教案模板是教師的得力助手,幫助教師更好地組織教學,實現教學目標。接下來是一些精選的教案模板范文,希望能夠為大家的備課提供一些參考。
數學分數基本性質說課稿(精選17篇)篇一
分數的基本性質是約分和通分的基礎。而約分、通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。本節課與傳統的概念教學相比,有很大的改進,體現了新的教學理念,主要表現在以下幾個方面:
傳統的教學往往只重視對結論的記憶和模仿,而這節課老師把學生的學習定位在自主建構知識的基礎上,建立了“猜想——驗證——反思——運用”的教學模式。在課堂上,老師給學生提供了一組組材料,讓學生去觀察、感悟,并且進行大膽猜想,進而又進行了驗證。當學生驗證出分數的分子、分母都乘或除以同一個數,分數的大小不變之后,教師并沒有立即讓學生去歸納,而是讓學生用自己感知的這一規律去寫一組相等的分數,這樣可加深對分數的基本性質的理解,為后面歸納分數的基本性質奠定了基礎。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發現的,結論是如何獲得的,體現了“方法比知識更重要”這一新的教學價值觀,構建了新的教學模式。
牛頓曾說:“沒有大膽的猜想,就做不出偉大的發現。”因此,我們在日常教學中,應鼓勵學生進行大膽猜想,從而發展數學思維。本節課,當老師引導學生觀察幾組分數的分子、分母變化情況后,先后鼓勵學生猜測:分子、分母都乘同一個數,分數的大小不變;分子、分母都除以同一個數,分數的大小不變,以引起學生探究的興趣。
《數學課程標準》指出:“學生是學習數學的主人,教師是數學學習的組織者、引導者與合作者。”這就要求我們在教學活動中應該為學生提供大量數學活動的機會,讓學生去探索、交流、發現,從而真正落實學生的主體地位。在本節課中,教師先引導學生觀察幾組分數的分子、分母發生了怎樣的變化?分數的大小有沒有變化?然后在猜測與動手操作驗證中,逐步感知分數的分子、分母都乘或除以同一個數,分數的大小不變。最后在概括與運用中對分數的基本性質形成了清晰的認識。每一個活動都調動學生學習的積極性,使學生主動參與到活動中,從而體現了學生的主體地位。
數學分數基本性質說課稿(精選17篇)篇二
下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。
本節資料屬于概念教學。《分數基本性質》在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎,還是約分、通分的依據。
學生已經清楚理解分數的好處,明確分數與除法的關系,商不變性質等知識,這些都為本節課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子、分母變了,分數的大小卻沒變。學生在這種“變”與“不變”中發現規律,掌握新知識。
綜合分析課程標準要求及學生實際,我確定本節教學目標如下:
1、理解和掌握分數的基本性質,并會運用分數的基本性質把不同的分數化成分母(或分子)相同而大小不變的分數。
2、初步養成觀察、比較、抽象概括的邏輯思維潛力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3、受到數學思想的熏陶,養成樂于探究的學習態度。
教學重點:理解掌握分數的基本性質,它是約分、通分的依據。
教學難點:讓學生自主探索、發現和歸納分數的基本性質,以及應用它解決相關的問題。
根據本節課的教學目標,思考到學生已有的知識、生活經驗和認知特點,結合教材資料,本課我主要采用猜想驗證與探索發現的教學模式。在分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。透過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用,激發學生學習興趣,同時讓學生獲得成功體驗。
本節課的教學過程我分五個部分進行。
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創設問題情境,揭示本節課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數基本性質。
第三部分:合作探究,發現規律。主要的是學生找出規律,并利用規律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發現規律”能夠細化為三個環節:
環節一:動手操作,進行比較。
這一環節是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數表示涂色部分,并比較大小。此環節的設計主要是培養學生的比較潛力。
環節二:呈現問題,引導觀察。
這一環節主要呈現給學生這樣一個問題,“第一環節中的分數的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環節的設計主要是培養學生的觀察潛力。
環節三:交流匯報,得出規律。
這一環節主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數的基本性質——分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。此環節的設計主要是培養學生的抽象概括潛力。就應強調的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
數學分數基本性質說課稿(精選17篇)篇三
楊學進趙老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。下面就這節課談談自己的體會。
1.教材簡析。
《分數的基本性質》是小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。
2、教材處理。
(1)堅持以教材為本的原則,把教材中的陳述性教學為猜想與驗證性發現。
(2)把總結式教學轉變為學生自我發現、自我總結的探究性學習。
(3)以教師的主導地位轉化為學生為主體的學生嘗試性學習。
3、教學過程。
在新授過程中,趙老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態的數學知識變為一種讓學生在一種大問題背景下折紙活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。整個課堂創設了一種“猜想——驗證——總結反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發展,為學生的長遠發展奠定了良好的基礎。趙老師設計的練習題的也是由淺入深,形式多樣。并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現了自主學習。這節課充分調動了學生的學習積極性,使學生學的輕松、愉快,同時感悟了知識的形成過程。
2012-2-16。
數學分數基本性質說課稿(精選17篇)篇四
各位老師:
下午好!
《分數基本性質》是北師大版小學數學第九冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續學習分數與小數互化、分數乘除法四則混合運算打好基礎。
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發現規律,掌握新知識。
1.知識目標:經歷探索分數基本性質的過程,理解并掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
2.能力目標:培養學生觀察、比較、抽象、概括等初步的邏輯思維能力,并且能夠正確認識和理解變與不變的辨證關系。
3.情感目標:經歷觀察、操作和討論等數學學習活動使學生進一步體驗數學學習的樂趣。通過學生的成功體驗,培養學生熱愛數學的情感。
能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數理解分數基本性質的含義,掌握分數基本性質的推導過程。
根據本節課的教學內容和教學目標采用講授法,小組合作學習。
準備大小相等的圓形紙片,水彩筆等。
一、故事設疑,揭示課題。
我將以唐僧師徒分餅的故事創設問題情景。八戒吃第一塊餅的1/4,沙和尚吃第二塊餅的2/8,悟空吃第三塊餅的4/16,他們誰吃的多呢?以此引入新課,激發學生思考的興趣,積極參與到課堂教學中來。并在這個環節設計學生動手折、畫、標等活動,折出1/4,2/8,4/16,用彩筆在折的圓上涂出1/4,2/8,4/16,再用鉛筆標出分數。在動手做的過程中初步理解分數基本性質。
二、合作探索,尋找規律。
請同學們觀察1/4,2/8,4/16;3/4,6/8,12/16這兩組分數,分子分母有什么變化,分數又有什么變化?組織討論交流匯報。如果沒有概括出“把0除外”就設計一組練習:分子分母同乘0,完善結論;如果概括出來了,就順勢進行驗證。推導出分數基本性質-----分數的分子分母都乘或除以相同的數(0除外),分數的大小不變。
三、鞏固練習。
練習題的設計有簡單到復雜,例:分數的分子乘5,要使分數的大小不變,分母();2/3=??()/186/21=2/()等這樣的題,進行練習。
四、梳理知識,溝通聯系。
小結分數基本性質,請同學們回憶“商不變性質”。------在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
然后比較這兩個性質的聯系。這樣設計主要是為了共建知識之間的聯系,有助于學生靈活遷移應用,觸類旁通。
五、多層練習,鞏固深化。
1.(1)把5/6和1/4化為分母為12而大小不變的分數。
(2)把2/3和3/4化為分子為6而大小不變的分數。
2.考考你:1/4的分子加上3,要使分數的大小不變,分母應加上()。
六、全課小結。
作為一位優秀的人民教師,時常需要用到說課稿,借助說課稿我們可以快速提升自己的教學能力。我們該怎么去寫說課稿呢?以下是小編為大家收集的五......
作為一位不辭辛勞的人民教師,時常需要用到說課稿,說課稿有助于順利而有效地開展教學活動。如何把說課稿做到重點突出呢?下面是小編收集整理的......
9篇作為一名優秀的教育工作者,時常需要編寫說課稿,寫說課稿能有效幫助我們總結和提升講課技巧。那么寫說課稿需要注意哪些問題呢?下面是小編......
數學分數基本性質說課稿(精選17篇)篇五
《分數的基本性質》在分數教學中占有重要的地位,在小學數學學習中起著承前啟后的作用。它既以分數的意義、分數的大小比較為基礎,又與整數除法及商不變的性質有著內在的聯系,更分數的約分、通分的依據,也進一步學習分數加減法計算、比的基本性質的基礎。因此,分數的基本性質該單元的教學重點之一。
學生在三年級上學期已經初步認識了分數,以及同分母分數的大小。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。五年級學生已經養成了合作學習的習慣,并且已經具有了一定的分析和解決問題的能力,再加上他們所具有的一定的生活經驗,因此能夠在教師的引導下完成“質疑——探索——釋疑——應用”這一完整的學習過程。
依據新的《數學課程標準》,為了更好地體現數學學習對學生在數學思考、解決問題以及情感與態度等方面的要求。根據本節課的具體內容并結合學生的實際情況,我制定了以下教學目標:
知識與技能:讓學生親身經歷“分數基本性質”抽象概括的過程,理解和掌握分數的基本性質,并能初步運用分數的基本性質解決簡單的數學問題。
過程與方法:讓學生經歷發現問題、探究問題、解決問題的全過程,在觀察、猜想、驗證等探索活動中,培養學生觀察--探索--抽象--概括的能力以及合情推理能力,體驗解決問題策略的多樣性。
情感與態度:使學生在分數基本性質的探究活動中,獲得成功的體驗,建立自信心,感受到數學的嚴謹性,及滲透事物相互聯系、發展變化的辯證唯物主義觀點。
教學重點:理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點:讓學生經歷自主探索,發現和歸納分數的基本性質,并會應用分數的基本性質解決相關問題。
教學準備:三張同樣大小的長方形紙張,彩色筆。
樹立以“以學生發展為本”、“以學定教”的思想,為實現教學目標,有效地突出重點、突破難點,我遵循學生的認知規律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。創設了一種“情境導入、動手體驗、自主探索”的課堂教學形式,以“自主探究”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,自主探究法,合作交流的學習方式,讓學生通過獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
為了全面、準確地引導學生探索發現分數的基本性質,實現教學目標,我努力抓住學生的思維生長點組織教學,設計了以下五步教學環節:
1、創境設疑:回顧舊知,引發思考。
2、自主探究:動手實踐,發現規律。
3、交流歸納:揭示規律,鞏固深化。
4、分層精練:多層練習,多元評價。
5、感悟延伸:課堂小結,加深理解。
第一環節:創境設疑。
結合六一兒童節的到來,創設分蛋糕的情景,媽媽分得公平嗎?課始便迅速地抓住了學生的好奇心,使課堂教學有了一個好的開始。鼓勵學生當小法官,則極大地調動了學生的積極性,使他們在心理上產生懸念,進一步激發學生的學習興趣,為后面的學習做好了鋪墊。這樣設計也從學生已有的經驗和情感出發,找準新知的最佳切入點,為學生后面的聯想和猜想巧設“孕伏”。
第二環節:自主探究。
通過折紙、涂色的動手操作活動,使學生親身經歷并獲得非常具體、真切的感知,為探究分子、分母的變化規律提供認知基礎。教師通過五個有層次的問題,分層質疑,分層提問,分層評價,盡量地關注到了每一個層次的學生,引導學生逐步在自主探索、合作互助的學習方式中初步理解并能簡單概括出分數的基本性質,并及時強調了0除外的意義,使學生體驗到解決問題策略的多樣性,發展學生的實踐能力和創新精神,培養學生的合作意識。
第三環節:交流歸納。
在這一環節,教師引導學生在觀察與分析、探索與思考分數的基本性質的基礎上不斷生成新問題,通過質疑,借助知識的遷移,溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。這樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間相互聯系”的辨證唯物主義觀點,培養學生觀察--探索--抽象--概括的能力。
第四環節:分層精練。
這個環節讓學生對分數的基本性質再一次的體驗,感受,研究,同時也整節課的亮點之一,練習分層,評價分層,通過分層練習,關注到每一個層次的學生,讓每一個學生都有發展。教師結合本班學生的學習特點,設計了由淺入深,由易到難的練習,基本練習讓90%的同學體驗到了學習的快樂,綜合練習讓80%的同學品嘗到了成功的喜悅,拓展練習則留到課后,讓學生在自主探究中、討論交流中、知識的沉淀中進一步加深對知識的理解和掌握。
第五環節:感悟延伸。
通過小結、反思,查漏補缺,學生在交流收獲、互相幫助的過程中,使學生對知識有個系統的回顧和認識,從而進一步培養學生的知識概括能力。
總之,本節課教學堅持了“學生探索的主體”這一教學原則,面向全體學生,充分的引導學生動手實驗,自主探索,質疑延伸,合作交流,讓每一個學生在探索的過程中感受數學和日常生活的緊密聯系,體驗學習數學的快樂,培養了創新精神和實踐能力。
作為一位不辭辛勞的人民教師,時常需要用到說課稿,說課稿有助于順利而有效地開展教學活動。如何把說課稿做到重點突出呢?下面是小編收集整理的......
數學分數基本性質說課稿(精選17篇)篇六
各位老師:
下午好!
《分數基本性質》是北師大版小學數學第九冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續學習分數與小數互化、分數乘除法四則混合運算打好基礎。
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發現規律,掌握新知識。
1.知識目標:經歷探索分數基本性質的過程,理解并掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
2.能力目標:培養學生觀察、比較、抽象、概括等初步的邏輯思維能力,并且能夠正確認識和理解變與不變的辨證關系。
3.情感目標:經歷觀察、操作和討論等數學學習活動使學生進一步體驗數學學習的樂趣。通過學生的成功體驗,培養學生熱愛數學的情感。
能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數理解分數基本性質的含義,掌握分數基本性質的推導過程。
根據本節課的教學內容和教學目標采用講授法,小組合作學習。
準備大小相等的圓形紙片,水彩筆等。
一、故事設疑,揭示課題。
我將以唐僧師徒分餅的故事創設問題情景。八戒吃第一塊餅的1/4,沙和尚吃第二塊餅的2/8,悟空吃第三塊餅的4/16,他們誰吃的多呢?以此引入新課,激發學生思考的興趣,積極參與到課堂教學中來。并在這個環節設計學生動手折、畫、標等活動,折出1/4,2/8,4/16,用彩筆在折的圓上涂出1/4,2/8,4/16,再用鉛筆標出分數。在動手做的過程中初步理解分數基本性質。
二、合作探索,尋找規律。
請同學們觀察1/4,2/8,4/16;3/4,6/8,12/16這兩組分數,分子分母有什么變化,分數又有什么變化?組織討論交流匯報。如果沒有概括出“把0除外”就設計一組練習:分子分母同乘0,完善結論;如果概括出來了,就順勢進行驗證。推導出分數基本性質-----分數的分子分母都乘或除以相同的數(0除外),分數的大小不變。
三、鞏固練習。
練習題的設計有簡單到復雜,例:分數的分子乘5,要使分數的大小不變,分母();2/3=??()/186/21=2/()等這樣的題,進行練習。
四、梳理知識,溝通聯系。
小結分數基本性質,請同學們回憶“商不變性質”。------在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
然后比較這兩個性質的聯系。這樣設計主要是為了共建知識之間的聯系,有助于學生靈活遷移應用,觸類旁通。
五、多層練習,鞏固深化。
1.(1)把5/6和1/4化為分母為12而大小不變的分數。
(2)把2/3和3/4化為分子為6而大小不變的分數。
2.考考你:1/4的分子加上3,要使分數的大小不變,分母應加上()。
六、全課小結。
數學分數基本性質說課稿(精選17篇)篇七
《分數的基本性質》在分數教學中占有重要的地位,在小學數學學習中起著承前啟后的作用。它既以分數的意義、分數的大小比較為基礎,又與整數除法及商不變的性質有著內在的聯系,更分數的約分、通分的依據,也進一步學習分數加減法計算、比的基本性質的基礎。因此,分數的基本性質該單元的教學重點之一。
學生在三年級上學期已經初步認識了分數,以及同分母分數的大小。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。五年級學生已經養成了合作學習的習慣,并且已經具有了一定的分析和解決問題的能力,再加上他們所具有的一定的生活經驗,因此能夠在教師的引導下完成“質疑——探索——釋疑——應用”這一完整的學習過程。
依據新的《數學課程標準》,為了更好地體現數學學習對學生在數學思考、解決問題以及情感與態度等方面的要求。根據本節課的具體內容并結合學生的實際情況,我制定了以下教學目標:
知識與技能:讓學生親身經歷“分數基本性質”抽象概括的過程,理解和掌握分數的基本性質,并能初步運用分數的基本性質解決簡單的數學問題。
過程與方法:讓學生經歷發現問題、探究問題、解決問題的全過程,在觀察、猜想、驗證等探索活動中,培養學生觀察--探索--抽象--概括的能力以及合情推理能力,體驗解決問題策略的多樣性。
情感與態度:使學生在分數基本性質的探究活動中,獲得成功的體驗,建立自信心,感受到數學的嚴謹性,及滲透事物相互聯系、發展變化的辯證唯物主義觀點。
教學重點:理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點:讓學生經歷自主探索,發現和歸納分數的基本性質,并會應用分數的基本性質解決相關問題。
教學準備:三張同樣大小的長方形紙張,彩色筆。
樹立以“以學生發展為本”、“以學定教”的思想,為實現教學目標,有效地突出重點、突破難點,我遵循學生的認知規律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。創設了一種“情境導入、動手體驗、自主探索”的課堂教學形式,以“自主探究”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,自主探究法,合作交流的學習方式,讓學生通過獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
為了全面、準確地引導學生探索發現分數的基本性質,實現教學目標,我努力抓住學生的思維生長點組織教學,設計了以下五步教學環節:
1、創境設疑:回顧舊知,引發思考。
2、自主探究:動手實踐,發現規律。
3、交流歸納:揭示規律,鞏固深化。
4、分層精練:多層練習,多元評價。
5、感悟延伸:課堂小結,加深理解。
第一環節:創境設疑。
結合六一兒童節的到來,創設分蛋糕的情景,媽媽分得公平嗎?課始便迅速地抓住了學生的好奇心,使課堂教學有了一個好的開始。鼓勵學生當小法官,則極大地調動了學生的積極性,使他們在心理上產生懸念,進一步激發學生的學習興趣,為后面的學習做好了鋪墊。這樣設計也從學生已有的經驗和情感出發,找準新知的最佳切入點,為學生后面的聯想和猜想巧設“孕伏”。
第二環節:自主探究。
通過折紙、涂色的動手操作活動,使學生親身經歷并獲得非常具體、真切的感知,為探究分子、分母的變化規律提供認知基礎。教師通過五個有層次的問題,分層質疑,分層提問,分層評價,盡量地關注到了每一個層次的學生,引導學生逐步在自主探索、合作互助的學習方式中初步理解并能簡單概括出分數的基本性質,并及時強調了0除外的意義,使學生體驗到解決問題策略的多樣性,發展學生的實踐能力和創新精神,培養學生的合作意識。
第三環節:交流歸納。
在這一環節,教師引導學生在觀察與分析、探索與思考分數的基本性質的基礎上不斷生成新問題,通過質疑,借助知識的遷移,溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。這樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間相互聯系”的辨證唯物主義觀點,培養學生觀察--探索--抽象--概括的能力。
第四環節:分層精練。
這個環節讓學生對分數的基本性質再一次的體驗,感受,研究,同時也整節課的亮點之一,練習分層,評價分層,通過分層練習,關注到每一個層次的學生,讓每一個學生都有發展。教師結合本班學生的學習特點,設計了由淺入深,由易到難的練習,基本練習讓90%的同學體驗到了學習的快樂,綜合練習讓80%的同學品嘗到了成功的喜悅,拓展練習則留到課后,讓學生在自主探究中、討論交流中、知識的沉淀中進一步加深對知識的理解和掌握。
第五環節:感悟延伸。
通過小結、反思,查漏補缺,學生在交流收獲、互相幫助的過程中,使學生對知識有個系統的回顧和認識,從而進一步培養學生的知識概括能力。
總之,本節課教學堅持了“學生探索的主體”這一教學原則,面向全體學生,充分的引導學生動手實驗,自主探索,質疑延伸,合作交流,讓每一個學生在探索的過程中感受數學和日常生活的緊密聯系,體驗學習數學的快樂,培養了創新精神和實踐能力。
文檔為doc格式。
數學分數基本性質說課稿(精選17篇)篇八
《分數的基本性質》是九年義務教育六年制小學數學課本(西師大版)第十冊第15-16頁的內容。在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。
2、教材處理。
以前,教師通常把《分數的基本性質》看作一種靜態的數學知識,教學時先用幾個例子讓學生較快地概括出規律,然后更多地通過精心設計的練習鞏固應用規律,著眼于規律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現象:問題較碎,步子較小,放手不夠,探究的過程體現不夠充分。《分數的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法。根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。
場景一:故事引人,揭示課題。
有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的三分之一,老二分到了這塊地的六分之二。老三分到了這塊的九分之三。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
讓學生發表自己的意見,教師出示三塊大小一樣的紙,通過師生折、觀察和驗證,得出結論:三兄弟分得的一樣多。
一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。
場景二:發現問題,突出質疑。
既然三兄弟分得的一樣多,那么表示它們分得土地的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
引入新課:下面算式有什么共同的特點?學生回答后;它們各是按照什么規律變化的呢?
場景三:比較歸納,揭示規律。
1、出示思考題。
比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2、集體討論,歸納性質。
(1)從左往右看,由1/4到2/8,分子、分母是怎么變化的?引導學生回答出:把1/4的分子、分母都乘以2,就得到2/8。原來把單位“1”平均分成4份,表示這樣的1份,現在把分的份數和表示份數都擴大2倍,就得到2/8。
(2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。
(3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數的大小不變。
(4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。
(5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都乘以相同的數,分數的大小不變。
出示的思考題是學生探求新知、獨立思考的指南,教師環緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結論。
3、出示例2:把3/4和15/24化成分母是8而大小不變的分數。
通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。
如:有助于學生順利地運用分數與除法的關系,以及整數除法中商不變性質說明分數的基本性質,實現新知化歸舊知。
場景四:多層練習,鞏固深化。
1、口答。
學生口答后,要求說出是怎樣想的?
2、判斷對錯,并說明理由。
運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。
3、在下面()內填上合適的數。
練習設計由易到難,由淺入深,既鞏固新知,又發展思維,其間還自然地滲透思想品德教育。師生對出數做題,能夠創設民主和諧的學習氣氛。通過舉例,還滲透了函數思想。
數學分數基本性質說課稿(精選17篇)篇九
《分數的基本性質》是義務教育課程標準實驗教材人教版五年級下冊第五單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系、整數除法中商不變的規律這些知識為基礎的。分數的基本性質是建立在分數大小相等這一概念基礎之上的。而兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。分數的基本性質又是約分和通分的基礎,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。
二、說教學目標。
根據教材分析制定如下的教學目標:
知識與技能:
1、使讓學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2、培養學生觀察、分析和抽象概括能力。
過程與方法:
2、通過引導啟發,幫助學生學會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數的方法。
情感態度與價值觀:
1、體驗合作探究的樂趣,培養學生的團結協作精神。
2、滲透“事物間相互聯系”的辯證唯物主義觀點。
教具教學準備:
多媒體課件,小棒、紙條、圓形紙片。
三、說教學策略。
為了營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著“將課堂還給學生,讓課堂煥發生命活力”的指導思想,根據學生的認知規律,我采取以下教學策略:
1、采用了創設情境、引導探究、引導自學、組織討論、組織練習等教學策略。
2、實際操作:指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促進學生的感性認識逐步理性化。
3、引導概括:先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
4、新課標指出:有效的數學學習活動,不能單純模仿與記憶。動手實踐、自主探索與合作交流是本節課學生學習的重要方式。
四、說教學流程。
結合五年級學生的理解能力和年齡特征,我將本課的教學設計為六個環節。
(一)、創設情境,引發猜想。
首先我為學生帶來一個《猴王分餅》的故事。
“同學們,你們認為猴王分得公平嗎?”引發學生的猜想。
(這樣就激發了學生的學習興趣,為后面的學習做好了鋪墊。)。
(二)自主探索,尋找規律。
(下面這個環節是課堂教學的中心環節,新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。)。
1、小組合作驗證猜想。
這只是大家的猜想,究竟哪只猴子分得的餅多呢?親自分一分,驗證你們的猜想。
學生操作驗證――集體匯報交流――-展示成果。
學生得出:這三個分數是相等關系,分數的分子和分母變化了,但分數的大小不變。
(三)比較歸納揭示規律。
1、出示思考題。
1/4=2/8=3/12。
比較每組分數的分子和分母:
從左往右看,是按照什么規律變化的?
從右往左看,又是按照什么規律變化的?
通過觀察,你發現了什么?
讓學生帶著上面的思考題,先獨立思考,后小組討論、交流。
2、集體交流,歸納性質。
3、師生共同總結規律,找出性質中的關鍵詞,然后齊讀,注意關鍵的字詞要重讀。
4、現在,大家知道猴王是運用什么性質分餅了嗎?
5、溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。
(這樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間是相互聯系”的辨證唯物主義觀點)。
文檔為doc格式。
數學分數基本性質說課稿(精選17篇)篇十
《分數的基本性質》是義務教育課程標準實驗教材人教版五年級下冊第五單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系、整數除法中商不變的規律這些知識為基礎的。分數的基本性質是建立在分數大小相等這一概念基礎之上的。而兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。分數的基本性質又是約分和通分的基礎,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。
二、說教學目標。
根據教材分析制定如下的教學目標:
知識與技能:
1、使讓學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2、培養學生觀察、分析和抽象概括能力。
過程與方法:
2、通過引導啟發,幫助學生學會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數的方法。
情感態度與價值觀:
1、體驗合作探究的樂趣,培養學生的團結協作精神。
2、滲透“事物間相互聯系”的辯證唯物主義觀點。
教具教學準備:
多媒體課件,小棒、紙條、圓形紙片。
三、說教學策略。
為了營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著“將課堂還給學生,讓課堂煥發生命活力”的指導思想,根據學生的認知規律,我采取以下教學策略:
1、采用了創設情境、引導探究、引導自學、組織討論、組織練習等教學策略。
2、實際操作:指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促進學生的感性認識逐步理性化。
3、引導概括:先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
4、新課標指出:有效的數學學習活動,不能單純模仿與記憶。動手實踐、自主探索與合作交流是本節課學生學習的重要方式。
四、說教學流程。
結合五年級學生的理解能力和年齡特征,我將本課的教學設計為六個環節。
(一)、創設情境,引發猜想。
首先我為學生帶來一個《猴王分餅》的故事。
“同學們,你們認為猴王分得公平嗎?”引發學生的猜想。
(這樣就激發了學生的學習興趣,為后面的學習做好了鋪墊。)。
(二)自主探索,尋找規律。
(下面這個環節是課堂教學的中心環節,新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。)。
1、小組合作驗證猜想。
這只是大家的猜想,究竟哪只猴子分得的餅多呢?親自分一分,驗證你們的猜想。
學生操作驗證――集體匯報交流――-展示成果。
學生得出:這三個分數是相等關系,分數的分子和分母變化了,但分數的大小不變。
(三)比較歸納揭示規律。
1、出示思考題。
1/4=2/8=3/12。
比較每組分數的分子和分母:
從左往右看,是按照什么規律變化的?
從右往左看,又是按照什么規律變化的?
通過觀察,你發現了什么?
讓學生帶著上面的思考題,先獨立思考,后小組討論、交流。
2、集體交流,歸納性質。
3、師生共同總結規律,找出性質中的關鍵詞,然后齊讀,注意關鍵的字詞要重讀。
4、現在,大家知道猴王是運用什么性質分餅了嗎?
5、溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。
(這樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間是相互聯系”的辨證唯物主義觀點)。
將本文的word文檔下載到電腦,方便收藏和打印。
數學分數基本性質說課稿(精選17篇)篇十一
我說課的內容是:人教版小學數學課標教材五年級下冊75頁—76頁《分數基本性質》。下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。
本節的內容屬于概念教學。《分數基本性質》在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎,還是約分、通分的依據。
學生已經清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本節課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子、分母變了,分數的大小卻沒變。學生在這種“變”與“不變”中發現規律,掌握新知識。
綜合分析課程標準要求及學生實際,我確定本節教學目標如下:
1.理解和掌握分數的基本性質,并會運用分數的基本性質把不同的分數化成分母(或分子)相同而大小不變的分數。
2.初步養成觀察、比較、抽象概括的邏輯思維能力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3.受到數學思想的熏陶,養成樂于探究的學習態度。
教學難點:讓學生自主探索、發現和歸納分數的基本性質,以及應用它解決相關的問題。
根據本節課的教學目標,考慮到學生已有的知識、生活經驗和認知特點,結合了教材內容,本一課我主要采用猜想驗證與探索發現的教學模式。在分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過了觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用,激發學生學習興趣,同時讓學生獲得成功體驗。
本一節課的教學過程我分五個部分進行。
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創設問。
題情境,揭示本節課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數基本性質。
第三部分:合作探究,發現規律。主要的是學生找出規律,并利用規律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發現規律”可以細化成為三個環節:
環節一:動手操作,進行比較。
這一環節是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數表示涂色部分,并比較大小。此環節的設計主要是培養學生的比較能力。
環節二:呈現問題,引導觀察。
這一環節主要是呈現給學生這樣的一個問題,“第一環節中的分數的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環節的設計主要是培養學生的觀察能力。
環節三:交流匯報,得出規律。
這一環節主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數的基本性質----分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。此環節的設計主要是培養學生的抽象概括能力。
應該強調的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
以上是我對《分數基本性質》一節的教學設計意圖,有不當之處,請各位批評指導。
數學分數基本性質說課稿(精選17篇)篇十二
本節課是北師大版數學五年級上冊第三單元的內容。
1、理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。
2、通過動手實踐,發現并總結規律,能運用分數的基本性質把一個分數化成分母相同而大小相等的分數;培養學生觀察、比較及動手實踐的能力,進一步發展學生的思維。
3、激發學生積極主動的情感狀態,養成注意傾聽的習慣,在實踐操作中體驗成功的快樂。
1、創設情景,激發學生的學習興趣。
通過創設猴王分餅的情境,巧設懸念,激發學生求知欲望,既找到了教學的起點,又調動了學生探究的積極性,這種引課的方式取代了過去的“復舊引新”那種機械的模式。有效性和學生思維震蕩的深刻性。
2、創造性地用好課程資源,體現新的教學理念。
教學通過折紙得出分數,認識到分數大小相等,并探究出規律,這一部分內容跳出教材圈子,有機地整合了教材,把教材的做一做作為鞏固知識的載體。利用折紙得出的多媒體演示、三個大小不變的分數,把學生們帶入一個探究的空間,感知分數的基本性質的來歷,同時學生對分數的分母和分子之間的關系產生疑問,通過引發學生的認知沖突,激發學生探索求知的欲望。
3、整節課力求體現探究學習的基本要求,讓學生的學習主體地位得到體現,使學生學習積極性較高漲。
(一)、創設情景,設疑。
教師創設猴王分餅的情景:同樣大小的餅,第一只小猴分得,第二只小猴分得,第三只小猴分得,它們誰分得多?學了今天的內容你就明白了,引入新課。
(設計意圖:故事引入,設置懸念,使學生急于想弄明白誰多誰少,激發學生的求知欲望)。
數學分數基本性質說課稿(精選17篇)篇十三
1、以學生發展為本,著力強化個人主體意識,同時關注學生學習動機、興趣等情感態度。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會和充分的練習空間。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化,以及“用數學學數學”等數學思想方法。
1、教學內容。
《分數的基本性質》一課是五年級下冊第四單元的一個內容。這部分內容是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據。因此,分數的基本性質是本單元的教學重點之一。在講解這一知識點時,應注意加強整數商不變性質的回顧,這樣既幫助學生理解了分數的基本性質,又溝通了新舊知識的內在聯系。
2、學情分析。
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。另外,本單元的知識內容概念較多,比較抽象,學生的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。在數學教學中,化抽象為具體、直觀,對于順利開展教學是十分必要的。
3、教學目標:
(1)通過教學使學生理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規律解決簡單的實際問題。
(2)引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養學生的抽象概括能力。
(3)滲透初步的辨證唯物主義思想教育,使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
教學重點:
教學難點:
學習自主探索,發現和歸納分數基本性質,以及應用它解決相應的問題。
教具學具:
課件,三張同樣大小的長方形紙條、彩筆。
“將課堂還給學生,讓課堂煥發生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,以及學生的認知規律,我采用的教學方法主要有:
1、實際操作法。
指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
2、直觀演示法。
先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
3、啟發式教學法。
運用知識遷移規律組織教學,用數學學數學,層層深入,促使學生在積極的思維中獲取新知。
1、學生在學習分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在紙條上涂出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,在嘗試中發現,在實踐中體驗,從而加深學生對分數基本性質的理解。
的分數,并嘗試完成練習題,達到檢驗自學的目的。
(一)、創設情境激趣引新。
(二)、新知探索。
動手操作、形象感知。
觀察比較、探究規律。
首尾照應、釋疑解惑。
(三)、鞏固新知。
判一判填一填找一找。
(四)、擴展延伸。
1、創設情境,激發興趣,揭示課題。
上課伊始我利用阿凡提為三兄弟分地的故事來激發學生的學習興趣,讓學生親自動手折一折、分一分、比一比,從直觀上讓學生感受到這幾個分數大小是相等的,而這幾個分數的分子和分母都不相等,這其中有什么規律呢?繼而揭示課題。
(設計意圖)好奇是學生的天性,通過分地故事能快抓住學生的好奇心,使他們在心理上產生懸念,帶著疑問迅速切入正題。
2、探索新知。
(1)、動手操作、形象感知。
首先讓學生用三張同樣大小的長方形紙條折一折,再涂色表示出每張紙的1/3,2/6,4/8。觀察涂色部分,說說發現了什么?在學生匯報時,說出:涂色部分面積相等,也就說明這三個分數大小相等。然后通過電腦再進一步證實學生的發現:通過觀察,我們發現三個陰影部分大小相等,說明三個分數大小相等。
(設計意圖)主要是利用學生愛動手以及直觀思維的特點,讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好遷移,而且激活了課堂氣氛,營造了良好的學習開端。
(2)、觀察比較,探究規律。
首先,在學生折紙的基礎上,通過小組討論交流總結出分數的基本性質,讓學生理解“同時乘上或者除以”的意義,以及為什么要強調“0除外”這個條件。其次,總結出分數的基本性質后,要和以前學過的商不變規律進行對比,找出二者間的聯系,使學生更好的理解、運用性質。
(設計意圖)這一環節重在培養了學生大膽交流、語言表達的能力,同時學生在匯報交流中使問題逐漸明朗化,最終驗證了自己的猜想。要充分放手,讓學生暢所欲言。
3、鞏固新知。
在鞏固階段,我安排了三個不同層次的習題。其中“填一填”是基礎練習,但也包含有6/12=()/()的發散題。“判一判”也是對“分數的基本性質”做進一步的詮釋。“說一說”是一種變換了形式的習題,難度不大,只不過說法不同,最后還安排了“想一想”環節,解決的方法已經蘊含在前面的“聽一聽”環節中。整個習題設計部分,題目呈現方式的多樣,吸引了學生的注意力,激發了學生興趣。同時練習題排列遵循由易到難的原則,層層深入,也有效的培養了學生創新意識和解決問題的能力。
4、拓展延伸。
通過質疑反思、步步深入的交流活動,學生對分數的基本性質探究更深入,理解更完善。此時學生的視野已不盡限于分數的基本性質,而是擴展到研究分數大小變化的規律;最后的拓展性提問,使學生思維發散,聯系實際,運用規律,并自然引出以后的學習內容,激發學生不斷探索新知的欲望。
分數的分子、分母同時乘以或除以相同的數。
數學分數基本性質說課稿(精選17篇)篇十四
1、以學生發展為本,著力強化個人主體意識,同時關注學生學習動機、興趣等情感態度。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會和充分的練習空間。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化,以及“用數學學數學”等數學思想方法。
1、教學內容:
《分數的基本性質》一課是五年級下冊第四單元的一個內容。這部分內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據。因此,分數的基本性質是本單元的教學重點之一。教材在講解這一知識點時,應注意加強整數商不變性質的內在聯系,這樣既幫助學生理解了分數的基本性質,又溝通了新舊知識的內在聯系。
2、學情分析:
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。另外,本單元的知識內容概念較多,比較抽象,學生的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。在數學教學中,化抽象為具體、直觀,對于順利開展教學是十分必要的。
3、教學目標:
(1)通過教學使學生理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規律解決簡單的實際問題。
(2)引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養學生的抽象概括能力。
(3)滲透初步的辨證唯物主義思想教育,使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
4、教學難點:學習自主探索,發現和歸納分數的基本性質,以及應用它解決相應的問題。
6、教具學具:課件,三張同樣大小的長方形紙條、彩筆。
“將課堂還給學生,讓課堂煥發生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,以及學生的認知規律,我采用的教學方法主要有:
1、實際操作法。
指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
2、直觀演示法。
先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
3、啟發式教學法。
運用知識遷移規律組織教學,用數學學數學,層層深入,促使學生在積極的思維中獲取新知。
1、學生在學習分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在紙條上涂出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,在嘗試中發現,在實踐中體驗,從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用學生自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成練習題,達到檢驗自學的目的。
1、復習提問,舊知鋪墊。
新課開始,我先板書了一個除法算式1÷2,然后讓學生不計算,說出一個除法算式和它的商相等,學生邊說我邊抽取兩個算式板書,比如2÷4,4÷8,3÷6等。然后讓學生說說是根據什么想到這些算式的(商不變的規律),商不變的規律的內容又是什么被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。第二步,我讓學生根據分數與除法的關系,把這三個算式寫成分數形式,根據三個算式商相等,推導出這三個分數的大小。也就是1/2=2/4=4/8。此時,引導學生:在除法中有商不變的性質,那么分數中又有什么規律呢?今天我們就共同來探討分數當中的這個問題。這樣設計的目的就是讓學生通過觀察算式和分數的特點,培養學生直覺觀察能力,激發學生利用舊知識商不變的規律,探求新知識的興趣,同時也使學生明確要解決的問題。
2、動手操作,初步感知。
首先讓學生用三張同樣大小的長方形紙條折一折,再涂色表示出每張紙的1/2,2/4,4/8。再觀察涂色部分,說說發現了什么?在學生匯報時,說出發現:涂色部分面積相等,也就說明這三個分數大小相等。然后通過電腦再進一步證實學生的發現:把一張紙條平均分成2份,涂其中1份,得到1/2;把一張紙條平均分成4份,涂其中2份,得到2/4;把一張紙條平均分成8份,涂其中4份,得到4/8;通過觀察,我們發現三個陰影部分大小相等,說明三個分數大小相等。這一過程的設置,主要是利用學生愛動手以及直觀思維的特點,讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好遷移,而且激活了課堂氣氛,營造了良好的學習開端。
3、設疑促思,探究新知。
“疑是思之始,學之端”。在教師板書1/2=2/4=4/8后,進一步引導學生觀察這三個分數,它們的分子分母都不相同,但是分數的大小卻相等,提出疑問:這里面隱藏著什么秘密,有什么規律?接著將發言權充分交給學生,完全開放空間,激發學生思索,并暢所欲言,說出自己發現的規律,(比如:將1/2的分子分母同時乘2得到2/4,將2/4的分子分母同時乘2得到4/8,將1/2的分子分母同時乘4得到4/8;將4/8的分子分母同時除以2得到2/4,將2/4的分子分母同時除以2得到1/2,將4/8的分子分母同時除以4得到1/2共6種)。在學生自主探究的基礎上,逐步完善學生的說法,適時引導學生將發現的規律總結成一句話:分數的分子分母同時乘或者除以相同的數,分數的大小不變。如果學生在此說出了0除外更好,如果沒有,在此基礎上,提出疑問:“同時”表示什么意思?這個相同的數是任何數都行嗎?為什么?那么同學們總結的規律該怎樣敘述更完整呢?在學生加上“0除外”完整敘述后,指出:分數的這種變化規律就是我們今天學習的“分數的基本性質”,并借此板書課題“分數的基本性質”。這樣設計的目的就是培養學生發現問題,自主探究問題的能力,也培養學生的語言表達能力,抽象概括能力和初步的邏輯思維能力。另外,我還安排了“聽一聽”,讓學生聽5句話并判斷對錯。
第一句:分數的分子分母同時乘相同的數(0除外),分數的大小不變。
第二句:分數的分子分母同時除以相同的數(0除外),分數的大小不變。
第三句:分數的分子分母同時加上相同的數(0除外),分數的大小不變。
第四句:分數的分子分母同時減去相同的數(0除外),分數的大小不變。
第五句:分數的分子分母同時乘或者除以相同的數(0除外),分數的大小不變。
除了進行“聽一聽”的練習,還有習題的判斷。這樣一次次地加深,強化學生對分數的基本性質的理解,反復錘煉學生,達到對知識的更深刻的掌握,也為后面例題的完成奠定厚實的基礎。
4、初步應用,深化新知。
學習分數的基本性質,就是為了在生活中運用它。給你一個分數,能把它化成分母不同而大小相同的分數嗎?借此引出例2。讓學生讀題,并明白做題要求有兩個:一是分數大小不變,二是分母相同。在引導學生完成第一個分數后,第二個分數讓學生獨立完成在書上,然后全班學生交流自己的過程及結果。但是一個例2不足以讓學生達到鞏固的目的,所以再次安排了和例2題型完全一樣的“做一做”,讓學生獨立思考,寫在練習本上,并抽兩名學生板演,對出現的問題共同指正。這樣的安排是為了把“分數的基本性質”及時練習,反復應用,對學生鞏固新知、利用新知都達到好的效果。
5、多樣練習,鞏固知識。
在初步應用“分數的基本性質”后,我安排了四個不同層次的習題。其中“填一填”是基礎練習,但也包含有6/12=()/()的發散題。“判一判”也是對“分數的基本性質”做進一步的詮釋。“說一說”是一種變換了形式的習題,難度不大,只不過說法不同,最后還安排了“想一想”環節,解決的方法已經蘊含在前面的“聽一聽”環節中。整個習題設計部分,題目呈現方式的多樣,吸引了學生的注意力,激發了學生興趣。同時練習題排列遵循由易到難的原則,層層深入,也有效的培養了學生創新意識和解決問題的能力。
6、全課小結,整理知識。
讓學生回顧本節課,說一說自己的收獲,培養學生的知識概括能力。同時,教師也在此時進行總結:分數的基本性質和商不變的性質只是在說法上不同,在實質上是相同的,所謂“萬變不離其宗”正是如此。通過利用“分數的基本性質”填空,寫出許許多多分子分母不同但分數大小相等的分數,體會“以不變應萬變”的數學學習方法。最后告訴學生一個小秘密,以后還將學習比的基本性質,它是在“分數的基本性質”的基礎上學習的,這也是“用數學學數學”的學習方法。這樣安排會更加激發學生學習數學的興趣,以及探究數學問題的方法。
最后,我想說,學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節數學課都能達到理想的教學效果。
1÷2=2÷4=4÷8=3÷6=…。
1/2=2/4=4/8=3/6=…分數的分子分母同時乘或者除以相同的數(0除外),分數的大小不變。
數學分數基本性質說課稿(精選17篇)篇十五
《分數的基本性質》是九年義務教育六年制小學數學課本(西師大版)第十冊第15-16頁的內容。在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。
2.教材處理。
以前,教師通常把《分數的基本性質》看作一種靜態的數學知識,教學時先用幾個例子讓學生較快地概括出規律,然后更多地通過精心設計的練習鞏固應用規律,著眼于規律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現象:問題較碎,步子較小,放手不夠,探究的過程體現不夠充分。《分數的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法。根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。
場景一:故事引人,揭示課題。
有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的三分之一,老二分到了這塊地的六分之二。老三分到了這塊的九分之三。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
讓學生發表自己的意見,教師出示三塊大小一樣的紙,通過師生折、觀察和驗證,得出結論:三兄弟分得的一樣多。
一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。
場景二:發現問題,突出質疑。
既然三兄弟分得的一樣多,那么表示它們分得土地的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
3.引入新課:下面算式有什么共同的特點?學生回答后。
它們各是按照什么規律變化的呢?場景三:比較歸納,揭示規律。
1.出示思考題。
比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質。
(1)從左往右看,由1/4到2/8,分子、分母是怎么變化的?引導學生回答出:把1/4的分子、分母都乘以2,就得到2/8。原來把單位“1”平均分成4份,表示這樣的1份,現在把分的份數和表示份數都擴大2倍,就得到2/8。
(2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。
(3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數的大小不變。
(4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。
(5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都乘以相同的數,分數的大小不變。
3.出示例2:把3/4和15/24化成分母是8而大小不變的分數。
通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。
如:
場景四:多層練習,鞏固深化。
1.口答。
學生口答后,要求說出是怎樣想的?
2.判斷對錯,并說明理由。
運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。
3.在下面()內填上合適的數。
練習設計由易到難,由淺入深,既鞏固新知,又發展思維,其間還自然地滲透思想品德教育。師生對出數做題,能夠創設民主和諧的學習氣氛。通過舉例,還滲透了函數思想。
數學分數基本性質說課稿(精選17篇)篇十六
今天我說課的內容是《分數的基本性質》。下面我將從“說教學理念、說教材、說教法、說學法、說教學程序、說板書設計”六個方面來說課。
1、以學生發展為本,著力強化主體意識。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會,變“學數學”為“做數學”。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化等數學思想方法。
《分數的基本性質》一課是義務教材六年制數學第十冊第四單元的一個內容。這部內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據教材內容和學生的認識知規律,將本課的教學目標擬定如下:
1、知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小相等的分數;培養學生觀察、比較及動手實踐的能力,進一步發展學生的思維。
2、情感、態度:激發學生積極主動的情感狀態,養成注意傾聽的習慣。
本課的教學重點和難點:理解和掌握分數的基本性質,會運用分數的基本性質。
樹立以“以學生發展為本”、“以學定教”、“教為學服務”的思想,因此在教學中,我采用引導自學、合作探索相結合法,讓學會運用分數的基本性質把一個分數化成分母不同但大小相等的分數,有效地提高了教學效率。在知識的鞏固階段,我還采用組織練習法,當然以上這些教法并不是孤立存在的,本著“一法為主,多法為輔”的思想,我將多種教法進行優化組合,以達到促進學生學習方式的轉變,實現教學目標的目的。
1、學生在運用分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在折紙上畫出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,讓嘗試中發現,在實踐中體驗。從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用自自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。
依據新的教學理念及學生的認知特點,將本課的教學模式制定為:
總之,學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節數學課都能達到理想的教學效果。
本節我想結合我校申報的市級課題《創設數學問題情境激發學生學習興趣》和本人負責的市級課題《網絡環境下促進自主學習的教學設計的研究》來談談這節課的教學設想,以及結合本節課的教學情況談幾點反思。
探索性問題的設計研究我認為有兩個方面,一是教師對問題的精心設計,一是培養學生提問題的能力,教師以合作者、引導者的身份與學生一起探索,經歷知識的獲取過程,從而達到探究的目的,針對這點認識,這節課在我們學校課題組成員的集體備課下,作了這樣的設計。這節課主要是,讓學生能夠從中感受到學習的樂趣,精心設計問題,讓學生主動探求知識,發展思維。
1、情境的創設:“愛因斯坦說:“興趣是最好的老師。”新課標提倡要關于創設情境,小學生天生具有好奇好勝的心理特征,而這些特征往往是學生對數學產生興趣的導火線。通過和尚分餅,創設問題作為引子貫穿全課。利用課件中生動的動畫,創設一種和諧愉悅的氣氛,激發學生的學習興趣,這點在這節課中我個人覺得達到這個目的。
2、探究活動與數學邏輯思維過去我們常為學生設計相同的學習方式并要求學生按照教師設計的流程展開學習。比如這節課的驗證猜想中一本來我是設計了讓學生按折、畫、剪、比的步驟一步一步來引導學生操作,這樣的設計看上去會很熱鬧,其實學生的操作依然是被教師牽著鼻子走。后來,為了給學生創設個性化的學習空間,我重新設計:“課桌上的信封里放著一些材料,你可以根據自己的需要選擇合適的材料來驗證自己的猜想,如果你覺得不需要材料,當然也是可以的。”這樣的設計能夠給予學生一定的探究空間,也增添也活動的趣味性和挑戰性。但是在實際教學過程中,由于本人教學能力不夠熟練,學生緊張,表現出來的并不像我所想像的那般,但至少可以算已是對傳統的一種大膽的突破吧。
在教學分數的基本性質的感知、理解、提升、歸納、概括方面,我注重對學生數學思維的表達、辨析、質疑的訓練,盡量不給學生的數學思維加上框框,讓學生展開思維,大膽思考,學生也提出了不少有價值的問題,如:這相同的數能不能包括小數,如果分數的分子和分母同時乘上或除以一個小數,那所得的數還是不是分數呢?為什么要零除外?大小不變能不能說成結果不變呢?等等一系列有價值的問題,并重視引導學生采用舉例說明的方法來解決問題。我想這可能也是我這節課比較有收獲的一個環節了。能真正地體現自主開放,轉變學生的學習方式。
3、小組合作交流我們班由于在開展課題研究之前,很少可以說幾乎沒有合作的習慣。而這學期的小組合作的訓練方面也做得不夠,只能說是交流多于合作,所以在教學過程中出現了一些我預測不到的情況。在本節課的設計中有兩處合作交流:一個是在驗證猜想時合作,由于對小組的要求比較復雜,所以我運用了多媒體優勢將小組合作要求打在屏幕上,這樣學生就有了合作的方向,并且能對合作的效果加以對照,提高合作的有效性。另一個是在發現規律時合作探究,交流溝通。這時由于本班學生的實際,學生基本上處于一種交流的狀態,不能說是合作了。有待今后對這個問題進一步努力。
4、有效地處理課堂生成資源當教師個人的設計意圖與學生的實際的實際不相符合,而學生表現出來的行為或語言又是有價值的,這時教師該怎么處理,我認為這就是對課堂生成資源的把握問題了。另一個課堂生成點在其中有一個學生運用了商不變的性質來解釋了1/4=2/8=4/16的原因,我卻忘了將本節課的一個培養學生遷移類推能力的知識點遺漏了,那就是商不變的性質與分數的基本性質有什么聯系與區別?這是一個很具有探究交流價值的問題。可惜我在預設與生成的把握方面做得比較欠缺,暴露出的問題也正是今后必須要努力去學習的地方。
反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
一、教學目標。
2、能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3、經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
二、教材分析。
分數的基本性質是約分和通分的基礎,而約分、通分又是分數四則計算重要基礎,因此,理解分數大小不變規律顯得尤為重要。而分數與除法的關系以及除法中商不變的規律與這部分知識緊密聯系,是學習這部分內容的基礎。探索分數大小不變的規律,關鍵是讓學生在活動中主動地觀察和發現,在討論交流的基礎上歸納規律。
教學難點:歸納性質。
教學關鍵:利用分數意義理解性質。
教學方法:直觀教學法,故事情境激勵法。
三、教學設想。
(一)、創設故事情境,激發學生學習興趣,并揭示課題。
上課伊始我利用阿凡提為三兄弟分地的故事來激發學生的學習興趣,讓學生親自動手折一折、分一分、比一比,從直觀上讓學生感受到這幾個分數大小是相等的。而這幾個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
(二)、利用學具,小組合作探究規律。
當激發起學生的好奇心時,讓學生四人小組合作利用手中的學具,結合分數的意義來探究其中的規律。在找到規律后讓學生想一想,根據分數與除法的關系,以及整數除法中商不變的規律讓學生再說說分數的基本性質,來加深學生對分數的基本性質的理解。在學生已經理解了分數的基本性質后,教師又讓學生回到故事中去,讓學生試想如果還有一只小猴子,它想要四塊,猴王該怎樣分呢?既達到了練習的目的,又首尾照應,調動學生的積極性。
(三)、設計有層次的練習,以達到鞏固新知的目的。
四、教學設計。
(一)創設情境,引起學生參與興趣。
1、猴王變戲法(學生模仿復習):
除法式子變形。
分數與除法變形。
2、教師出示三只可愛的小猴圖片,獎勵聽故事:
有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成兩塊,分給第一只小猴一塊,第二只小猴見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成四塊,分給第二只小猴兩塊。第三只小猴更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切6塊,分給第三只小猴三塊。
同學們,你知道哪只猴子分得的多嗎?(哪只猴子分得的多?讓學生發表自己的意見)。
(二)探究新知。
1、動手操作、形象感知。
請同學們拿出三張相同形狀同樣大的紙,把每張紙都看作一個整體。動手折出平均分的份數2份、4份、6份,動筆把其中的1份、2份、3份畫上陰影,再把陰影部分剪下來,將剪下的陰影部分重疊,比一比記錄下結論。
2、觀察比較、探究規律。
(1)通過動手操作,誰能說一說圖中陰影部分用分數表示各是幾分之幾?
(2)你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(3)既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
(4)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題。
要求:有序觀察認真交流。
(5)學生匯報討論情況。
(6)啟發點撥。
a.通過從左到右的觀察、比較、分析,你發現了什么?
b.分數的分子、分母都乘以或除以相同的數,分數的大小不變。這里“相同的數”是不是任何的數都可以呢?請舉例說明。板書:(零除外)。
c.你認為這句話中哪些詞語比較重要?(都、相同的數、零除外)。
(7)把和化成分母是12而大小不變的分數。
a.思考:要把和化成分母是12而大小不變的分數,分子怎么變?變化的依據是什么?
b.讓學生討論后獨立解答。
(8)討論:猴王運用什么規律來分餅的?如果小猴子要4塊,猴王怎么分才公平呢?
(9)質疑。讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師質答疑。
(三)隨堂練習。
1.p109.1.
2.判斷對錯,并說明理由。
3、
(四)小結。
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
五、讓學生拿出課前發的分數紙,要求學生看清手中的分數與1/2相等的,報出自己分數后離場,與2/3相等的再離場與3/4相等的。
數學分數基本性質說課稿(精選17篇)篇十七
各位老師:
下午好!我今天說課的內容是北師大版小學數學第九冊《分數基本性質》首先,對教材進行分析。
一、教材分析。
《分數基本性質》是北師大版小學數學第九冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續學習分數與小數互化、分數乘除法四則混合運算打好基礎。
二、學情分析。
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發現規律,掌握新知識。
根據教材分析和學生情況,制定如下教學目標。
三、教學目標。
1.知識目標:經歷探索分數基本性質的過程,理解并掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
2.能力目標:培養學生觀察、比較、抽象、概括等初步的邏輯思維能力,并且能夠正確認識和理解變與不變的辨證關系。
3.情感目標:經歷觀察、操作和討論等數學學習活動使學生進一步體驗數學學習的樂趣。通過學生的成功體驗,培養學生熱愛數學的情感。
依據教學目標,確定教學重難點。
四、教學重難點。
能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
五、教學方法。
根據本節課的教學內容和教學目標采用講授法,小組合作學習。
六、教具學具準備。
準備大小相等的圓形紙片,水彩筆等。
七、教學過程:分六個環節。
(一)故事設疑,揭示課題。我將以唐僧師徒分餅的故事創設問題情景。八戒吃第一塊餅的14,沙和尚吃第二塊餅的28,悟空吃第三塊餅的416,他們誰吃的多呢?以此引入新課,激發學生思考的興趣,積極參與到課堂教學中來。并在這個環節設計學生動手折、畫、標等活動,折出14,28,416,用彩筆在折的圓上涂出14,28,416,再用鉛筆標出分數。在動手做的過程中初步理解分數基本性質。
(二)合作探索,尋找規律。請同學們觀察14,28,416;3|4,68,1216這兩組分數,分子分母有什么變化,分數又有什么變化?組織討論交流匯報。如果沒有概括出“把0除外”就設計一組練習:分子分母同乘0,完善結論;如果概括出來了,就順勢進行驗證。推導出分數基本性質-----分數的分子分母都乘或除以相同的數(0除外),分數的大小不變。
(三)鞏固練習。
練習題的設計有簡單到復雜,例:分數的分子乘5,要使分數的大小不變,分母();23=()18621=2()等這樣的題,進行練習。
(四)梳理知識,溝通聯系。
小結分數基本性質,請同學們回憶“商不變性質”。------在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
然后比較這兩個性質的聯系。這樣設計主要是為了共建知識之間的聯系,有助于學生靈活遷移應用,觸類旁通。
(五)多層練習,鞏固深化。
我將設計從鞏固到思維拓展三個層次的練習。
1.
2.(1)把5/6和1/4化為分母為12而大小不變的分數。
(2)把2/3和3/4化為分子為6而大小不變的分數。
3.考考你:1/4的分子加上3,要使分數的大小不變,分母應加上()。
(六)全課小結。