教學工作計劃是指教師在一段時間內對學習內容、教學目標、教學方法等進行規劃和安排的文件。歡迎大家分享自己的教學工作計劃,一起共同進步和提高。
圓錐的體積教案范文(13篇)篇一
教學要求:
l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養學生初步的空間觀念和發展學生的思維能力。
演示得出圓錐體積等于等底等高圓柱體積的的教具。
教學重點:掌握圓錐的特征。
教學難點:理解和掌握圓錐體積的計算公式。
教學過程:
一、復習引新。
2.我們已經學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產中,我們還常常看到下面一些物體(出示教材第13頁插圖)。
這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節課,就學習圓錐和圓錐的體積。(板書課題)。
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據教材第13頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側面是一個曲面。
4.學生練習。
5.教學圓錐高的測量方法。(見課本第13頁有關內容)。
6.讓學生根據上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第14頁上面的圖)。
(3)實驗操作,發現規律。
你發現圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積。
=底面積高。
用字母表示:v=sh。
8.教學例l。
(1)出示例1。
(2)審題后可讓學生根據圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
1.做練一練第2題。
指名一人板演,其余學生做在練習本上。集體訂正,強調要乘以。
2.做練習三第2題。
學生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。
3.做練習三第3題。
讓學生做在課本上。小黑板出示、指名口答,老師板書。第(3)、(4)題讓學生說說是怎樣想的。
這節課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
練習三第4、5題。
圓錐的體積教案范文(13篇)篇二
重點難點。
教學過程。
一、板書課題。
師:同學們,今天我們來學習“圓錐的體積”(板書課題)。
二、出示目標。
理解并掌握圓錐的體積計算公式,并能運用公式解決實際問題。
三、自學指導。
認真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的體積計算方法,并將例3補充完整。想:
2、圓錐的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能正確地回答思考題并能做對檢測題!
檢測題。
完成課本第34頁“做一做”第1、2題。
小組合作,校正答案。
后教。
口答。
小組內互相說。
當堂訓練。
1、必做題:
課本第35頁第5、6、7題。(做在作業本上)。
2、選做題:
有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數保留兩位小數)。
圓錐的體積教案范文(13篇)篇三
1、通過動手操作實驗,推導出圓錐體體積的計算公式。
2、理解并掌握體積公式,能運用公式求圓錐的體積,并會解決簡單的實際問題。
3、通過學生動腦、動手,培養學生的觀察、分析的綜合能力。
等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學課件。
一、復習舊知,做好鋪墊。
1、認識圓柱(課件演示),并說出怎樣計算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)。
(1)底面積是5平方厘米,高6厘米,體積=?
(2)底面半徑是2分米,高10分米,體積=?
(3)底面直徑是6分米,高10分米,體積=?
3、認識圓錐(課件演示),并說出有什么特征?
二、溝通知識、探索新知。
教師導入:同學們,我們已經認識了圓錐,掌握了它的特征,但是,對于圓錐的學習我們不能只停留在認識上,有關圓錐的知識還有很多有待于我們去學習、去探究。這節課我們就來研究“圓錐的體積”。(板書課題)。
學生回答,教師板書:
圓柱------(轉化)------長方體。
圓柱體積計算公式--------(推導)長方體體積計算公式。
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學生操作比較后,再用課件演示。
(1)提問學生:你發現到什么?(圓柱和圓錐的底和高有什么關系?)。
(學生得出:底面積相等,高也相等。)。
教師:底面積相等,高也相等,用數學語言說就叫“等底等高”。
(板書:等底等高)。
教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數關系?(指名發言)。
用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學自己商量,但最后要向同學們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數關系。
(3)學生分組做實驗,并借助課件演示。
(教師深入小組中了解活動情況,對個別小組予以適當的幫助。)。
a、誰來匯報一下,你們組是怎樣做實驗的?
b、你們做實驗的'圓柱體和圓錐體在體積大小上發現有什么倍數關系?
(學生發言:圓柱體的體積是圓錐體體積的3倍)。
教師:同學們得出這個結論非常重要,其他組也是這樣的嗎?
學生回答后,教師用教學課件演示實驗的全過程,并啟發學生在小組內有條理地表述圓錐體體積計算公式的推導過程。
教師:我們學過用字母表示數,誰來把這個公式用字母表示一下?(指名發言,板書)。
學生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒滿嗎?(不需要)。
為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒滿呢?(因為是等底等高的圓柱體和圓錐體。)。
(教師給體積公式與“等底等高”四個字上連線。)。
進一步完善體積計算公式:
圓錐的體積=等底等高的圓柱體體積×1/3。
=底面積×高×1/3。
v=1/3sh。
教師:現在我們得到的這個結論就更完整了。(指名反復敘述公式。)。
課件出示:
想一想,討論一下:
(1)通過剛才的實驗,你發現了什么?
(2)要求圓錐的體積必須知道什么?
學生后討論回答。
三、應用求體積、解決問題。
1、口答。
(1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
(2)有一個圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?
2、出示例題,學生讀題,理解題意,自己解決問題。
a、學生完成后,進行小組交流。
b、你是怎樣想的和怎樣解決問題的。(提問學生多人)。
c、教師板書:。
1/3×19×12=76(立方厘米)。
答:它的體積是76立方厘米。
3、練習題。
一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學生在黑板上只列式,反饋。)。
我們已經學會了求圓錐體的體積,現在我們來解決有關圓錐體體積的問題。
4、出示例2:要求學生自己讀題,理解題意。
在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數保留整千克)。
(1)提問:從題目中你知道了什么?
(2)學生獨立完成后教師提問,并回答學生的質疑:
5、比較:例1和例2有什么不同的地方?
(2)例1是直接求體積,例2是求出體積后再求重量。
圓錐的體積教案范文(13篇)篇四
l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養學生初步的空間觀念和發展學生的思維能力。
演示得出圓錐體積等于等底等高圓柱體積的的教具。
理解和掌握圓錐體積的計算公式。
一、復習引新。
1.說出圓柱的體積計算公式。
2.我們已經學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產中,我們還常常看到下面一些物體(出示教材第13頁插圖)。
這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節課,就學習圓錐和圓錐的體積。(板書課題)。
二、教學新課。
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據教材第13頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側面是一個曲面。
4.學生練習。
5.教學圓錐高的測量方法。(見課本第13頁有關內容)。
6.讓學生根據上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第14頁上面的圖)。
(3)實驗操作,發現規律。
你發現圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發引導推導出計算公式并用字母表示。
=底面積高。
用字母表示:v=sh。
8.教學例l。
(1)出示例1。
(2)審題后可讓學生根據圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、鞏固練習。
1.做練一練第2題。
指名一人板演,其余學生做在練習本上。集體訂正,強調要乘以。
2.做練習三第2題。
學生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。
3.做練習三第3題。
讓學生做在課本上。小黑板出示、指名口答,老師板書。第(3)、(4)題讓學生說說是怎樣想的。
四、課堂小結。
這節課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
五、課堂作業。
練習三第4、5題。
圓錐的體積教案范文(13篇)篇五
1.說出圓柱的體積計算公式。
2.我們已經學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產中,我們還常常看到下面一些物體(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節課,就學習圓錐和圓錐的體積。(板書課題)。
圓錐的體積教案范文(13篇)篇六
答案:
答案:
底面半徑:6.28÷(2×3.14)。
=6.28÷6.28。
=1(米);
這堆大豆的重量:
13×3.14×12×0.6×580。
=3.14×0.2×580。
=0.628×580。
=364.24。
≈364(千克);
答:這堆大豆約重364千克。
答案:
(1)這個沙堆占地面積:
3.14×(8÷2)2,
=314×42,
=3.14×16,
=50.24(平方米);
(2)沙堆的體積:
三之一×50.24×3=50.24(立方米),
50.24×15=7536(千克);沙堆的重量:
答:這個沙堆占地50.24平方米,這堆沙子重7536千克.。
圓錐的體積教案范文(13篇)篇七
1、情感目標培養學生探索合作精神。
2、知識目標理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式,以及運用公式計算圓錐體積。
3、能力目標培養學生的空間想象力,合作交往能力、創新思維以及動手操作能力。
理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式。
公式推導過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關系。
活動目的:激發求知欲望。
課件播放:春天到了,萬物復蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應該是第一大!
師:竹林里的爭論還在繼續著,同學們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!
師:我們光是猜,說服力并不強,那么能找到什么真正能解決問題的辦法嗎?
活動目的:通過師生、生生的'互動討論、交流、探究,從而發現圓錐的體積和圓柱的體積有關。
1、出示課題。
2、找圓錐體和學過的什么體有相似之處。
3、猜一猜,圓柱的體積和圓錐的體積的關系。
圓錐的體積教案范文(13篇)篇八
教學內容:
教材第11~17頁圓錐的認識和體積計算、例1。
教學要求:
1、使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2、使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3、培養學生初步的空間觀念和發展學生的思維能力。
教具準備:
長方體、正方體、圓柱體等,根據教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
教學重點:
教學難點:
理解和掌握圓錐體積的計算公式。
教學過程:
一、鋪墊孕伏:
2、我們已經學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產中,我們還常常看到下面一些物體(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節課,就學習圓錐和圓錐的體積。(板書課題)。
二、自主探究:
1、認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2、根據教材第16頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3、利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側面是一個曲面。
4、學生練習。
口答練習三第1題。
5、教學圓錐高的測量方法。(見課本第17頁有關內容)。
6、讓學生根據上述方法測量自制圓錐的高。
7、實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)。
(3)實驗操作,發現規律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數看,你發現圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發引導推導出計算公式并用字母表示。
用字母表示:v=13sh。
8、教學例。
(1)出示例1。
(2)審題后可讓學生根據圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積教案范文(13篇)篇九
本節課是北師大版義務教育標準實驗教科書六年級數學下冊第11頁—13頁的內容,這節課是在學生對長方體,正方體,圓柱體,和圓錐體的特征都有了初步的認識和了解,并在學習了圓柱的體積的基礎上進行學習的,這就為本節課的學習奠定了扎實的基礎,同時,也為初中階段進一步學習幾何圖形知識做了一個良好的鋪墊。為了做到有的放矢,我特制定以下學習目標:
1、使學生理解圓錐體積的推導過程,初步掌握圓錐體積的計算公式,并能正確計算圓錐的體積。
2、通過動手推導圓錐體積計算公式的過程,培養學生初步的空間觀念和動手操作能力。學習重點是:掌握圓錐體積的計算公式。學習難點是:正確探索出圓錐體積和圓柱體積之間的關系。
本節課我采用的教法是啟發式教學法,實驗活動法,歸納總結法。教學中,既要充分發揮學生的主體作用,又要調動學生積極主動地參與教學。
動手操作法,觀察發現法,自主探究法,合作交流法。
1、復習導入,引出課題:通過復習圓錐的特征、圓柱的體積計算方法引入新課,為學生學習新知做好鋪墊。
2、揭示課題,展示目標。
3、以舊引新,探究新知。
通過回憶圓柱體積計算公式的推導過程,提出問題:圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?激起學生探究的欲望。此時我會拿出已經準備好了的等底等高的圓柱形和圓錐形容器,然后提問以下幾個問題:這兩個容器有什么共同的特征?誰的體積更大?圓柱的體積和圓錐體積之間有沒有一定的數量關系?問學生:“你用什么辦法驗證自己的猜想呢?”這時候,肯定要有一部分聰明的或者已經預習課本的同學會說:“將圓錐形容器裝滿沙或水,在倒入圓柱形容器,看幾次能倒滿。”這時候就讓同學們以小組為單位,驗證他們的猜想。
教師只需要做最總結:圓錐的體積等于和它等底等高的圓柱體積的三分之一。如果用v表示圓錐的體積,s表示底面積,h表示高,那么就能得出圓錐體積的計算公式為:v=1/3sh(板書,特別的用紅顏色粉筆寫出等底等高和公式)。
4、運用公式,解決問題。
通過“算一算”和“試一試”讓學生掌握公式的運用。
5、鞏固練習,拓展深化,依次練習“練一練”中第1題,第4題和第5題。當然在練習的過程中,要隨時關注學生所出現的問題,以便得到及時的解決。
6、質疑問難,總結升華。
在此環節中,我會問學生“通過這節課的學習,你們有哪些收獲,是怎樣推導出圓錐的體積的公式的。
圓錐的體積教案范文(13篇)篇十
人教版九年義務教育小學數學教科書第十二冊。
這部分知識是學生在有了圓錐的認識和圓柱體積相關知識的基礎上進行教學的。在知識與技能上,通過對圓錐體的研究,經歷并理解圓錐體積公式的推導過程,會計算圓錐的體積;在方法的選擇上,抓住新舊知識間的聯系,通過猜想、課件演示、實踐操作,從經歷和體驗中驗證,讓學生在自主探索與合作交流過程中真正理解和掌握基本的數學知識與技能,數學思想和方法,使學生真正成為學習的主人。
1、使學生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關簡單的實際問題。
2、讓學生經歷猜想——驗證,合作——探究的教學過程,理解圓錐體積公式的推導過程,體驗轉化的思想。
3、培養學生動手操作、觀察、分析、推理能力,發展空間觀念,滲透事物是普遍聯系的唯物辯證思想。
[點評:知識與技能目標的設計全面、具體、有針對性。不但使學生掌握圓錐體積的計算公式,而且培養了學生運用圓錐體積公式解決生活中的實際問題的能力,使學生體會到數學與生活的密切聯系注。并注重對學生“猜想——————驗證”、“合作——————探究”等學習方式的培養及“轉化”數學思想方法的滲透;同時關注學生空間觀念的培養及唯物辯證思想的滲透。
掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。
理解圓錐體積公式的推導過程及解決生活中的實際問題。
一、 創設情境導入新課。
2、引導學生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學可以同桌交流,共同研究。(組織學生先獨立思考,然后同桌討論交流,最后匯報自己的想法。)
3、教師出示一個圓錐體的木塊引導學生明確前面所想的方法太麻繁、不實用。并鼓勵學生研究出一種簡便快捷的方法來求圓錐的體積。
二、經歷體驗,探究新知
(一)滲透轉化,幫助猜想
1、先組織學生自由暢談圓錐的體積可能會與誰有關(圓柱)。先給學生獨立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導學生回憶圓柱體積公式的推導過程。
2、組織學生拿出準備好的圓柱體鉛筆和轉筆刀來削鉛筆,同時教師也隨著學生一起來做。教師做好后要及時巡視,直到學生將鉛筆削得尖尖的為止。然后引導學生認真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關系。(削好后的圓柱與圓錐等底不等高,體積無關。)此時,教師要參與到小組討論中,及時引導學生發現削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關。組織學生自己的話來總結。最后,將自己的發現進行匯報。
(二)小組合作,實驗驗證。
1、教師發給每組學生一個準備好的等底等高的圓柱和圓錐、沙了,組織學生拿出等底等高的圓柱和圓錐進行實驗。實驗前小組成員進行組內分工,有的進行操作,有的記錄……實驗中教師要及時巡視指導并參與到小組實驗中去及時了解學生實驗的進展情況。并指導幫助學生順利完成實驗。
2、實驗后組內成員進行交流。交流的過程中,要引導學生注重傾聽別人的想法,并說出自己不同的見解。
3、首先各小組派代表進行匯報,其它小組可以補充。然后全班進行交流實驗結果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導出圓錐的體積公式。預設板書如下:
概括板書:
等底到高
v圓柱=sh v圓錐= 1/3sh
4、深化公式。組織學生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預設板書如下:
v =1/3πr2h v =1/3(c/2π)2h v =1/3(d/2)2h
5、教師組織學生獨立完成書中例題后集體訂正。
(三)看書質疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。
三、鞏固新知,拓展應用。
1、判斷并說明理由
(1)圓柱體積是圓錐體積的3倍( )
(2)一個圓錐的高不變,底面積越大,體積越大。( )
(3)一個圓錐體的高是3分米,底面積10平方分米,它的體積是30立方分米。( )
組織學生打手勢判斷后說明理由,并強調圓錐的體積是圓柱體積的1/3是以等底等高為前提的。
2、求下列圓錐的體積(口答,只列式,不計算)
s=4平方米,h=2平方米
r=2分米,h=3分米
d=6厘米,h=5厘米
組織學生根據圓錐體積公式解答。
3、實踐與應用:
學校操場有一堆圓錐沙子,求它的體積需要什么條件,你有什么好辦法?
組織學生進行討論,求圓錐體的沙堆的體積需要什么條件后并談如何來測量這些所需條件,有條件的可領學生實地操作一下。再求體積。
四、課后總結,感情升華。
這節課你有什么收獲?你是怎樣獲得的?
[總評:
1、鉆研教材,創造性地使用教材。
教師在充分了解學生、把握課程標準、教學目標、教材編寫意圖的基礎上,根據學生生活實際和學習實際,有目的地對教材內容進行改編和加工。如學生削鉛筆這一活動的設計,學生從“削”的過程中體驗到圓柱與圓錐的聯系;再如動手實驗這一環節的設計,使學生在觀察、比較、動手操作,合作交流中理解掌握新知。創造性地融入一些生活素材,加強了數學與生活的密切聯系。
2、注重數學思想方法的滲透。
數學思想方法是數學知識的精髓,又是知識轉化為能力的橋梁。新課伊始,便讓學生自己想辦法求圓錐的體積,此時學生便想辦法將圓錐體的容器裝滿水后倒入圓柱或長(正)方體的容器中,從而求出圓錐的體積。這一過程潛移默化地滲透“轉化”的數學思想方法。再如:讓學生將圓柱體的鉛筆削成圓錐體的這一活動,也同樣滲透了轉化的思想方法。
3、猜想—————驗證、合作交流等學習方式體現了學生的主體地位。
圓錐的體積教案范文(13篇)篇十一
教學目標:
1、通過動手操作參與實驗,發現等底等高的圓柱體和圓錐體之間的關系,從而得出圓錐體的體積公式。
2、能運用公式解答有關的實際問題。
3、滲透轉化、實驗、猜測、驗證等數學思想方法,培養動手能力和探索意識。
教學重點:通過實驗的方法,得到計算圓錐體積的公式。
教學難點:運用圓錐體積公式正確地計算體積。
教學過程:
一、創設情境,引發猜想。
在一個悶熱的中午,小白兔買了一個圓柱形的雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學交流一下,再向全班同學匯報。
小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了“圓錐的體積”后,就會弄明白這個問題。
二、自主探索,操作實驗。
1、出示學習提綱。
(2)你們小組是怎樣進行實驗的?
(3)你能根據實驗結果說出圓錐體的體積公式嗎?
(4)要求圓錐體積需要知道哪兩個條件?
2、小組合作學習。
3、回報交流。
公式:v=1/3sh。
4、問題解決。
小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?
5、運用公式解決問題。
教學例題1和例題2。
三、鞏固練習 。
(1)底面面積是7.8平方米,高是1.8米.
(2)底面半徑是4厘米,高是21厘米.
(3)底面直徑是6分米,高是6分米.
4、判斷對錯,并說明理由.
(1)圓柱的體積相當于圓錐體積的3倍.( )。
(2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2 :1.( )。
(3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.( )。
四、拓展延伸。
一個圓錐的底面周長是314厘米,高是9厘米,它的體積是多少立方厘米?
五、談談收獲。
六、作業。
圓錐的體積教案范文(13篇)篇十二
教材第11~17頁圓錐的認識和體積計算、例1。
l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養學生初步的空間觀念和發展學生的思維能力。
長方體、正方體、圓柱體等,根據教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
理解和掌握圓錐體積的計算公式。
一、鋪墊孕伏:
2.我們已經學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產中,我們還常常看到下面一些物體(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節課,就學習圓錐和圓錐的體積。(板書課題)。
二、自主探究:
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據教材第16頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側面是一個曲面。
4.學生練習。
口答練習三第1題。
5.教學圓錐高的測量方法。(見課本第17頁有關內容)。
6.讓學生根據上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)。
(3)實驗操作,發現規律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數看,你發現圓錐體積與等底等高的'圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發引導推導出計算公式并用字母表示。
用字母表示:v=13sh。
8.教學例l。
(1)出示例1。
(2)審題后可讓學生根據圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積教案范文(13篇)篇十三
1、推導出圓錐體積的計算公式。
2、會運用圓錐的體積公式計算圓錐的體積。
圓錐體積公式的推導過程。
一、板書課題
師:同學們,今天我們來學習“圓錐的體積”(板書課題)。
二、出示目標
理解并掌握圓錐的體積計算公式,并能運用公式解決實際問題。
三、自學指導
認真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的'體積計算方法,并將例3補充完整。想:
1、圓錐的體積與圓柱的體積有什么關系?
2、圓錐的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能正確地回答思考題并能做對檢測題!
檢測題
完成課本第34頁“做一做”第1、2題。
小組合作,校正答案
后教
口答
小組內互相說。
當堂訓練
1、必做題:
課本第35頁第5、6、7題。(做在作業本上)
2、選做題:
有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數保留兩位小數)