教學(xué)工作計劃需要根據(jù)教學(xué)大綱和年級特點進(jìn)行細(xì)化,確保每個學(xué)生都能夠得到適當(dāng)?shù)年P(guān)注和培養(yǎng)。歡迎大家分享自己的教學(xué)工作計劃,一起共同進(jìn)步和提高。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇一
20。
30。
40。
50。
(1)、第二組數(shù)據(jù)的組中值是多少?
(2)、求該班學(xué)生平均每天做數(shù)學(xué)作業(yè)所用時間。
2、某班40名學(xué)生身高情況如下圖,
請計算該班學(xué)生平均身高。
答案1.(1).15.(2)28.2.165。
六
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇二
1.(跨學(xué)科綜合題)若把x克食鹽溶入b克水中,從其中取出m克食鹽溶液,其中含純鹽________.
2.(數(shù)學(xué)與生活)李麗從家到學(xué)校的路程為s,無風(fēng)時她以平均a米/秒的速度騎車,便能按時到達(dá),當(dāng)風(fēng)速為b米/秒時,她若頂風(fēng)按時到校,請用代數(shù)式表示她必須提前_______出發(fā).
3.(數(shù)學(xué)與生產(chǎn))永信瓶蓋廠加工一批瓶蓋,甲組與乙組合作需要a天完成,若甲組單獨完成需要b天,乙組單獨完成需_______天.
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇三
三角形高線、中線及角平分線的概念、幾何語言表達(dá)及它們的畫法.
2.內(nèi)容解析。
本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學(xué)生動手操作及解決問題的能力;鼓勵學(xué)生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學(xué)生熱愛生活、勇于探索的思想感情。
理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個深入.學(xué)習(xí)了這一課,對于學(xué)生增長幾何知識,運用幾何知識解決生活中的有關(guān)問題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準(zhǔn)備.
本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系.
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇四
1.理解分式的基本性質(zhì).
2.會用分式的基本性質(zhì)將分式變形.
二、重點、難點。
1.重點:理解分式的基本性質(zhì).
2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點與突破方法。
教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形.
三、例、習(xí)題的意圖分析。
1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.
2.p9的例3、例4地目的是進(jìn)一步運用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解.
3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5.
四、課堂引入。
1.請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
五、例題講解。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇五
1.理解分式的基本性質(zhì)。
2.會用分式的基本性質(zhì)將分式變形。
二、重點、難點。
1.重點:理解分式的基本性質(zhì)。
2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3.認(rèn)知難點與突破方法。
教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、練習(xí)題的意圖分析。
1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進(jìn)一步運用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。
3.p11習(xí)題16.1的`第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
四、課堂引入。
1.請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。
五、例題講解。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇六
1.重點:勾股定理逆定理的應(yīng)用.
2.難點:勾股定理逆定理的證明.
3.疑點及分析和解決方法:勾股定理逆定理的證明方法,又是學(xué)生前所未見的,是運用代數(shù)計算方法證明幾何問題,是解析幾何中研究問題的方法,以后會逐步見到,這一點要讓學(xué)生有所認(rèn)識.
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇七
(2)會用工具畫三角形的高、中線與角平分線;。
2.教學(xué)目標(biāo)解析。
(1)經(jīng)歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.
(2)能夠熟練用幾何語言表達(dá)三角形的高、中線與角平分線的性質(zhì).
(3)掌握三角形的高、中線與角平分線的畫法.
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.
三、教學(xué)問題診斷分析。
三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或?qū)吽诘闹本€上.
三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇八
1、教材p140探究欄目的意圖。
(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。
(2)、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
2、教材p140的思考的意圖。
(2)、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。
3、p141利用計算器計算平均值。
這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計算器使用方法產(chǎn)生明顯對比。一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇九
嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)。
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹。
3月12臺20臺8臺4臺。
4月16臺30臺14臺8臺。
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進(jìn)貨,6月份在有限的資金下進(jìn)貨單位將如何決定?
答案:1.(1)210件、210件(2)不合理。因為15人中有13人的銷售額達(dá)不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達(dá)到的額定。
2.(1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進(jìn)1.2匹,由于資金有限就要少進(jìn)2匹空調(diào)。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十一
教學(xué)目標(biāo):
1.認(rèn)識“左、右”的位置關(guān)系,體會其相對性。
2.能夠初步運用左右描述物體的位置,解決實際問題。
3.通過生動有趣的數(shù)學(xué)活動,使學(xué)生體會到學(xué)習(xí)數(shù)學(xué)的樂趣。
教學(xué)重點:
認(rèn)識“左、右”的位置關(guān)系,體會其相對性。
教學(xué)難點:
運用左右描述物體的位置,解決實際問題。
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課。
1.同學(xué)對你的同桌說一說,哪只是右手,哪只是左手。
2.我們要來認(rèn)識“左右”。(板書課題:左右)。
二、聯(lián)系自身,體驗左右。
1.摸一摸。
(2)哪只是左腳?哪只是右腳?
(4)還有左耳和右耳。
(5)還有左眼和右眼。
(6)還有左肩和右肩。……。
(7)生每說一種,教師都引導(dǎo)全體學(xué)生用手摸一摸。
三、實際操作,探索新知。
1.擺一擺。
游戲做完了,現(xiàn)在我們要開始擺文具了。同桌的同學(xué)互相合作,聽清楚老師說的話。
請你在桌上放一塊橡皮;。
在橡皮的左邊擺一枝鉛筆;。
在橡皮的右邊擺一個鉛筆盒;。
在鉛筆盒的左邊,橡皮的右邊擺一把尺子;。
在鉛筆盒的右邊擺一把小刀。
生擺好后,師用出示正確的排列順序,生檢查自己的排列。
2.數(shù)一數(shù)。
從左數(shù)橡皮是第幾個?從右數(shù)橡皮是第幾個?
從左數(shù)橡皮是第二個,從右數(shù)橡皮是第四個。
為什么橡皮一會兒排第二?一會兒又排第四?
什么東西反了?能講得更清楚一些嗎?
(數(shù)的順序反了,開始是從左數(shù),后來是從右數(shù)。)。
師小結(jié):也就是說,同樣一個物體,從左數(shù)和從右數(shù),結(jié)果就可能不一樣。
3.爬樓梯。上樓梯時我們要靠哪邊走?
下樓梯時我們又要靠哪邊走?
請你們兩位示范一下,把教室中間過道當(dāng)樓梯,一個從前往后走是下樓梯,另一個從后往前走是上樓梯。
(生觀察時師提醒:下樓梯的同學(xué)是靠哪邊走?)。
(生還是有的說左邊,有的說右邊。)。
師:教學(xué)樓中間有一個樓梯,同學(xué)們想不想去走一走?
(全體學(xué)生進(jìn)行室外活動:走上樓梯,又走下樓梯。下樓梯時,師又提醒:下樓梯時你靠哪邊走?)。
回到教室。
現(xiàn)在同學(xué)們明白下樓梯時靠哪邊走嗎?
為什么上、下樓梯都靠右邊走?
(如果不這樣走,上、下樓梯的人就會相撞。)。
對!特別是要做課間操時樓梯比較擁擠,如果相撞就會發(fā)生危險。
4.練一練。
(出示課本第61頁第3題圖)他們都是靠右走的嗎?
五、運用新知,解決問題。
1.轉(zhuǎn)彎判斷。同學(xué)們想不想去公園玩?
那我們就坐這輛大客車去吧!(師拿出玩具客車。)。
準(zhǔn)備好,要出發(fā)了,請同學(xué)們判斷客車是往左轉(zhuǎn)還是往右轉(zhuǎn)?
(師在“十字路口圖”上演示轉(zhuǎn)彎。)。
小組討論一下,客車到底是往哪邊轉(zhuǎn)。
(生組內(nèi)討論交流意見。)。
師生共同小結(jié):站的方向不同,左右也不同。在日常生活中,汽車轉(zhuǎn)彎的方向常常以司機為準(zhǔn)。
2.小游戲:我是小司機。
同桌的同學(xué)互相配合,左邊的同學(xué)說命令,右邊的同學(xué)用玩具小汽車在“十字路口圖”上轉(zhuǎn)彎,然后交換角色。
六、課堂總結(jié)。
通過這節(jié)課,你有哪些收獲?你印象最深的是什么?你有什么感想嗎?
文檔為doc格式。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十二
1.使學(xué)生理解并能證明勾股定理的逆定理.
2.能應(yīng)用逆定理判斷一個三角形是否是直角三角形.
3.使學(xué)生進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.
4.使學(xué)生初步了解,用代數(shù)計算方法證明幾何問題這一數(shù)學(xué)思想方法對開闊思路,提高能力有很大意義.
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十三
2.弄清三角形按角的'分類,會按角的大小對三角形進(jìn)行分類;。
3.通過對三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)。
5.通過對定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
三角形內(nèi)角和定理及其推論。
三角形內(nèi)角和定理的證明。
直尺、微機。
互動式,談話法。
1、創(chuàng)設(shè)情境,自然引入。
把問題作為教學(xué)的出發(fā)點,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認(rèn)知環(huán)境。
問題2你能用幾何推理來論證得到的關(guān)系嗎?
對于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會感到困難,因為這個證明需添加輔助線,這是同學(xué)們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個重要內(nèi)容(板書課題)。
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問質(zhì)疑,探究嘗試。
(1)求證:三角形三個內(nèi)角的和等于。
讓學(xué)生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設(shè)計了電腦動畫顯示具體情景。然后,圍繞問題設(shè)計以下幾個問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問題1觀察:三個內(nèi)角拼成了一個。
什么角?問題2此實驗給我們一個什么啟示?
(把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)。
問題3由圖中ab與cd的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對于問題3學(xué)生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值。
問題2三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?
問題3三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?
其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強學(xué)生書寫能力。第三,提高學(xué)生靈活運用所學(xué)知識的能力。
3、三角形三個內(nèi)角關(guān)系的定理及推論。
引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十四
《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具。”教師運用現(xiàn)代多媒體信息技術(shù)對教學(xué)活動進(jìn)行創(chuàng)造性設(shè)計,發(fā)揮計算機輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點,為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
本班經(jīng)歷了一年多課改實踐,學(xué)生對運用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運用《幾何畫板》這一工具進(jìn)行簡單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識于實踐的過程。
本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實驗室,以研究電動門的機械原理為切入點,從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動地探究新知識的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
1、了解特殊四邊形性質(zhì)的形成過程;
2、初步了解探究新知識的一些方法;
1、了解特殊四邊形在日常生活中的應(yīng)用;
2、學(xué)生在觀察、歸納、類比及實驗教學(xué)活動中,體會成功后的喜悅;
3、初步具有感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。
教學(xué)環(huán)境:
多媒體計算機網(wǎng)絡(luò)教室。
教學(xué)課型:
試驗探究式。
教學(xué)重點:
特殊四邊形性質(zhì)。
教學(xué)難點:
特殊四邊形性質(zhì)的發(fā)現(xiàn)。
一、設(shè)置情景,提出問題。
提出問題:
1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?
2、在開(關(guān))門過程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問題:
學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當(dāng)我們學(xué)習(xí)完本節(jié)知識后,其他問題就容易解決了。
(意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)。
二、整體了解,形成系統(tǒng)。
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
解決問題:
學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導(dǎo)。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。
(意圖:學(xué)生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)。
三、個體研究、總結(jié)性質(zhì)。
1、平行四邊形性質(zhì)。
提出問題:
在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。
解決問題:
教師引導(dǎo)學(xué)生拖動b點(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。
在圖形變化過程中,
(1)對邊相等;
(2)對角相等;
(3)通過ao=co、bo=do,可得對角線互相平分;
(4)通過鄰角互補,可得對邊平行;
(5)內(nèi)外角和都等于360度;
(6)鄰角互補;
……。
指導(dǎo)學(xué)生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
菱形性質(zhì)。
梯形性質(zhì)等腰梯形性質(zhì)。
直角梯形性質(zhì)。
(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
(意圖:學(xué)生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學(xué)生體驗到科學(xué)探索的樂趣。)。
教師總結(jié):
(意圖:掌握畫箭頭的方法,使學(xué)生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達(dá),又節(jié)省時間。)。
四、聯(lián)系生活,解決問題。
解決問題:
學(xué)生操作電腦,觀察圖形、分組討論,教師個別指導(dǎo)。
學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒有這個特點……。
(意圖:使學(xué)生體會到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識解決實際問題的能力,體會成功后的喜悅。)。
五、小結(jié)。
1.研究問題從整體到局部的方法;
2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)。
1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。
針對教學(xué)內(nèi)容、學(xué)生特點及設(shè)計方案,預(yù)計下列學(xué)習(xí)效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點,通過學(xué)生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識規(guī)律及探究新知識的一般方法,初步形成感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。
由于個體差異,針對教學(xué)目標(biāo)難以達(dá)到的個別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對話交流及時指導(dǎo),使教學(xué)目標(biāo)得以實現(xiàn)。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十五
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。
2.使學(xué)生理解判定定理與性質(zhì)定理的`區(qū)別與聯(lián)系。
3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理。
1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。
2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力。
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。
通過學(xué)習(xí),體會幾何證明的方法美。
構(gòu)造逆命題,分析探索證明,啟發(fā)講解。
1.教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用。
2.教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理。
(強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十六
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量。
2、會求一組數(shù)據(jù)的極差。
1、重點:會求一組數(shù)據(jù)的極差。
2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點。
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法。
經(jīng)計算可以看出,對于2月下旬的這段時間而言,2001年和2002年上海地區(qū)的平均氣溫相等,都是12度。
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據(jù)兩段時間的氣溫情況可繪成的折線圖。
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果。
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍,用這種方法得到的差稱為極差。
本節(jié)課在教材中沒有相應(yīng)的例題,教材p152習(xí)題分析。
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大,問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識,問題3答案并不唯一,合理即可。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十七
因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。
通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
2、通過公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。
3、能運用提公因式法、公式法進(jìn)行綜合運用。
4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
靈活運用平方差公式進(jìn)行分解因式。
平方差公式的.推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十八
1、了解方差的定義和計算公式。
2、理解方差概念產(chǎn)生和形成過程。
3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。
重點:掌握方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
難點:理解方差公式。
(一)知識詳解:
方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。
給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。
(二)自主檢測小練習(xí):
1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:1091181213107;
乙組:7891011121112。
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。
引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?
(2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。
歸納:方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。
(一)例題講解:
金志強1013161412。
提示:先求平均數(shù),然后使用公式計算方差。
(二)小試身手。
1、甲、乙兩名學(xué)生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:
甲:7.8.6.8.6.5.9.10.7.4。
乙:9.5.7.8.7.6.8.6.7.7。
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
方差公式:
提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。
每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。
1、小爽和小兵在10次百米跑步練習(xí)中的成績?nèi)缦卤硭荆?單位:秒)。
如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?
必做題:教材141頁練習(xí)1.2;選做題:練習(xí)冊對應(yīng)部分習(xí)題。
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇十九
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué)生努力尋找解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.
將實際問題中的等量關(guān)系用分式方程表示。
找實際問題中的等量關(guān)系。
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二塊使用新品種,分別收獲小麥9000kg和15000kg。已知第一塊試驗田每公頃的.產(chǎn)量比第二塊少3000kg,分別求這兩塊試驗田每公頃的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)。
如果設(shè)第一塊試驗田每公頃的產(chǎn)量為kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________。
從甲地到乙地有兩條公路:一條是全長600km的普通公路,另一條是全長480km的高速公路。某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從甲地到乙地所需的時間。
這一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地所需的時間為h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程______________________。
學(xué)生分組探討、交流,列出方程.
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程。
分式方程與整式方程有什么區(qū)別?
(3)根據(jù)分式方程編一道應(yīng)用題,然后同組交流,看誰編得好。
本節(jié)課你學(xué)到了哪些知識?有什么感想?
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇二十
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。
平行四邊形的判定方法:
證明:兩組對邊分別相等的`四邊形是平行四邊形。
已知:
求證:
學(xué)生交流:把你做的四邊形和其他同學(xué)做的進(jìn)行比較,看看是否都是平行四邊形。
觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形。
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇二十一
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.
將實際問題中的等量 關(guān)系用分式方程表示
找實際問題中的等量關(guān)系
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學(xué)生分組探討、交流,列出方程.
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
本節(jié)課你學(xué)到了哪些知識?有什么感想?
專業(yè)八年級數(shù)學(xué)教案人教版(案例22篇)篇二十二
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量。
2、會求一組數(shù)據(jù)的極差。
1、重點:會求一組數(shù)據(jù)的極差。
2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.。
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.。
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據(jù)兩段時間的氣溫情況可繪成的折線圖.。
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.。
本節(jié)課在教材中沒有相應(yīng)的例題,教材p152習(xí)題分析。
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。