在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧
指數(shù)函數(shù)的概念說課稿篇一
一、本課時在教材中的地位及作用
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點(diǎn)分析確定
一、教學(xué)基本思路及過程
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。
三、教法、學(xué)法
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
指數(shù)函數(shù)的概念說課稿篇二
教材的地位及前后聯(lián)系
本節(jié)課是《中等職業(yè)教育規(guī)劃教材數(shù)學(xué)》第一冊第四章第二節(jié)《指數(shù)函數(shù)》。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)之后系統(tǒng)學(xué)習(xí)的第一個函數(shù),通過學(xué)習(xí)可進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,也為今后進(jìn)一步研究函數(shù)的性質(zhì)特別是后面的對數(shù)函數(shù)打下堅(jiān)實(shí)的基礎(chǔ),同時也培養(yǎng)了學(xué)生對函數(shù)的應(yīng)用意識。因此本課有十分重要地位和作用,它對知識起到了承上啟下的作用。
教學(xué)目標(biāo):
知識目標(biāo):
1、掌握指數(shù)函數(shù)的概念,并能根據(jù)定義判斷一個函數(shù)是否為指數(shù)函數(shù);
2、掌握指數(shù)函數(shù)的圖像和性質(zhì);
3、能根據(jù)單調(diào)性解決比較大小的問題。
能力目標(biāo):
1、培養(yǎng)學(xué)生觀察、分析、分類、歸納、探索發(fā)現(xiàn)解決問題的能力,體會從特殊到一般的研究方法和分類討論思想。
2、提高學(xué)生運(yùn)用現(xiàn)代信息化手段解決數(shù)學(xué)問題的能力。
情感目標(biāo)
1、通過問題的解決,樹立學(xué)生的自信心,體會成功與快樂;
3、通過學(xué)習(xí)讓學(xué)生感受到數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,讓學(xué)生發(fā)現(xiàn)生活中的函數(shù)問題。
教材的重點(diǎn)和難點(diǎn):
教學(xué)重點(diǎn):指數(shù)函數(shù)的概念、圖像和性質(zhì);
教學(xué)難點(diǎn):如何由圖像歸納指數(shù)函數(shù)的性質(zhì)以及性質(zhì)的應(yīng)用。
根據(jù)這幾年的教學(xué)我發(fā)現(xiàn)學(xué)生在后面學(xué)習(xí)中一遇到指對數(shù)問題就發(fā)蒙,原因是什么呢?問題就出在學(xué)生剛剛學(xué)完第三章函數(shù)的性質(zhì),應(yīng)用的又是初中比較熟悉的一元二次函數(shù)。一下子出現(xiàn)了一個非常陌生的函數(shù)而且需要記很多性質(zhì),學(xué)生感覺很吃力。對于我任教的12財(cái)會班的學(xué)生整體理論知識水平參差不齊,學(xué)生缺乏自主探索、發(fā)現(xiàn)的意識。但是性格活潑、興趣廣泛,樂于實(shí)踐。因此我在備課時以學(xué)生為本,以學(xué)生活動為主線,從興趣出發(fā),由xx年春節(jié)晚會的魔術(shù)引出本節(jié)課的'指數(shù)函數(shù),讓學(xué)生從特殊到一般去認(rèn)識指數(shù)函數(shù),然后通過多媒體課件的充分展示讓學(xué)生分組討論、歸納出指數(shù)函數(shù)的性質(zhì)。
教學(xué)方法:啟發(fā)、合作探究、講練結(jié)合等教學(xué)方法。充分遵循“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則,采用多媒體輔助教學(xué)手段,借助多媒體,演示指數(shù)函數(shù)的圖像形成過程,便于總結(jié)函數(shù)的性質(zhì)。
學(xué)習(xí)方法:采用自主探究、小組合作、觀察歸納的學(xué)習(xí)方法。
教學(xué)流程:
教學(xué)流程設(shè)計(jì)
1、創(chuàng)設(shè)情境,導(dǎo)入新課
2、構(gòu)建模型,形成概念
3、深入探究,發(fā)現(xiàn)性質(zhì)
4、講練結(jié)合,鞏固提高
5、課堂小結(jié),構(gòu)建體系
6、作業(yè)布置,延伸課堂
教學(xué)過程:
1、創(chuàng)設(shè)情境,導(dǎo)入新課
通過春節(jié)的撕報(bào)紙的魔術(shù)調(diào)動學(xué)生的興趣,教師接著引導(dǎo)學(xué)生分析撕報(bào)紙得到的分?jǐn)?shù)與撕報(bào)紙的次數(shù)之間的函數(shù)關(guān)系,分析出撕報(bào)紙得到的每一分小報(bào)紙的面積與撕報(bào)紙的次數(shù)之間得到的函數(shù)關(guān)系,從而建立一個關(guān)于指數(shù)函數(shù)的數(shù)學(xué)模型,為學(xué)生提出問題;提高學(xué)生學(xué)習(xí)新知識的積極性以及體會數(shù)學(xué)與生活密切相關(guān)。
2、構(gòu)建模型,形成概念
通過兩個具體的指數(shù)函數(shù)模型,給出指數(shù)函數(shù)概念,讓學(xué)生體會由特殊到一般的思想,并通過練習(xí)一判斷一個函數(shù)是否是指數(shù)函數(shù),加深學(xué)生對指數(shù)函數(shù)概念的理解。
3、深入探究,發(fā)現(xiàn)性質(zhì)
在這個環(huán)節(jié),函數(shù)圖像的性質(zhì)是本節(jié)課的重點(diǎn)也是難點(diǎn),我準(zhǔn)備采用多媒體技術(shù)輔助教學(xué)突破重點(diǎn)、難點(diǎn),這一環(huán)節(jié)關(guān)鍵是弄清楚底數(shù)a的變化對函數(shù)圖像及性質(zhì)的影響,利用多媒體動感顯示,通過顏色的區(qū)別,加深感性認(rèn)識,非常直觀形象地演示a的變化與圖像的變化規(guī)律,突破靜態(tài)思維,使難點(diǎn)迎刃而解。
華羅庚先生曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微。”探究指數(shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖像突破,體會數(shù)形結(jié)合的思想。通過兩個指數(shù)函數(shù)的作圖過程鞏固學(xué)生作圖能力,讓學(xué)生初步發(fā)現(xiàn)圖像規(guī)律。緊接著同時通過軟件讓學(xué)生舉出4個指數(shù)函數(shù),通過軟件快速畫出四個具體的指數(shù)函數(shù)圖像,充分引導(dǎo)學(xué)生通過觀察圖像發(fā)現(xiàn)指數(shù)函數(shù)的圖像規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個由特殊到一般的探究過程。讓學(xué)生在研究出指數(shù)函數(shù)的一般性質(zhì)后進(jìn)行總結(jié)歸納函數(shù)的其他性質(zhì),從而對函數(shù)進(jìn)行較為系統(tǒng)的研究。
4、講練結(jié)合,鞏固提高
教師通過對例題一比較兩個函數(shù)值的大小、例題二求函數(shù)的定義域引導(dǎo)學(xué)生如何使用函數(shù)的性質(zhì)解決問題,同時通過學(xué)生進(jìn)行一些鞏固練習(xí)使學(xué)生對函數(shù)能進(jìn)行較為基本的應(yīng)用。
5、課堂小結(jié),構(gòu)建體系
小結(jié)環(huán)節(jié),讓學(xué)生自己總結(jié)函數(shù)的概念和性質(zhì),讓學(xué)生建立研究函數(shù)的知識體系
6、作業(yè)布置,延伸課堂
作業(yè)布置環(huán)節(jié)必做題鞏固學(xué)生上課內(nèi)容,選做題“古蓮子年齡之謎”的問題為學(xué)習(xí)能力較強(qiáng)的同學(xué)更大的發(fā)揮空間,因材施教,分層作業(yè),鞏固提高,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ),同時也拓展學(xué)生的知識視野。
指數(shù)函數(shù)的概念說課稿篇三
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點(diǎn)分析
根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。
三、學(xué)情分析
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
六、教學(xué)過程
(一)創(chuàng)設(shè)情景,引入新課
情景1:提供一張表格,把上次運(yùn)動會得分前10的情況填入表格,我報(bào)名次,學(xué)生提供分?jǐn)?shù)。
名次(得分)
情景3:某市一天24小時內(nèi)的氣溫變化圖:(圖略)
提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)
提問(2):當(dāng)其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)
提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題
[設(shè)計(jì)意圖]在創(chuàng)設(shè)本課開頭情境1、2的時候,我并沒有運(yùn)用書中的前兩個例子。第一個例子我改成提供給學(xué)生一張運(yùn)動會成績統(tǒng)計(jì)單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因?yàn)閷W(xué)生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實(shí)例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點(diǎn)。
(二)探索新知,形成概念
1、引導(dǎo)分析,探求特征
思考:如何用集合的語言來闡述上述三個問題的共同特征?
[設(shè)計(jì)意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個角度思考問題,進(jìn)入本節(jié)課的重點(diǎn)。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時對學(xué)生進(jìn)行指引。
提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)
[設(shè)計(jì)意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。
提問(5):兩個集合的元素之間具有怎樣的關(guān)系?(對應(yīng))
及時給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對應(yīng)。
2、抽象歸納,引出概念
提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點(diǎn)嗎?
[設(shè)計(jì)意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。
板書:函數(shù)的概念
上述一系列問題,始終在學(xué)生知識的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點(diǎn)。
3、探求定義,提出注意
提問(7):你覺得這個定義中應(yīng)注意哪些問題?
[設(shè)計(jì)意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。
4、例題剖析,強(qiáng)化概念
例1、判斷下列對應(yīng)是否為函數(shù):
[設(shè)計(jì)意圖]通過例1的教學(xué),使學(xué)生體會單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。
例2、(1);(2)y=x-1;(3);[設(shè)計(jì)意圖]首先對求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強(qiáng)調(diào)只有對應(yīng)法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號的本質(zhì)內(nèi)涵。
例3、試求下列函數(shù)的定義域與值域:
[設(shè)計(jì)意圖]讓學(xué)體會理解函數(shù)的三要素。
5、鞏固練習(xí),運(yùn)用概念
書本練習(xí)p24:1,2,3,4
6、課堂小結(jié),提升思想
引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對本節(jié)課有一個整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。
七、教學(xué)評價
1、我通過對一系列問題情景的設(shè)計(jì),讓學(xué)生在問題解決的過程中體驗(yàn)成功的樂趣,實(shí)現(xiàn)對本課重難點(diǎn)的突破。
2、為使課堂形式更加豐富,也可將某些問題改成判斷題。
4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。
指數(shù)函數(shù)的概念說課稿篇四
教材是課程標(biāo)準(zhǔn)的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進(jìn)行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對接下來對數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ)。可以說,指數(shù)函數(shù)的學(xué)習(xí)對于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強(qiáng)的理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學(xué)生好勝心比較強(qiáng),容易產(chǎn)生負(fù)面情緒,這對于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗(yàn)上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認(rèn)識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
教學(xué)目標(biāo)是教育教學(xué)活動的出發(fā)點(diǎn)和依據(jù),結(jié)合新課改的思想和新課標(biāo)的要求,本節(jié)課我所制定的三維教學(xué)目標(biāo)如下:
知識與技能目標(biāo):掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實(shí)際問題。
過程與方法目標(biāo):通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測,歸納的能力。
情感態(tài)度與價值觀目標(biāo):通過教學(xué)互動,促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點(diǎn)看問題,領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
而本節(jié)課,我將重難點(diǎn)確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進(jìn)行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進(jìn)行教學(xué)。同時我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動性,充分地體現(xiàn)學(xué)生的主體地位。
以上所有的準(zhǔn)備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學(xué)過程的設(shè)計(jì)。
首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個實(shí)例:計(jì)算機(jī)價格下降問題和生物中細(xì)胞分裂的例子。我會請同學(xué)們仔細(xì)觀察并分組討論,分別寫出計(jì)算機(jī)價格y與經(jīng)過月份x的關(guān)系以及細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實(shí)例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動性,為接下來的學(xué)習(xí)做好準(zhǔn)備。
其次啟發(fā)誘導(dǎo),探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動手,促進(jìn)學(xué)生對本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識的性質(zhì),也能對于接下來的知識點(diǎn)導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實(shí)踐為主的原則,完成學(xué)生學(xué)習(xí):實(shí)踐到認(rèn)識再到實(shí)踐的過程。通過練習(xí)實(shí)現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進(jìn)式提高。這個環(huán)節(jié)介紹的化學(xué)知識在考古中的應(yīng)用,這樣的設(shè)計(jì)既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計(jì)算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學(xué)的應(yīng)用價值。緊接著我會帶領(lǐng)學(xué)生進(jìn)行歸納,總結(jié)升華我會將同學(xué)們進(jìn)行分組討論、探究,引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進(jìn)行梳理和深化認(rèn)知。知識與技能目標(biāo)設(shè)置分組pk機(jī)制,引導(dǎo)學(xué)生對課堂知識進(jìn)行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
當(dāng)然一堂完整的課程離不開簡潔明了的板書設(shè)計(jì),我的板書設(shè)計(jì)如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習(xí)過程中寫下今天練習(xí)的,計(jì)算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設(shè)計(jì),可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
指數(shù)函數(shù)的概念說課稿篇五
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡單的實(shí)際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會求值,并體會自變量與值間的對應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動變化著的.
教學(xué)重點(diǎn):了解的意義,會求自變量的取值范圍及求值.
教學(xué)難點(diǎn):概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的.
生活中有很多實(shí)例反映了關(guān)系,你能舉出一個,并指出式中的自變量與嗎?
1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系.
2、為迎接新年,班委會計(jì)劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.
解:1、y=30n
y是,n是自變量
2、,n是,a是自變量.
(二)講授新課
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.
(1) (2)
(3) (4)
(5) (6)
分析:在(1)、(2)中,x取任意實(shí)數(shù), 與 都有意義.
(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
同理,第(6)小題 也是二次根式, 是被開方數(shù),
.
解:(1)全體實(shí)數(shù)
(2)全體實(shí)數(shù)
(3)
(4) 且
(5)
(6)
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實(shí)數(shù);的解析式是分式時,自變量的取值應(yīng)使分母不為零;的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要 即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里 與 是并且的關(guān)系.即2與-1這兩個值x都不能取.
指數(shù)函數(shù)的概念說課稿篇六
一、本課時在教材中的地位及作用
教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點(diǎn)分析確定
一、教學(xué)基本思路及過程
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。
三、教法、學(xué)法
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
指數(shù)函數(shù)的概念說課稿篇七
各位專家、各位老師:
大家好!
今天我說課的題目是《函數(shù)的概念》,本課題是人教a版必修1中1.2的內(nèi)容,計(jì)劃安排兩個課時,本課時的內(nèi)容為:函數(shù)的概念、三要素及簡單函數(shù)的定義域及值域的求法。下面我將以“學(xué)什么、怎么學(xué)、學(xué)了有何用”為思路,從教材、教法、學(xué)法、教學(xué)評價、教學(xué)過程設(shè)計(jì)、板書設(shè)計(jì)等幾個方面對本節(jié)課的教學(xué)加以說明。
一、教學(xué)目標(biāo)
1、課程標(biāo)準(zhǔn)
課節(jié)內(nèi)容的課標(biāo)要求是:
(1)通過豐富實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
(2)在實(shí)際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
(3)通過具體實(shí)例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
(4)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解奇偶性的含義。
(5)學(xué)會運(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。
2、課標(biāo)解讀
關(guān)于函數(shù)內(nèi)容的整體定位和基本要求解讀:
(2)強(qiáng)調(diào)對函數(shù)本質(zhì)的認(rèn)識和理解,因此要求在高中數(shù)學(xué)學(xué)習(xí)中多次接觸、螺旋上升;
(3)關(guān)注背景、應(yīng)用、增加了函數(shù)模型及其應(yīng)用;
(4)削弱和淡化了一些內(nèi)容,如函數(shù)的定義域、值域、反函數(shù)、復(fù)合函數(shù)等;
(5)注重思想和聯(lián)系——增加了函數(shù)與方程、用二分法求方程的近似根。
(6)合理地使用信息技術(shù),旨在幫助學(xué)生更好地認(rèn)識和理解函數(shù)及其性質(zhì)。
【依據(jù)意圖】
(1)教材如此要求的根本目的是希望幫助學(xué)生更好地從整體上認(rèn)識和理解函數(shù)的本質(zhì),而真正理解函數(shù)概念是不容易的。因此,不要在過于細(xì)枝末節(jié)的非本質(zhì)問題上作過多的訓(xùn)練,有了定義域和對應(yīng)關(guān)系,值域自然就定了。此外,“課標(biāo)”建議先講函數(shù)再講映射,也是為了幫助學(xué)生把注意力集中在函數(shù)的本質(zhì)理解。
(2)希望通過方程根與函數(shù)零點(diǎn)的內(nèi)在聯(lián)系,加強(qiáng)對函數(shù)概念、函數(shù)思想及函數(shù)這一主線在高中數(shù)學(xué)中的地位作用的認(rèn)識和理解。并通過用二分法求方程近似根將函數(shù)思想以及方程的根與函數(shù)零點(diǎn)之間的聯(lián)系具體化。
(3)二分法是求方程近似根的常用方法,更為一般、簡單,能很好地體現(xiàn)函數(shù)思想,“大綱”只是用“三個二”解決根的分布問題。
(4)現(xiàn)代信息技術(shù)不能替代艱苦的學(xué)習(xí)和人腦精密的思考,信息技術(shù)只是作為達(dá)到目的的一種手段,一種快速計(jì)算的工具。
3、教材分析
(1)地位作用
函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個高中數(shù)學(xué)學(xué)習(xí)中,其重要性體現(xiàn)在以下幾個方面:
3、這一節(jié)所學(xué)習(xí)的函數(shù)概念既是對初中所學(xué)函數(shù)概念的一次升華和再認(rèn)識、對集合語言的一次重要應(yīng)用;又是以后繼續(xù)學(xué)習(xí)函數(shù)的性質(zhì)、數(shù)列等等知識的必備理論基礎(chǔ),在函數(shù)學(xué)習(xí)中是承上啟下的關(guān)鍵章節(jié)。
(2)內(nèi)容與課時劃分
本課題是高中數(shù)學(xué)人教a版必修1中1.2節(jié),計(jì)劃教學(xué)2個課時,第一課時內(nèi)容包括函數(shù)的概念、函數(shù)的三要素、簡單函數(shù)的定義域及值域的求法;第二課時內(nèi)容為:區(qū)間表示、較復(fù)雜函數(shù)的定義域及值域的求法、分段函數(shù)、函數(shù)圖象等。本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。
4、學(xué)情分析
(1)學(xué)生在初中已經(jīng)在初中學(xué)習(xí)過函數(shù)的概念。
(2)本班級學(xué)生個體差異較明顯。
基于以上分析,我把本節(jié)課的教學(xué)目標(biāo)和教學(xué)重難點(diǎn)制定如下:
5、教學(xué)目標(biāo)
【依據(jù)意圖】:教學(xué)目標(biāo)的設(shè)計(jì),要簡潔明了,具有較強(qiáng)的可操作性,容易檢測目標(biāo)的達(dá)成度,同時也要體現(xiàn)出新課標(biāo)下對素質(zhì)教育的要求。基于以上分析作為依據(jù),課時目標(biāo)分解如下:
【課時分解目標(biāo)】
1、能夠列舉生活中具有函數(shù)關(guān)系的實(shí)例;
2、能用集合與對應(yīng)的語言描述函數(shù)的定義,能對具體函數(shù)指出定義域、對應(yīng)法則、值域;
3、會求一些簡單函數(shù)(帶根號,分式)的定義域和值域;
4、能夠從函數(shù)的三要素的角度去判定兩個函數(shù)是否是同一個函數(shù)。
二、教學(xué)重難點(diǎn)
重點(diǎn):讓學(xué)生體會函數(shù)是描述變量之間的相互依賴關(guān)系的重要數(shù)學(xué)模型,正確理解形成函數(shù)的概念。
難點(diǎn):引導(dǎo)學(xué)生從具體實(shí)例抽象出函數(shù)概念。
[意圖依據(jù)]:本課時是概念課,重在概念的理解和形成,但教師應(yīng)把重點(diǎn)放在讓學(xué)生形成概念的過程中,聯(lián)系舊知、突破難點(diǎn)、生長新知。為此通過教學(xué)目標(biāo)和難重點(diǎn)的展示,讓學(xué)生明確本節(jié)課的任務(wù)及精髓,帶著目標(biāo)去學(xué)習(xí),才能達(dá)到事半功倍的效果。
三、教法
問題式教學(xué)法(實(shí)例情境、啟發(fā)引導(dǎo)、合作交流、歸納抽象)
由于本課題是從集合與對應(yīng)的角度揭示函數(shù)的本質(zhì),無論難度還是跨度都有質(zhì)的飛躍。根據(jù)學(xué)生的心理特征和認(rèn)知規(guī)律,我通過以問題為主線,以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)理念。采用一系列的設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn),讓學(xué)生歸納、概括出函數(shù)概念的本質(zhì),并靈活應(yīng)用多媒體、黑板呈現(xiàn)、展示、交流。
[意圖依據(jù)]:函數(shù)的`概念的教學(xué)要注重以下幾個方面:(1)把集合作為一種語言;(2)對函數(shù)本質(zhì)的理解不能一步到位,要注重螺旋上升;(3)重視信息技術(shù)的使用。為此,教師要在課堂上搭建一個平臺,通過展示實(shí)例、學(xué)生舉例、典例分析、小結(jié)歸納等環(huán)節(jié)穿插若干問題,引起思考,達(dá)成教學(xué)目標(biāo)。
四、學(xué)法
自主探究、合作交流 、展示互評
我們知道越是基礎(chǔ)性的概念,其統(tǒng)攝性就越強(qiáng),學(xué)生從中領(lǐng)悟到的數(shù)學(xué)就越本質(zhì);但事物總有兩面性,這些概念的理解和掌握往往難度大、時間長,需要更多的經(jīng)驗(yàn)積累.因此本節(jié)課在學(xué)法上我重視學(xué)生在列舉大量實(shí)際背景的前提下對所給出實(shí)例觀察,類比,歸納,分析,探究,合作,提煉,感悟函數(shù)概念的“本來面目”,以此培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力;同時在預(yù)習(xí)環(huán)節(jié)有學(xué)生的自主學(xué)習(xí)、在互動環(huán)節(jié)有學(xué)生的合作交流、在課后拓展環(huán)節(jié)有學(xué)生的探究學(xué)習(xí)。這樣做,增加了學(xué)生主動參與的機(jī)會,增強(qiáng)了參與意識,教給學(xué)生獲取知識的途徑以及思考問題的方法,使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有所“思”,“思”有所“獲”,“獲”有所“用”。也恰好能夠體現(xiàn)我以“學(xué)什么、怎么學(xué)、學(xué)了有何用”來設(shè)計(jì)本課題的整體思路。
[意圖依據(jù)]:本課時是以問題為主線的教學(xué)過程,著重讓學(xué)生經(jīng)過對大量實(shí)例的剖析、了解、歸納而形成概念。在這個過程中,教師的作用是引導(dǎo),經(jīng)過一系列問題的提出、解決讓學(xué)生在思考、交流的基礎(chǔ)上層層深入的理解函數(shù)概念。
五、教學(xué)過程設(shè)計(jì)
本節(jié)內(nèi)容的教學(xué)過程我設(shè)計(jì)為以下逐層推進(jìn)六個步驟:
1、課前預(yù)習(xí)、生成問題:
2、創(chuàng)境設(shè)問、引入課題:
3、觀察分析、探索新知:
4、思考辨析、深刻理解:
5、提煉總結(jié)、分享收獲:
6、布置作業(yè)、拓展延伸.
指數(shù)函數(shù)的概念說課稿篇八
三角函數(shù)的有關(guān)概念(b).
理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.
理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
一、問題.
1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數(shù)有什么樣的關(guān)系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數(shù)有哪些基本關(guān)系式?
二、練習(xí).
1.給出下列命題:
(1)小于 的角是銳角;
(2)若 是第一象限的角,則 必為第一象限的角;
(3)第三象限的角必大于第二象限的角;
(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2 與角 的終邊不可能相同;
2.設(shè)p 點(diǎn)是角終邊上一點(diǎn),且滿足 則 的值是
4.若 則角 的終邊在 象限。
5.在直角坐標(biāo)系中,若角 與角 的終邊互為反向延長線,則角 與角 之間的關(guān)系是
6.若 是第三象限的角,則- , 的終邊落在何處?
例1.如圖, 分別是角 的終邊.
(1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在 上所有角的集合;
(3)求始邊在om位置,終邊在on位置的所有角的集合.
例2.
(1)已知角的終邊在直線 上,求 的值;
(2)已知角的終邊上有一點(diǎn)a ,求 的值。
例3.若 ,則 在第 象限.
1、若銳角 的終邊上一點(diǎn)的坐標(biāo)為 ,則角 的弧度數(shù)為 .
2、若 ,又 是第二,第三象限角,則 的取值范圍是 .
3、一個半徑為 的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .
4、已知點(diǎn)p 在第三象限,則 角終邊在第 象限.
5、設(shè)角 的終邊過點(diǎn)p ,則 的值為 .
6、已知角 的終邊上一點(diǎn)p 且 ,求 和 的值.
1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是 .時針轉(zhuǎn)過的角的弧度數(shù)是 .
2、若點(diǎn)p 在第一象限,則在 內(nèi) 的取值范圍是 .
3、若點(diǎn)p從(1,0)出發(fā),沿單位圓 逆時針方向運(yùn)動 弧長到達(dá)q點(diǎn),則q點(diǎn)坐標(biāo)為 .
4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個角的終邊重合,求角 的值.