范文范本可以幫助我們理解和把握各類作文題型的要求,提高解題能力。以下是一些經過精心挑選和整理的總結范文,希望對大家寫作總結有所啟發。
數學知識點詳解(優秀18篇)篇一
每次考試或多或少會發生些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現。因此平時注意把錯題記下來,做錯題筆記包括三個方面:(1)記下錯誤是什么,最好用紅筆劃出。(2)錯誤原因是什么,從審題、題目歸類、重現知識和找出答案四個環節來分析。(3)錯誤糾正方法及注意事項。根據錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應注意些什么。縱觀數學錯誤,主要集中在三個方面,有的是分明會做,反而做錯了的題;有的是記憶得不準確,理解得不夠透徹,應用得不夠自如,或者是回答不嚴密、不完整等等;還有的由于不會答錯了或猜的,或者根本沒有答,這是無思路、不理解,更談不上應用的問題。原因找到后就消除遺憾、弄懂似非、力爭有為。如果能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么在高考時發生錯誤的概率就會大大減少。
數學知識點詳解(優秀18篇)篇二
選擇、填空題有一個共同特點,就是只要結果不看過程,有的同學用不了一分鐘就做出一道題,有的同學五分鐘才能完成,速度上的差異將直接反映在高考分數上,因此要重視和加強選擇、填空題的訓練和研究。不能僅僅滿足于答案正確,還要學會優化解題過程,追求解題質量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇、填空題的經驗,盡可能小題小做,除直接法外,選擇題還要靈活運用特殊值法、排除法、檢驗法、數形結合法、估計法來解題。這種在速度上的追求同樣可以用在解答題上,解題時書寫要簡明、扼要、規范,不要“小題大做”,只要寫出“得分點”即可。
數學知識點詳解(優秀18篇)篇三
教科書和參考書上的例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,可以先把后面的解答內容蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。
一節課與其抓緊時間大汗淋淋地做考查思路重復的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規律,即多題一解;不斷改變題目的條件,從各個側面去檢驗自己的知識,即一題多變。—道題的價值不在于做對、做會,而在于明白了這題想考查什么。
數學能力的提高離不開做題,但做題不是搞題海戰術,要通過一題聯想到很多題。著重研究解題的思維過程,弄清基本數學知識和基本數學思想在解題中的意義和作用,研究運用不同的思維方法解決同一數學問題的多條途徑,在分析解決問題的過程中既構建知識的橫向聯系又養成多角度思考問題的習慣。
數學知識點詳解(優秀18篇)篇四
1、多邊形:由一些線段首尾順次連結組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點:多邊形每相鄰兩邊的公共端點叫做多邊形的頂點。
4、多邊形的對角線:連結多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線。
5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。
6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。
說明:一個多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內角,簡稱多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。
注意:多邊形的外角也就是與它有公共頂點的內角的鄰補角。
9、n邊形的對角線共有條。
說明:利用上述公式,可以由一個多邊形的邊數計算出它的對角線的條數,也可以由一個多邊形的對角線的條數求出它的邊數。
10、多邊形內角和定理:n邊形內角和等于(n-2)180°。
11、多邊形內角和定理的推論:n邊形的外角和等于360°。
說明:多邊形的外角和是一個常數(與邊數無關),利用它解決有關計算題比利用多邊形內角和公式及對角線求法公式簡單。無論用哪個公式解決有關計算,都要與解方程聯系起來,掌握計算方法。
1、四邊形。
在同一平面內,由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。
2、凸四邊形。
把四邊形的任一邊向兩方延長,如果其他個邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形。
3、對角線。
在四邊形中,連接不相鄰兩個頂點的線段叫做四邊形的對角線。
4、四邊形的不穩定性。
三角形的三邊如果確定后,它的形狀、大小就確定了,這是三角形的穩定性。但是四邊形的`四邊確定后,它的形狀不能確定,這就是四邊形所具有的不穩定性,它在生產、生活方面有著廣泛的應用。
5、四邊形的內角和定理及外角和定理。
四邊形的內角和定理:四邊形的內角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內角和定理:n邊形的內角和等于180°;。
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、多邊形的對角線條數的計算公式。
設多邊形的邊數為n,則多邊形的對角線條數為。
數學知識點詳解(優秀18篇)篇五
把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。
真分數:分子比分母小的分數叫做真分數。真分數小于1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
? 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,小數部分從左向右順次讀出每一位數位上的數字。
4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5. 分數的讀法:讀分數時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分號“%”來表示。
一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。
1. 準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫后的數是原數的準確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個近似數來表示。 例如: 1302490015 省略億后面的'尾數是 13 億。
3. 四舍五入法:要省略的尾數的最高位上的數是4或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數舍去,并向它的前一位進1。例如:省略 345900 萬后面的尾數約是 35 萬。省略 4725097420 億后面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
1. 小數化成分數:原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
3.求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質;當合數不是質數的倍數時,這個合數和這個質數互質; 兩個合數的公約數只有1時,這兩個合數互質。
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。
數學知識點詳解(優秀18篇)篇六
俗話說:“好記性不如爛筆頭。”的確,上課時把教師講的概念、公式和解題技巧記下來,把聽過或看過的重要信息清晰地保存下來,有利于減輕復習負擔,提高學習效率。但在實際學習中,不少同學忙于記筆記,沒有處理好聽、看、記和思的關系,顧此失彼,從而影響學習效果。這里,筆者僅就同學們在數學筆記中存在的幾種誤區進行分析,以幫助大家提高記數學筆記的效率。
有的同學習慣于“教師講,自己記,復習背,考試模仿”的學習,一節課下來,他們的筆記往往記了幾頁紙,可以說是教材和教師板書的“映射”,成了教學實錄。這些同學過分依賴筆記,忽視老師的講解,忽視思考,以為老師講的沒有聽懂不要緊,只要課后認真看筆記就可以了。殊不知,這樣做往往會忽視老師的一些精彩分析,使自己對知識的理解膚淺,增加學習負擔,學習效率反而降低,易形成惡性循環。一般來講,在高中數學的學習中,上課要以聽講和思考為主,并簡明扼要地把教師講的思路記下來,課本上敘述詳細的地方可以不記或略記。同時,要記下自己的疑問或閃光的思想。如老師講概念或公式時,主要記知識的發生背景、實例、分析思路、關鍵的推理步驟、重要結論和注意事項等;對復習講評課,重點要記解題策略(如審題方法、思路分析、最優解法等)以及典型錯誤與原因剖析,總結思維過程,揭示解題規律。記筆記時,不要把筆記本記滿,要留有余地,以便課后反思、整理,這樣既可以提高聽課效率,又有利于課后有針對性的復習,從而收到事半功倍的效果。
錄,不認真領悟其中蘊含的重要數學思想和方法,是學不好數學的。經驗告訴我們,少量典型習題及其解法的確要記在筆記本上,但不能就題論題,而是要把重點放在習題價值的挖掘上,即注意寫好解題評注。這就好比安裝在高速公路兩旁的路標,它們會提醒你何時減速,何時急轉彎,何時遇到岔路口等。解題也是如此,易錯之處或重要的解題思想,要用簡短精煉的詞語作為評注,把閃光的智慧用筆頭記下來,這對積累經驗,提升數學素養大有裨益。隔一段時間后,再把它們拿出來推敲一番,往往會溫故知新。總之,筆記應成為自己研究數學的心得,指引學習前進方向的路標。
有些同學的筆記本好比過期期刊,時間一長就棄于一旁,沒有發揮它應有的作用,實在可惜。事實上,許多高考優勝者的經驗之一就是使自己的筆記成為個人的“學習檔案”和最重要的復習資料。因為,好的筆記是課本知識的濃縮、補充和深化,是思維過程的展現與提煉。合理利用筆記可以節省時間,突出重點、提高效率。當然,還要經常對筆記進行階段性整理和補充,建立有個性的學習資料體系。如可以分類建立“錯題集”,整理每次練習和考試中出現的錯誤,并作剖析;還可以將筆記整理為“妙題巧解”、“方法點評”、“易錯題”等類別。只要這樣堅持做下去,不斷擴大成果,就能克服“盲點”,走出“誤區”,到了緊張的綜合復習階段,就會顯得輕松、有序,還可以騰出更多的精力和時間,把所學知識系統化、信息化。
古語云:授人以魚,只供一飯。授人以漁,則終身受用無窮。學知識,更要學方法高中化學。清華網校的學習方法欄目由清華附中名師結合多年教學經驗和附中優秀學生學習心得組成,以幫助學生培養良好的學習習慣為目的,使學生在學習中能夠事半功倍。
數學是一個人的學習生涯中所占比重最大的學科,也是高考科目中最能夠拉開分數層次的學科,因此學好數學,無論是對高考,還是對以后學習工作都起著重要作用。那么高一新生在學習上剛剛踏入新階段,如何去除初中時養成的不適宜高中學習的習慣,又如何掌握正確的學習方法呢?我們應注意以下三點:
(1)注意和初中數學知識的銜接。這是一個十分困難的問題,初中數學與高中數學的差別非常大,從原本的實際思維轉入抽象思維,需要一個大幅度轉變。這就需要重新整理初中數學知識,形成良好的知識基礎,在此基礎上,再根據高中知識特點,較快的吸收新的知識,形成新的知識結構。
(2)認真理解,反復推敲思考高中各知識點的涵義,各種表示方法。容易混淆的知識,仔細辨識、區別,達到熟練掌握,逐步建立與高中數學結構相適應的理論本質與思考方法,切忌急于求成。
(3)通過學習,要努力培養自己觀察,比較抽象,概括能力初步形成運用知識準確地表達數學問題和實際問題的意識和能力;培養科學的'、嚴謹的學習態度,為樹立辯證唯物主義科學的世界觀認識世界打下基礎。
我們應試時,時常發現厭試心理,有時會有些緊張,這是很正常的。但過分緊張也會導致考不好,所以平時應把練習當作考試,但考試時則平視為練習,心態好了,成績自己就上去了。
如何減少解題失誤,這是一個考高分的關鍵。失誤少了,分數就會濺漲。這需要學生的仔細觀察與認真閱讀題目,抓住題目重點、題心,并圍繞重點、題心考慮其他條件與答案。其次,考慮要周全,避免出現遺漏情況,各個方面都要考慮到,這需要平日思考事物的長期積累。
考試考得不好,這是常遇到的問題,心情沮喪是正常心理,但不能持久下去。要將答案聽徹底,記下,并與自己的解題思路相比較,發現不同之處,或不要之處并記于心里,這樣對于下次考試則很有好處。
數學知識點詳解(優秀18篇)篇七
課本目錄就是了解整本書的粗線。復習數學時應先看目錄,了解整體。通過目錄可以看到這一章的知識框架,形成知識體系高中物理,粗略回憶每一小節所講的內容,涉及到哪些概念、公式、定理,以及對它們的理解,通過目錄就可自測出自己對這一章的掌握情況如何,以便于有針對性的復習。
數學知識體系中另一條較為具體的線,就是概念和公式。概念和公式是解答所有數學題的依據,同時也是基礎,抓住這條線,就可以掌握課本中重點內容。整理細線條的方法有兩種:
復習時對照課本,把每一章節中出現的定理或公式,按順條抄在筆記本上,成為復習的提綱。然后,把這些公式反復背熟記牢。復習的時候,反過來先看筆記本上的定理公式,以公式為綱,對照公式回憶它們的應用,及相關的知識點。;回憶不出來時再回過頭去看書。
2、公式推導法。
同樣方法把課本中的公式抄下來,然后從頭到尾自己進行公式推導,在推導的過程中,如果兩道公式之間存在聯系,就用線條把這兩道公式聯結起來,以便一起復習。比如,列出的公式中,公式b應用到公式a作為一個線條,那么就在這兩道公式中劃線聯結,a——b,這樣復習起來,知識之間的邏輯關系就一目了然。
以上是小編為大家整理的“如何抓住高中數學的主要脈絡”全部內容。
數學知識點詳解(優秀18篇)篇八
在日常生活當中,一根拉緊的繩子、一根竹竿、人行橫道線、都給人以直線的形象,而實際上的直線是兩端都沒有端點、可以向兩端無限延伸、不可測量長度的。
直線的特點:沒有端點,可以向兩端無限延長。
直線(straightline)是幾何學基本概念,是點在空間內沿相同或相反方向運動的軌跡。
從平面解析幾何的角度來看,平面上的直線就是由直線平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交于一點。常用直線與x軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于x軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的.交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。空間直線的方向用一個與該直線平行的非零向量來表示,該向量稱為這條直線的一個方向向量。直線在空間中的位置,由它經過的空間一點及它的一個方向向量完全確定。在歐幾里得幾何學中,直線只是一個直觀的幾何對象。在建立歐幾里得幾何學的公理體系時,直線與點、平面等都是不加定義的,它們之間的關系則由所給公理刻畫。
數學知識點詳解(優秀18篇)篇九
2016年考研大綱已發布,關于考研數學中中值定理的證明依然很重要。它的相關證明是考研數學中公認的重點和難點,往年這部分的常考證明題這種大題。然而最近兩年沒考這一部分大題。2014年的高數證明題考的函數不等式的證明,而2015出乎意料地考了一個用導數定義證明求導公式的證明題。雖然這兩年沒有考這部分的大題,但作為以前常考大題的考點,所以我們不能對這部分內容掉以輕心。那關于這部分的內容我們如何去把控?下面就為大家進行詳細的講解。
首先對于中值定理我們應該把這部分的定理內容弄清楚。我們要用這些定理去證明別的結論,先要自己把這些內容弄透、弄熟。具體來說,關于這部分涉及的定理有:費馬引理、羅爾定理、拉格朗日定理、柯西定理、零點存在定理、介值定理、最值定理和積分中值定理。前四個定理屬于微分中值定理的部分,中間三個定理屬于閉區間上連續函數的性質,最后一個為積分相關定理。而這里,除了閉區間上連續函數的性質這幾個定理外,其余定理是要求我們會證明的。
其次,我們在現階段應總結真題中考過的此類題目的處理思路。這部分工作可以自己完成,但可能需要花費一些時間。
中值相關證明大部分情況下應從結論出發。考研中所要求的關于中值定理這塊的證明百分之六十到七十都是要去用羅爾定理來證明的。在做此類證明時,我們要看所要證明的式子是含一個中值還是兩個中值,緊接著要看所要求的中值是屬于開區間還是閉區間的。如果是在含有一個中值的前提下,再看是否含有導數。若是含一個中值,且這個中值時屬于開區間的,并且有含有導數,這時我們往往要考研羅爾定理。在確定用羅爾定理的前提下,緊接著我們就是構造輔助函數并且找兩個點的函數值相等,當然這里我們在找兩個相等點時,不一定要求是找區間的端點,也有可能是區間內部的點。如果含有一個中值,中值所屬于的區間是開區間或者是閉區間,并且不含有導數,那考慮閉區間上連續函數的性質,在第一章閉區間上連續里我們有兩個常用的定理--零點定理和介值定理。如果區間是開區間則選擇零點定理,如果區間是閉區間則選擇介值定理來證明。
說到這里,一個中值的情況我們就分析完了。下面我們主要談談如何考慮兩個中值的情況。如果需要證明的式子中含有兩個中值,這個時候我們要考慮需要用幾次定理來證明。我們知道用一次定理得到的式子只含有一個中值,即使是比較麻煩的柯西中值定理也是這樣。因此,若是要出現兩個中值,那一定是用了兩次中值定理。當然,我們在用兩次定理后,這時一定會得到兩個式子,而最終所得到的式子含兩個中值應該為前面我們所得到的兩個式子合并后的結果。根據歷年真題的詳細解讀,含有兩個中值的情況一般我們會考慮用兩次拉格朗日中值定理或一次拉格朗日中值定理和一次柯西定理。具體怎么用這個兩個定理,以及如何選擇輔助函數,我們一般可以通過所要證明的式子來確定。
如果所要證明的式子有三個中值,這種情況和上面兩個中值的情況是類似的。一般情況下,如果三個中值要求是不同點,則一般分區間,我們可以考慮利用三次拉格朗日中值定理來處理。
因此,對于這一塊的有關中值定理的內容,要從中值出發,找相關的特質點,來確定所用是哪一個中值定理,到底用一次還是用兩次。又或者兩個結合起來用,又或者用三次中值定理來解決。無論怎樣,把基本定理整明白,理清我們上面分析真題的思路和方法。當然有上述這些情況的分析,并不是就可以解決掉所有有關這方面的題目了,畢竟是真題,它其中的變形是多樣的,因此,在我們有了上述大題分析題目的思路情況下,還需要把各個細節給打通。所以當我們確定用羅爾定理了,緊接著要考慮的就是輔助函數的構造,以及要找函數值相等的點。又或者當我們確定用拉格朗日中值定理或柯西中值定理時,也需要我們考慮有關輔助函數的構造。因此,如何選擇中值定理,如何考慮輔助函數的構造是需要我們仔細琢磨,慢慢精通的。
數學知識點詳解(優秀18篇)篇十
1.通過現實的數學活動,培養學生辨認方向的意識,進一步發展空間觀念。
2.結合具體情境,使學生認識東、南、西、北、東北、西北、東南和西南八個方向,能夠用給定的一個方向(東、南、西或北)辨認其余的七個方向,并能用這些詞語描述物體所在的方向。
3.使學生會看簡單的路線圖,并能描述行走的路線。
《測量》單元備課
知識點 我的例子 提醒注意
認識東、南、西、北四個方向,能夠用給定的一個方向辯認其余的三個方向,并能用這些詞語描述物體所在的方向。 站在操場上,前面是東、后右是西,左面是北,右面是南。站在操場上,東面是旗臺,南是書店,西面是大門,北面是體育館。 東和西相對,南和北相對,而且東南西北是按順時針的方向的。
知道地圖上的方向 在地圖上,通常是上北,下南,左西,右東。
注意方向的相對性,和順時針。
學會看簡單的路線圖,并能描述行走的路線。 從課室去洗手間,先向東走20米,再向北走10 米。 注意把方向和路程相結合來說。
西 東
西南 南 東南 注意記住方向的順時針方向和相對性。
學會看簡單的路線圖(八個方向),并能打描述行走的路線。
如:郵局在火車站的東南方向,從火車站出發,向東南方向走,先到站前街,再到郵局。
注意每個地方,可以先通過十字路線確定方向,再觀察。
數學知識點詳解(優秀18篇)篇十一
高考命題的一個原則是“積極改革創新”,所以一定會出現新題型。新題型的命題形式、情景、要求與在復習資料里常見的題目不同。“新”表現在聯系實際或者開放性問題,或者很平常的熟悉問題的新問法,它沒有什么考點,只是一種命題立意的轉化,所以在復習的時候要有一個平靜的心態,讀懂題目要求,利用自己的基礎知識、基本方法,一般來說是能做好的。
數學知識點詳解(優秀18篇)篇十二
(4)含未知數的項的系數不為0.
等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。
等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。
等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。
(1)依據:乘法分配律
(2)把未知數相同且其次數也相同的相合并成一項;常數計算后合并成一項
(3)合并時次數不變,只是系數相加減。
(1)含有未知數的項變號后都移到方程左邊,把不含未知數的項移到右邊。
(2)依據:等式的性質
(3)把方程一邊某項移到另一邊時,一定要變號。
使方程左右兩邊相等的`未知數的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數;
(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)
(4)合并同類項:把方程化成ax=b(a0)的形式;
(5)系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a.
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
(1)讀題分析法: 多用于和,差,倍,分問題
仔細讀題,找出表示相等關系的關鍵字,例如:大,小,多,少,是,共,合,為,完成,增加,減少,配套-----,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法: 多用于行程問題
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
(1)認真審題 (審題)
(2)分析已知和未知量
(3)找一個合適的等量關系
(4)設一個恰當的未知數
(5)列出合理的方程(列式)
(6)解出方程(解題)
(7)檢驗
(8)寫出答案(作答)
一元一次方程牽涉到許多的實際問題,例如工程問題、種植面積問題、比賽比分問題、路程問題,相遇問題、逆流順流問題、相向問題分段收費問題、盈虧、利潤問題。
以上內容由數學網獨家專供,希望這篇七年級數學知識點:一元一次方程詳解能夠幫助到大家。
數學知識點詳解(優秀18篇)篇十三
(1)機構設置。
出納機構,一般設置在會計機構內部,如各企事業單位財會科、財會處內部設置專門處理出納業務的出納組、出納室。第三十六條規定:“各單位應當根據會計業務的需要,設置會計機構,或者在有關機構中設置會計人員并指定會計主管人員;不具備設置條件的,應當委托經批準設立從事會計代理記賬業務的中介機構代理記賬。”會計法對各單位會計、出納機構與人員的設置沒有做出硬性規定,只是要求各單位根據業務需要來設定。各單位可根據單位規模大小和貨幣資金管理的要求,結合出納工作的繁簡程度來設置出納機構。以工業企業為例,大型企業可在財務處下設出納科;中型企業可在財務科下設出納室,小型企業可在財務股下配備專職出納員。有些主管公司,為了資金的有效管理和總體利用效益,把若干分公司的出納業務(或部分出納業務)集中起來辦理,成立專門的內部“結算中心”,這種“結算中心”,實際上也是出納機構。
(2)出納人員配備。
一般講,實行獨立核算的企業單位,在銀行開戶的行政、事業單位,有經常性現金收入和支出業務的企業、行政事業單位都應配備專職或兼職出納人員,擔任本單位的出納工作。出納人員配備的多少,主要決定于本單位出納業務量的大小和繁簡程度,以業務需要為原則,既要滿足出納工作量的需要,又要避免徒具形式、人浮于事的.現象。一般可采用一人一崗、一人多崗、一崗多人等幾種形式:
一人一崗:規模不大的單位,出納工作量不大,可設專職出納員一名。
一人多崗:規模較小的單位,出納工作量較小,可設兼職出納員一名。如無條件單獨設置會計機構的單位,至少要在有關機構中(如單位的辦公室、后勤部門等)配備兼職出納員一名。但兼職出納不得兼管收入、費用、債權、債務賬目的登記工作及稽核工作和會計檔案保管工作。
一崗多人:規模較大的單位,出納工作量較大,可設多名出納員,如分設管理收付的出納員和管賬的出納員,或分設現金出納員和銀行結算出納員等。
數學知識點詳解(優秀18篇)篇十四
4、更換公章的應同時上交原使用公章。
二、辦理程序申請人持有關證明材料到公安分局綜合服務大廳治安業務窗口提出申請,經審查批準、材料齊全的,隨到隨辦,出具同意刻制公章信件,申請人持介紹信到指定的印章刻制企業(永興刻字店,位于公安分局門口西側)刻制。到本市范圍以外刻制公章的,須到市公安局治安支隊辦理換信手續。
三、辦理時限公安分局治安部門在接到申請后24小時內作出同意辦理或不予辦理決定。
四、收費標準公安機關辦理換信手續免收費用。印章刻制費用由申請人與刻制單位協商。
數學知識點詳解(優秀18篇)篇十五
定義戲劇是一種綜合的舞臺藝術,它借助文學、音樂、舞蹈、美術等藝術手段塑造舞臺藝術形象,揭示社會矛盾,反映現實生活。
按藝術形式表現手法分
話劇以對話為主,如《威尼斯商人》。
歌劇以歌唱為主,如《白毛女》。
舞劇以舞蹈為主。
按劇情繁簡及結構分
多幕劇生活面寬廣,情節較復雜。
人物較多,布景變換頻繁。
獨幕劇人物較少,情節較簡單。布景變換少或不變。
按題材反映的`時代分
歷史劇如《打漁殺家》。
現代劇如《白毛女》。
喜劇
悲劇
正劇(悲喜劇)如《白毛女》
劇本特點必須適合舞臺演出,受時間限制,篇幅不宜過長,人物不宜太多,場景不能過多變換。
必須有情節(即集中尖銳的矛盾沖突),又開端、發展、高潮、結局。有時前有序幕,后有尾聲。
語言必須符合人物身份和性格,通俗自然,簡練明確,響亮動聽。
動作必須符合人物身份和性格。
有舞臺說明:位置-每一幕(場)的開端、結尾、對話中間。
內容-人物表;時間、地點、服裝、道具、人物的表情、動作、上下場等。
作用-幫助刻畫人物性格、展開故事情節。
數學知識點詳解(優秀18篇)篇十六
科目四理論考試知識點有哪些?由于這個是駕考的最后一個科目,且題目眾多,經常會出現記不住的情況。下面是本站小編整理的一些關于科目四理論考試知識點詳解的相關資料,供你參考。
遇到這種情況時,不要驚慌,先松開油門,然后換低檔,接著用手剎,并打開警示燈,將車駛離主車道停靠路邊。如果車速無法控制,可沖撞路邊的護欄減速器,但切記避免側面碰撞。
對于爆胎應分兩種情況來看,其一是前輪爆裂,此時應輕踩制動踏板,緊握方向盤,避免車頭承受太大力量。其二是后胎爆裂,遇到這種情況時應當反復踩踏制動踏板,緊握方向盤,使汽車保持直線行駛,重心前移,減輕后輪胎所承受的力量。
因此在車子爆胎時,一定要了解清楚是什么出了問題,以免緊急處理不當而造成更大的傷害。
首先應立即開啟危險報警閃光燈,再將機動車移至不妨礙交通的地方停放。
應持續開啟危險報警閃光燈。夜間還應同時開啟示廓燈和后位燈,并在故障車來車方向150米以外設置警告標志,車上人員應迅速轉移到應急車道內,并迅速報警。
伏低身體,繃緊肌肉,重點保護頭和心臟部位。抓住車內固定物,隨車翻轉。
可在車身沉沒前,搖下或砸碎車窗玻璃掏出。如果已經沉沒,要等車內水位不斷上升時,打開車門或讓車窗游出。
數學知識點詳解(優秀18篇)篇十七
敕勒川,陰山下。天似穹廬,籠蓋四野。
天蒼蒼,野茫茫。風吹草低見牛羊。
2、譯文。
遼闊的敕勒大平原,就在陰山腳下。敕勒川的天空啊,看起來好像牧民們居住的氈帳一般。它的四面與大地相連,蔚藍的天空一望無際,碧綠的原野茫茫不盡。那風吹到草低處,有一群群的牛羊時隱時現。
3、賞析。
這首民歌,勾勒出了北國草原壯麗富饒的風光,抒寫敕勒人熱愛家鄉熱愛生活的豪情,境界開闊,音調雄壯,語言明白如話,藝術概括力極強。
這首歌也具有鮮明的游牧民族的色彩,具有濃郁的草原氣息。從語言到意境可謂渾然天成,它質直樸素、意韻真淳。語言無晦澀難懂之句,淺近明快、酣暢淋漓地抒寫了游牧民族驍勇善戰、彪悍豪邁的情懷。
數學知識點詳解(優秀18篇)篇十八
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5點和圓的位置關系
點在圓外
點在圓上d=r
點在圓內d
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關系
相交d
相切d=r
相離dr
切線的性質定理:圓的切線垂直于過切點的半徑;
切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
7圓和圓的位置關系
外離dr+r
外切d=r+r
相交r-r
內切d=r-r
內含d
8正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9弧長和扇形面積
弧長
扇形面積:
10圓錐的側面積和全面積
側面積:
全面積
11 (附加)相交弦定理、切割線定理
第五章概率初步
1概率意義:在大量重復試驗中,事件a發生的頻率穩定在某個常數p附近,則常數p叫做事件a的概率。
2用列舉法求概率
3用頻率去估計概率