很好!把個相乘,記作,既簡單又明確.
【教法說明】教師給學生創設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數學的發展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.
師:在小學對底數,我們只能取正數.進入中學以后我們學習了有理數,那么還可取哪些數呢?請舉例說明.
生:還可取負數和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.
非常好!對于中的,不僅可以取正數,還可以取0和負數,也就是說可以取任意有理數,這就是我們今天研究的課題:(板書).
【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據初一學生的認知水平,分層逐步說明可以取正數,可以取零,可以取負數,最后總結出可以取任意有理數.
(二)探索新知,講授新課
1.求個相同因數的積的運算,叫做乘方.
乘方的結果叫做冪,相同的因數叫做底數,相同的因數的個數叫做指數.一般地,在中,取任意有理數,取正整數.
注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.
鞏固練習(出示投影1)
(1)在中,底數是__________,指數是___________,讀作__________或讀作___________;
(2)在中,-2是__________,4是__________,讀作__________或讀作__________;
(3)在中,底數是_________,指數是__________,讀作__________;
(4)5,底數是___________,指數是_____________.
【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區別表示底數是-2,指數是4的冪;而表示底數是2,指數是4的冪的相反數.為后面的計算做鋪墊.通過第(4)小題指出一個數可以看作這個數本身的一次方,如5就是,指數1通常省略不寫.
師:到目前為止,對有理數業說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?
學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.
生:到目前為止,已經學習過五種運算,它們是:
運算:加、減、乘、除、乘方;
運算結果:和、差、積、商、冪;
教師對學生的回答給予評價并鼓勵.
【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養學生歸納、總結的能力.
師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.
學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.
【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數的乘法運算來進行有理數乘方的運算.向學生滲透轉化的思想.
2.練習:(出示投影2)
計算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.
師:請同學們觀察、分析、比較這三組題中,每組題中底數、指數和冪之間有什么聯系?
先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.
生:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數,零的任何次冪都是零.
師:請同學們繼續觀察與,與中,底數、指數和冪之間有何聯系?你能得出什么結論呢?
學生活動:學生積極思考,同桌之間、前后桌之間互相討論.
生:互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等.
師:請同學思考一個問題,任何一個數的偶次冪是什么數?
生:任何一個數的偶次冪是非負數.
師:你能把上述結論用數學符號表示嗎?
生:(1)當時,(為正整數);
(2)當
(3)當時,(為正整數);
(4)(為正整數);
(為正整數);
(為正整數,為有理數).
【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創造發揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.
<
七年級數學教案設計篇五
教學目標
1.理解有理數乘法的意義,掌握有理數乘法法則中的符號法則和絕對值運算法則,并初步理解有理數乘法法則的合理性;
2.能根據有理數乘法法則熟練地進行有理數乘法運算,使學生掌握多個有理數相乘的積的符號法則;
3.三個或三個以上不等于0的有理數相乘時,能正確應用乘法交換律、結合律、分配律簡化運算過程;
4.通過有理數乘法法則及運算律在乘法運算中的運用,培養學生的運算能力;
5.本節課通過行程問題說明法則的合理性,讓學生感知到數學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
本節的教學重點是能夠熟練進行運算。依據法則和運算律靈活進行有理數乘法運算是進一步學習除法運算和乘方運算的基礎。運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數不包含0的乘法運算中積的符號取決于因數中所含負號的個數。當負號的個數為奇數時,積的符號為負號;當負號的個數為偶數時,積的符號為正數。積的絕對值是各個因數的絕對值的積。運用乘法交換律恰當的結合因數可以簡化運算過程。
本節的難點是對法則的理解。法則中的“同號得正,異號得負”只是針對兩個因數相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數符號相同,積的符號是正號;兩個因數符號不同,積的符號是負號。積的絕對值是這兩個因數的絕對值的積。
(二)知識結構
(三)教法建議
1.有理數乘法法則,實際上是一種規定。行程問題是為了了解這種規定的合理性。
2.兩數相乘時,確定符號的依據是“同號得正,異號得負”.絕對值相乘也就是小學學過的算術乘法.
3.基礎較差的同學,要注意乘法求積的符號法則與加法求和的符號法則的區別。
4.幾個數相乘,如果有一個因數為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數為0.
5.小學學過的乘法交換律、結合律、分配律對有理數乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數、0,也可以是負有理數。
6.如果因數是帶分數,一般要將它化為假分數,以便于約分。
教學設計示例
(第一課時)
教學目標
1.使學生在了解意義基礎上,理解有理數乘法法則,并初步理解有理數乘法法則的合理性;
2.通過運算,培養學生的運算能力;
3.通過教材給出的行程問題,認識數學來源于實踐并反作用于實踐。
教學重點和難點
重點:依據法則,熟練進行運算;
難點:有理數乘法法則的理解.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.計算(-2)+(-2)+(-2).
2.有理數包括哪些數?小學學習四則運算是在有理數的什么范圍中進行的?(非負數)
3.有理數加減運算中,關鍵問題是什么?和小學運算中最主要的不同點是什么?(符號問題)
4.根據有理數加減運算中引出的新問題主要是負數加減,運算的關鍵是確定符號問題,你能不能猜出在有理數乘法以及以后學習的除法中將引出的新內容以及關鍵問題是什么?(負數問題,符號的確定)
二、師生共同研究有理數乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引導學生比較①,②得出:
把一個因數換成它的相反數,所得的積是原來的積的相反數.
這是一條很重要的結論,應用此結論,3×(-2)=?(-3)×(-2)=?(學生答)
把3×(-2)和①式對比,這里把一個因數“2”換成了它的相反數“-2”,所得的積應是原來的積“6”的相反數“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式對比,這里把一個因數“2”換成了它的相反數“-2”,所得的積應是原來的積“-6”的相反數“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
綜合上面各種情況,引導學生自己歸納出有理數乘法的法則:
兩數相乘,同號得正,異號得負,并把絕對值相乘;
任何數同0相乘,都得0.
繼而教師強調指出:
“同號得正”中正數乘以正數得正數就是小學學習的乘法,有理數中特別注意“負負得正”和“異號得負”.
用有理數乘法法則與小學學習的乘法相比,由于介入了負數,使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結為小學的乘法了.
因此,在進行有理數乘法時,需要時時強調:先定符號后定值.
三、運用舉例,變式練習
例1 計算:
例2 某一物體溫度每小時上升a度,現在溫度是0度.
(1)t小時后溫度是多少?
(2)當a,t分別是下列各數時的結果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教師引導學生檢驗一下(2)中各結果是否合乎實際.
課堂練習
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
這一組題做完后讓學生自己總結:一個數乘以1都等于它本身;一個數乘以-1都等于它的相反數.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調指出,a可以是正數,也可以是負數或0;-a未必是負數,也可以是正數或0.
3.當a,b是下列各數值時,填寫空格中計算的積與和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判斷下列方程的解是正數還是負數或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小結
今天主要學習了有理數乘法法則,大家要牢記,兩個負數相乘得正數,簡單地說:“負負得正”.
五、作業
1.計算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).
2.計算:
3.填空(用“>”或“<”號連接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0時,那么a ____________2a;
(4)如果a<0時,那么a __________2a.
探究活動
問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉其中的4只,能否經過若干次翻轉,把它們翻成杯口全部朝下?
答案: “±1”將告訴你:不管你翻轉多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數的乘積,由于每次都改變4個數的符號,所以它們的乘積永遠不變(為+1).而7個杯口全部朝下時,7個數的乘積等于-1,這是不可能的.
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.