通過研讀范本,我們可以學會運用各類修辭手法,使我們的文章更具說服力和魅力。以下是一些精選的范文范本,小編希望它們能夠給大家帶來寫作的靈感和啟示。
平方差公式解析(優秀19篇)篇一
前不久聽了我校朱昌榮老師的一節數學課,這節課是朱老師安排的一節乘法公式——平方差公式的新授課,這節課給我留下了深刻的影響。
教師講課語言清晰,有較強的表達和應變能力,課堂教學基本功好。
乘法公式的引入,使學生既復習了多項式的乘法運算,又形象直觀地理解了乘法公式的內在實質。課堂教學中充分體現了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內的練習量、內容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當的加深應用,滿足了不同層次的學生的學習。
一點建議:
1、引入時,還可以安排得生動一點,可以先設疑,提出問題,讓學生探討,猜想,歸納,以激發學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結論來得出,從而使學生感到今天要學的內容的重要性,這樣學生的學習將更主動。
2、剛才說過語言清晰,但不夠精煉,尤其在總結公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數或項。相同項在前,相反項在后,結果才能用相同項的平方減去相反項的平方。
3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應該給出恰當準確的解釋。
以上是我的淺顯認識,不妥之處,還望朱老師海涵,大家批評。
謝謝。
平方差公式解析(優秀19篇)篇二
一、教學目標:
1、使學生理解和掌握平方差公式,并會用公式進行計算;
2、注意培養學生分析、綜合和抽象、概括以及運算能力,培養應用數學的意識;
3、在緊張而輕松地教學氛圍內,進一步激發學生的學習興趣熱情。
二、重點、難點:
重點是掌握公式的結構特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
三、教學方法。
以教師的精講、引導為主,輔以引導發現、合作交流。
四、教學過程。
(一)創設問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設疑激發學生興趣。)。
交流上面第1題的答案,引導學生進一步思考:
(合作交流,探究新知:兩數之和與這兩數之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了。而它們的積等于這兩個數的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎上,讓學生用語言敘述公式,并讓學生熟記。)。
(三)嘗試探究。
(四)鞏固練習。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學生獨立完成,互評互改。)。
(五)小結。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質能應用公式,要注意分清a、b。
(學生回答,教師總結)。
(六)作業。
p106習題1—5題。
七、板書設計:
教學反思。
通過精心備課,本節課在教學中是比較成功的。成功之處在于整個教學流程環環相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結果的機會,過于注重“收”,而“放”不夠。
平方差公式解析(優秀19篇)篇三
3、在緊張而輕松地教學氛圍內,進一步激發學生的學習興趣熱情。
重點是掌握公式的結構特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
以教師的精講、引導為主,輔以引導發現、合作交流。
(一)創設問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設疑激發學生興趣。)。
交流上面第1題的答案,引導學生進一步思考:
(合作交流,探究新知:兩數之和與這兩數之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了。而它們的積等于這兩個數的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎上,讓學生用語言敘述公式,并讓學生熟記。)。
(三)嘗試探究。
(四)鞏固練習。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學生獨立完成,互評互改。)。
(五)小結。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質能應用公式,要注意分清a、b。
(學生回答,教師總結)。
(六)作業。
p106習題1—5題。
教學反思。
通過精心備課,本節課在教學中是比較成功的。成功之處在于整個教學流程環環相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結果的機會,過于注重“收”,而“放”不夠。
平方差公式解析(優秀19篇)篇四
教師講課語言清晰,有較強的表達和應變能力,課堂教學基本功好。
乘法公式的引入,使學生既復習了多項式的乘法運算,又形象直觀地理解了乘法公式的內在實質。課堂教學中充分體現了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內的練習量、內容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當的加深應用,滿足了不同層次的學生的學習。
一點建議:
1、引入時,還可以安排得生動一點,可以先設疑,提出問題,讓學生探討,猜想,歸納,以激發學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結論來得出,從而使學生感到今天要學的內容的重要性,這樣學生的學習將更主動。
2、剛才說過語言清晰,但不夠精煉,尤其在總結公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數或項。相同項在前,相反項在后,結果才能用相同項的平方減去相反項的平方。
3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應該給出恰當準確的解釋。
以上是我的淺顯認識,不妥之處,還望楊老師海涵,大家批評。
平方差公式解析(優秀19篇)篇五
在探索平方差公式的過程中,發展學生的符號感和推理能力。在計算的過程中發現規律,并能用符號表達,體會數學語言的嚴謹與簡潔。
激發學習數學的興趣,鼓勵學生自己探索,培養學生的合作意識與創新能力。
重點。
難點。
一、復習導入。
1.回顧多項式乘多項式的法則。
2.創設情境:你能快速地口算下列式子的值嗎?
(1);(2).
師生共同想辦法,想到能否把數轉化成較整的數?
變形成:,
再試試把它當成多項式乘法來算算,有什么發現?
繼續用你發現的方法算算,,,成功了嗎?
我們把這個有趣的結論整理并推廣,就可以得到今天要學習的一個乘法公式,平方差公式。
二、新課講解。
探究新知。
1.觀察相乘的兩個多項式有什么特點?運算的結果有什么特點?
討論交流后總結出:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。
2.把式子里具體的數換成字母表示的數,結論還成立嗎?
3.從上面的計算中你有什么發現呢?
引導學生發現對于不同形式的兩個數,都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個數。這個公式叫做平方差公式。
下列多項式乘法中,能用平方差公式計算的是_______________(填寫序號)。
(1);(2);(3);
(4);(5);(6).
學生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對平方差公式的理解達到一個新的高度:所謂兩數和、兩數差,從多項式的角度來看,就是有一項相同(),有一項相反(和),只要相乘的兩個多項式具備這樣的特點,都可以用平方差公式計算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計算。
三、典例剖析。
師生共同解答,教師板書。初學運用時要寫清楚步驟。
學生解答,關注學生是否理解平方差公式,能否正確識別乘法公式里的。
例3.計算:
學生解答,教師巡視,關注學生能否合理變形,靈活運用公式計算。
四、課堂練習。
1.下面各式的計算對不對?如果不對,應怎樣改正?
(1);
(1);(2);
(3);(4).
3.計算:
(1);(2);
教師要注意發現學生的錯誤,組織學生對錯誤進行分析,對于第1題可以引導學生分析導致錯誤的原因。
五、小結。
師生共同回顧平方差公式的結構特點,體會公式的作用,交流計算的經驗。教師對課堂上學生掌握不夠牢固的知識進行辨析、強調與補充,學生也可以談一談個人的學習感受。
六、布置作業。
p50第1、6題。
平方差公式解析(優秀19篇)篇六
2.注意培養學生分析、綜合和抽象、概括以及運算能力.
教學重點和難點。
難點:用公式的結構特征判斷題目能否使用公式.
教學過程設計。
我們已經學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發表自己的見解.教師根據學生的回答,引導學生進一步思考:
(當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
在此基礎上,讓學生用語言敘述公式.
二、運用舉例變式練習。
例1計算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么.
例2計算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導學生發現,只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
課堂練習。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3計算(-4a-1)(-4a+1).
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數的和與這兩數的差相乘的形式,應用平方差公式,寫出結果.解法2把-4a看成一個數,把1看成另一個數,直接寫出(-4a)2-l2后得出結果.采用解法2的同學比較注意平方差公式的特征,能看到問題的本質,運算簡捷.因此,我們在計算中,先要分析題目的數字特征,然后正確應用平方差公式,就能比較簡捷地得到答案.
課堂練習。
1.口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教師巡視學生練習情況,請不同解法的學生,或發生錯誤的學生板演,教師和學生一起分析解法.
三、小結。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;。
(2)有些式子表面不能應用公式,但實質能應用公式,要注意變形.
四、作業。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.計算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
平方差公式解析(優秀19篇)篇七
《平方差公式》是一節公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標。為此,我作了如下努力:
1、把數學問題“蘊藏”在游戲中。
導入新課,是課堂教學的重要一環。“好的開始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發生和發展的過程,得出(a+b)(a-b)=a2-b2.經過不斷的嘗試小組合作學習方式的教學,我發現也真正體會到,只要我們給學生創造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學方式的運用。
把探究的機會留給學生,讓學生在動腦思考中構建知識,真正成為教學活動的主體。使他們在活動中進行規律的總結,并且通過交流練習、應用,深化了對規律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應用,實現從感性認識到理性認識的升華。在此設計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應用公式,第三個層次是平方差公式的靈活應用。通過做題學生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結構特征的題目,看誰出得有水平。學生每人都設計了題目,任意叫了四位學生在黑板上寫,經評價結果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協調——探究——發現——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現問題及時處理,學習效果不錯。
5、值得注意的是:
1、節奏的把握上。
這一節我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節奏把握的不是很好。
2、充分發揮學生的主體地位上。
這節課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現實的好。
平方差公式解析(優秀19篇)篇八
導入新課,是課堂教學的重要一環。“好的開始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發生和發展的過程,得出(a+b)(a-b)=a2-b2.經過不斷的嘗試小組合作學習方式的教學,我發現也真正體會到,只要我們給學生創造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
把探究的機會留給學生,讓學生在動腦思考中構建知識,真正成為教學活動的主體。使他們在活動中進行規律的總結,并且通過交流練習、應用,深化了對規律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應用,實現從感性認識到理性認識的升華。在此設計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應用公式,第三個層次是平方差公式的靈活應用。通過做題學生歸納出平方差公式的運用技巧。
以四人小組為單位,各小組出兩道具有平方差公式的結構特征的題目,看誰出得有水平。學生每人都設計了題目,任意叫了四位學生在黑板上寫,經評價結果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協調——探究——發現——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
本節課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現問題及時處理,學習效果不錯。
1、節奏的把握上。
這一節我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節奏把握的不是很好。
2、充分發揮學生的主體地位上。
這節課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現實的好。
平方差公式解析(優秀19篇)篇九
學習目標:
1、能推導平方差公式,并會用幾何圖形解釋公式;。
3、經歷探索平方差公式的推導過程,發展符號感,體會“特殊——一般——特殊”的認識規律.
學習重難點:
難點:探索平方差公式,并用幾何圖形解釋公式.
學習過程:
一、自主探索。
1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、觀察以上算式及其運算結果,你發現了什么規律?再舉兩例驗證你的發現.
3、你能用自己的語言敘述你的發現嗎?
(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數的和與差。或者說兩個二項式必須有一項完全相同,另一項只有符號不同。
(2)、公式中的a與b可以是數,也可以換成一個代數式。
二、試一試。
平方差公式解析(優秀19篇)篇十
本節課采用情景—探究的方式,以猜想、實驗、論證為主要探究方式,得出平方差公式,應用逆向思維的方向,演繹出平方差公式,對公式的應用首先提醒學生要注意其特征,其次要做好式子的變形,把問題轉化成能夠應用公式的方面上來,應用公式法因式分解的過程,實際上就是轉化和化歸的過程。在解決認識平方差公式的`結構時候,重點突出學生自我思想的形成,能夠充分地不公式用自己的語言來敘述,在整個教學設計中,教師只作為了一個點撥者和引路人。然后應用有梯度的典型例題加以鞏固,在學生頭腦中形成一個清晰完整的數學模型,使學生在今后的練習中游刃有余。
不足之處:
教學中時間把握還是不足,在設計的題目中不怎么合理,應按題目的難度從易到難。
有些題目的歸納可放手給學生討論后由學生說出,而不是教師代替。小組評價做的不夠,沒有足夠的小組的活動,沒有小組的競賽。
教學語言還太隨意,數學的語言應該嚴謹。在語調上應該有所變化。
平方差公式解析(優秀19篇)篇十一
通過教學我對本節課的反思如下:
1、本節課我從復習舊知入手,在教學設計時提供充分探索與交流的空間,使學生經歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學要重視結果更要重視其發現過程,充分發揮其教育價值。不要回到傳統的“講公式、用公式、練公式、背公式”學生被動學習的'局面。我在教學時沒有直接讓學生推導平方差公式,而是設置了一個做一做,讓學生通過計算四個多項式乘以多項式的題目,讓學生通過運算并觀察這幾個算式及其結果,自己發現規律。目的是讓學生經歷觀察、歸納、概括公式的全過程,以培養學生學習數學的一般能力,讓學生體會發現的愉悅,激發學生學習數學的興趣,感覺效果很好。
不足:在學生將4個多項式乘多項式做完評價后,應及時把他們歸納為某式的平方差的形式,以便學生順理成章的猜測公式的結果。
2、學生剛接觸這類乘法,我設計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學生發現總結。在這兩個二項式中有一項(a)完全相同,另一項(b與—b)互為相反數。右邊為這兩個數的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數字,還可以是單項式,多項式等代數式。提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數分別是什么,其次要區別相同的項和相反的項,表示兩數平方差時要加括號。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結果。我很細地給學生講了以上特點,學生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節課如能將平方差公式的幾何意義簡要的結合說明,更能體會數學中數形結合的特點,因時間關系放在下一課時。
4、學生錯誤主要是:(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;(2)平方時忽視系數的平方,如(2m)2=2m2。針對這一點在課堂教學中應著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學生往往學起來容易,真正掌握起來困難。部分學生只是死記硬背公式,不能完全理解其含義和具體應用。
總之,在以后的教學中我會更深入的專研教材,結合教學目標與要求,結合學生的實際特點,克服自己的弱點,盡量使數學課生動、自然、有趣。
平方差公式解析(優秀19篇)篇十二
我參與了學校組織的“同課異構”活動,授課內容是《乘法公式——平方差公式(一課時)》。
上學期末我恰好在任縣二中參加了一次關于教材研究的會議,當時河南一位從教三十多年且參與教材編寫的專家指出:關于概念、公式、法則的教學一般有六個環節:引入;形成;明確表述;辨析;鞏固應用;歸納提升。新課標也要求我們在教學中不只是傳授學生基本的知識技能,還要以培養學生的數學能力及合作探究的意識為目標。為此,我在設計本節課的教學環節時充分考慮學生的認知規律,并以培養學生的數學素質,了解運用數學思想方法,增強學生的合作探究意識為宗旨。
我的教學流程是按照“引入——猜想——證明——辨析——應用——歸納——檢測”的順序進行的,非常符合學生的認知規律。我覺得本節課比較好的方面有以下幾點:
1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學生們自己去探究不同的方法。事實證明,學生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學生留下了充足的思考和討論時間,真正激發了學生的思維。
2.通過設置一個“找朋友”的小游戲來辨析公式,調動了學生的積極性,活躍了課堂氣氛,因此,游戲過后學生對公式的結構特征也有了更深刻的了解。
3.共享收獲環節,我采用的是制作微課的方式,形式比較新穎,從認識公式到知道公式的特征,再到感悟數形結合的數學思想,最后是感受到數學運算的一種簡捷美,將本節課升華到了一個新的高度。
當然,本節課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學生練習時,為了抓緊時間完成進度沒有把學生的出錯點講透講細;游戲環節參與學生有些少,應讓更多的同學動起來;當堂檢測的題目應該設置上分值和檢測時間,讓學生限時完成,然后可以根據學生得分了解本節課的學習效果,以便下節課再有針對性的進行講解和練習查漏補缺。
通過這次“同課異構”活動,我感覺自己在教學環節設計、課件制作和使用、導學案的規范書寫等各方面都有了提高,通過各位領導和老師的點評,我也有了更多的收獲,相信可以為我今后的教學所用。
平方差公式解析(優秀19篇)篇十三
2.經歷探索平方差公式的過程,認識“特殊”與“一般”的關系,了解“特殊到一般”的認識規律和數學發現方法,平方差公式第一課時教學反思。
重點:公式的理解與正確運用(考點:此公式很關鍵,一定要搞清楚特征,在以后的學習中還繼續應用)。
難點:公式的理解與正確運用。
教法:自主探究和合作交流。
(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
=x2-22=12-(2y)2=x2-(3y)2。
學生分組討論,交流,小組長回答問題。
師生共同總結歸納:
即兩數和與兩數差的積,等于它們的平方差。
(1)一組完全相同的項;
(2)一組互為相反數的項。
2.例題。
(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
3.公式應用。
(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
兩個學生板演,其余學生在練習本上自己獨立完成。
老師巡視,輔導學困生。
1.計算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
師生共同分析:此題特征,兩次利用平方差公式,教學反思《平方差公式第一課時教學反思》。
學生在練習本上獨立完成,同桌互相檢查。
2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?
學生分組討論交流,獨立完成運算。
1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
2、運用公式要注意的.問題:
(2)公式中的a、b可以代表什么?
一、檢測導入。
二、例題展示。
三、拓展延伸。
四、達標堂測。
五、歸納小結。
即兩數和與兩數差的積,等于它們的平方差。
六、布置作業。
p21:習題1.91、2。
平方差公式解析(優秀19篇)篇十四
一、學習目標:
2.會推導平方差公式,并能運用公式進行簡單的運算.
二、重點難點。
難點:理解平方差公式的結構特征,靈活應用平方差公式.
三、合作學習。
你能用簡便方法計算下列各題嗎?
12001×19992998×1002。
導入新課:計算下列多項式的積.
1x+1x-12m+2m-2。
32x+12x-14x+5yx-5y。
結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差.
即:a+ba-b=a2-b2。
四、精講精練。
文檔為doc格式。
平方差公式解析(優秀19篇)篇十五
平方差公式是在學習多項式乘法等知識的基礎上,自然過渡到具有特殊形式的多項式的乘法,體現教材從一般到特殊的意圖。教材為學生在教學活動中獲得數學的思想方法、能力、素質提供了良好的契機。對它的學習和研究,不僅得到了特殊的多項式乘法的簡便算法,而且為以后的因式分解,分式的化簡、二次根式中的分母有理化、解一元二次方程、函數等內容奠定了基礎,同時也為完全平方公式的學習提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個重要的公式。
學生是在學習積的乘方和多項式乘多項式后學習平方差公式的,但在進行積的乘方的運算時,底數是數與幾個字母的積時往往把括號漏掉,在進行多項式乘法運算時常常會確定錯某些次符號及漏項等問題。學生學習平方差公式的困難在于對公式的結構特征以及公式中字母的廣泛的理解,當公式中a、b是式時,要把它括號在平方。
難點:理解掌握平方差公式的結構特點以及靈活運用平方差公式解決實際問題.。
平方差公式解析(優秀19篇)篇十六
進一步使學生理解掌握平方差公式,并通過小結使學生理解公式數學表達式與文字表達式在應用上的差異.
教學重點和難點:公式的應用及推廣.
1.(1)用較簡單的代數式表示下圖紙片的面積.
(2)沿直線裁一刀,將不規則的右圖重新拼接成一個矩形,并用代數式表示出你新拼圖形的面積.
講評要點:
沿hd、gd裁開均可,但一定要讓學生在裁開之前知道。
hd=bc=gd=fe=a-b,
這樣裁開后才能重新拼成一個矩形.希望推出公式:
a2-b2=(a+b)(a-b)。
2.(1)敘述平方差公式的數學表達式及文字表達式;。
(2)試比較公式的兩種表達式在應用上的差異.
說明:平方差公式的數學表達式在使用上有三個優點.(1)公式具體,易于理解;(2)公式的特征也表現得突出,易于初學的人“套用”;(3)形式簡潔.但數學表達式中的a與b有概括性及抽象性,這樣也就造成對具體問題存在一個判定a、b的`問題,否則容易對公式產生各種主觀上的誤解.
依照公式的文字表達式可寫出下面兩個正確的式子:
經對比,可以讓人們體會到公式的文字表達式抽象、準確、概括.因而也就“欠”明確(如結果不知是誰與誰的平方差).故在使用平方差公式時,要全面理解公式的實質,靈活運用公式的兩種表達式,比如用文字公式判斷一個題目能否使用平方差公式,用數學公式確定公式中的a與b,這樣才能使自己的計算即準確又靈活.
3.判斷正誤:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
(1)102×98;(2)(y+2)(y-2)(y2+4).
解:(1)102×98(2)(y+2)(y-2)(y2+4)。
=(100+2)(100-2)=(y2-4)(y2+4)。
=9996;。
(1)103×97;(2)(x+3)(x-3)(x2+9);。
(3)59.8×60.2;(4)(x-)(x2+)(x+).
3.請每位同學自編兩道能運用平方差公式計算的題目.
例2填空:
思考題:什么樣的二項式才能逆用平方差公式寫成兩數和與這兩數的差的積?
(某兩數平方差的二項式可逆用平方差公式寫成兩數和與這兩數的差的積)。
練習。
填空:
1.x2-25=()();。
2.4m2-49=(2m-7)();。
3.a4-m4=(a2+m2)()=(a2+m2)()();。
例3計算:
(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
=m4-14m2+49-n2.
1.什么是平方差公式?一般兩個二項式相乘的積應是幾項式?
3.怎樣判斷一個多項式的乘法問題是否可以用平方差公式?
(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
(1)69×71;(2)53×47;(3)503×497;(4)40×39.
平方差公式解析(優秀19篇)篇十七
上周我們學習了“乘法公式”,乘法公式在簡化多項式乘法運算、因式分解及以后的數學學習中有著廣泛的應用。根據課標的規定主要學習兩個最基本的乘法公式,留出更多的時間和空間給學生自主探索,發現規律,體驗乘法公式的來源,理解公式的意義和作用,掌握公式的應用。
通過一周的學習,學生基本上掌握了公式的形式,并能運用公式解答簡單的乘法運算,化簡多項式乘法。但是,對于形式較復雜的,3、4學生就辨認不出運用哪個公式,或者把公式用混,特別是符號問題。所以,要多訓練,多強化,在作題中掌握技巧,掌握公式的特點。
平方差公式解析(優秀19篇)篇十八
平方差公式的教學已經是好幾次了,舊教材總是定向于代數方法,新課程理念同幾何意義探究,這也是對教學者的一次挑戰,通過教學,我從中領會到它所蘊含的新的教學理念,新的教學方式和方法。
1、在教學設計時應提供充分探索與交流的空間,使學生進一步經歷觀察,實驗、猜測、推理、交流、反思等活動,我在設計中讓學生從計算花圃面積入手,要求學生找出不同的計算方法,學生欣然接受了挑戰,通過交流,給出了兩種方法,繼而通過觀察發現了面積的求法與乘法公式之間的吻合,激發了學生學習興趣的同時也激活了學生的思維,所以這個探究過程是很有效的。
2、我知道培養學生數形結合思想方法和能力的重要性,通過幾何意義說明平方差方式的探究過程,學生可以切實感受到兩者之間的聯系,學會一些探究的基本方法與思路,并體會到數學證明的靈巧間法與和諧美是很有必要的。
3、加強師生之間的活動也是必要的。在活動中,通過我的組織、引導和鼓勵下,學生不斷地思考和探究,并積極地進行交流,使活動有序進行,我始終以平等、欣賞、尊重的態度參與到學生活動中,營造出了一個和諧,寬松的教學環境。
平方差公式解析(優秀19篇)篇十九
本節課選自人教版八年級上冊第15章第二節內容,它是在學生已經掌握了多項式乘法之后,自然過渡到具有特殊形式的多項式的乘法,是從一般到特殊的認知規律的典型范例。對它的學習和研究,不僅給出了特殊的多項式乘法的簡便算法,而且為以后的因式分解、分式的化簡等內容奠定了基礎,同時也為學習完全平方公式的學習提供了方法。因此,中公教育專家認為,平方差公式作為初中階段的第一個公式,在教學中具有很重要地位。
二、說學情。
學生已熟練掌握了冪的運算和整式乘法,但在進行多項式乘法運算時常常會出現符號錯誤及漏項等問題;另外,數學公式中字母具有高度概括性、廣泛應用性,鑒于八年級學生的認知水平,理解上有困難。因此,我們把教學難點定為:理解平方差公式的。結構特征,靈活應用平方差公式。
三、說教學目標。
基于對教材的理解和分析,我在教學中以學生為主體,以學生的學為根本,我把本課的目標定位為:
知識與技能目標:了解平方差公式產生的背景,理解平方差公式的意義,掌握平方差公式的結構特征,并能靈活運用平方差公式解決問題。
過程與方法目標:經歷平方差公式產生的探究過程,培養觀察、猜想、歸納、概括、推理的能力和符號感,感受利用轉化、數形結合等數學思想方法解決實際問題的策略。
情感態度與價值觀目標:通過探究平方差公式,形成學習數學公式的一般套路,體會成功的喜悅,培養團結協助的意識,增強學生學數學、用數學的興趣。
教學重點:理解平方差公式的意義,掌握平方差公式的結構特征。
教學難點:運用平方差公式解決問題。
四、說教法、學法。
課堂是學生學習的主陣地,真正做到把課堂還給學生,因而我采取的的教學模式定為:三先兩主動,即讓學生先說話、先動手、先總結,讓學生主動提問、主動探索。學習方法:學生積極參與、大膽猜想、合作交流和自主探索。
五、說教學過程。
(一)創設情景,引入新課。
數學課標強調:“數學來源于實際生活”,為了體現這一思想,我設計了一個實際問題。這里只提供情境,刺激學生主動提出問題,因為“提出問題”比“解決問題”更重要。這個以生活實例創設的情境,不僅激發學生的求知興趣,又為平方差公式的引人服務,更為說明平方差公式的幾何意義做好鋪墊。
(二)合作交流,探求新知。
首先,我用情境中一道題目,并再安排了兩個練習,通過對特殊的多項式與多項式相乘的計算,既復習了舊知,又為下面學習習近平方差公式作了鋪墊,讓學生感受從一般到特殊的認識規律,引出乘法公式----平方差公式。
順勢鼓勵學生用自己的語言歸納表述,總結出公式,從而提高學生的語言組織與表達能力。
然后,教師通過分析公式的本質特征使學生掌握公式,在認清公式的結構特征的基礎上,
進一步剖析a、b的廣泛含義,抓住了概念的核心,使學生在公式的運用中能得心應手,起到事半功倍的效果。
最后,用學生最喜歡的拼圖游戲,引導學生從“形”的角度認識平方差公式的幾何意義,再次驗證了猜想。滲透了數形結合的思想,讓學生體會到代數與幾何的內在聯系,引導學生學會從多角度、多方面來思考問題。
(三)鞏固深化,內化新知。
總結出平方差公式后,我先設計兩個簡單練習題。通過練習,使學生加深對平方差公式結構特點的認識和理解,進一步掌握平方差公式的本質特征和運用平方差公式必須具備的條件。
然后設計了三個例題。例1和例2是教材上的內容,例3是我設計的一道實際問題。
例1有兩道小題,其中設計第(1)題,然后學生完成。第(2)題學生板演,師生共同糾錯。例2有兩道小題,先讓學生嘗試練習,出錯后教師及時糾正,使學生認識深刻。第一題體現了轉化的思想和數式通性;另一題是平方差公式與一般多項式乘法的綜合,強調不能用公式的仍按多項式乘法法則進行。
例3運用平方差公式解決實際問題,體現了數學來源于生活,服務于生活,學生感受到學習數學的價值,設計此題與平方差公式的幾何意義相吻合,加深學生對平方差公式的理解。
(四)反饋練習,鞏固新知。
練習題的設計有梯度,從基礎應用公式入手,到拓展提高。加強基本知識和基本技能訓練,使不同水平的學生學習都有收獲,體現出“人人學有用的數學”。
在練習的基礎上,教師歸納總結,提升學習理念。
(五)當堂練習。
這部分給出兩類練習題。
設計意圖(第一類題是完全平方公式的直接應用,通過實例,使學生進一步體會到完全平方公式中字母a,b的含義是很廣泛的,它可以是數,也可以是整式)(第二道題直接給出一些同學的錯誤認識,強調錯誤原因并引導學生走出誤區)。
(六)課堂小結。
設計意圖:(讓學生回想本節課的主要內容完全平方公式,教師再次強調并指出易錯點和需注意的地方公式中項數、符號、字母及其指數。)。
(七)布置作業。
作業分必做題和選做題兩部分。
設計意圖:(必做題鞏固本節課知識,讓學生熟練應用公式。選做題為下節課的學習做鋪墊,同時分層布置作業也滿足了不同層次學生的要求)。