閱讀范文范本是培養寫作思路和觸發靈感的有效途徑之一。以下是經過精選的一些優秀范文,希望能夠激發大家的創作靈感和寫作熱情。
高一數學的函數解題技巧(匯總21篇)篇一
只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2.認真分析題目
解答任何一個數學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。
3.做好題目總結
解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結:
1)在知識方面。題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
2)在方法方面。如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
3)能否歸納出題目的類型,進而掌握這類題目的解題方法。
高一數學的函數解題技巧(匯總21篇)篇二
高中數學題目對我們的邏輯思維、空間思維以及轉換思維都有著較高要求,其具有較強的推證性和融合性,所以我們在解決高中數學題目時,必須嚴謹推導各種數量關系。很多高中題目都并不是單純的數量關系題,其還涉及到空間概念和其他概念,所以我們可以利用數形結合法理清題目中的各種數量關系,從而有效解決各種數學問題。
數形結合法主要是指將題目中的數量關系轉化為圖形,或者將圖形轉化為數量關系,從而將抽象的結構和形式轉化為具體簡單的數量關系,幫助我們更好解決數學問題。例如,題目為“有一圓,圓心為o,其半徑為1,圓中有一定點為a,有一動點為p,ap之間夾角為x,過p點做oa垂線,m為其垂足。假設m到op之間的距離為函數f(x),求y=f(x)在[0,?仔]的圖像形狀。”
這個題目涉及到了空間概念以及函數關系,所以我們在解決這個題目時不能只從一個方面來思考問題,也不能只對題目中的函數關系進行深入挖掘。從已知條件可知題目要求我們解決幾何圖形中的函數問題,所以我們可以利用數形結合思想來解決這個問題。首先我們可以根據已知條件繪出相應圖形,如圖1,顯示的是依據題目中的關系繪制的圖形。
根據題目已知條件可知圓的半徑為1,所以op=1,∠pom=x,om=|cos|,然后我們可以建立關于f(x)的函數方程,可得所以我們可以計算出其周期為,其中最小值為0,最大值為,根據這些數量關系,我們可以繪制出y=f(x)在[0,?仔]的圖像形狀,如圖2,顯示的是y=f(x)在[0,?仔]的圖像。
高一數學的函數解題技巧(匯總21篇)篇三
內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的`正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,y=x是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
高一數學的函數解題技巧(匯總21篇)篇四
平移問題:永遠記住左右平移只是對x做變化,上下平移就是對y考點:對于這類題型我們首先要知道它一般都是考我們什么,我覺做變化,永遠切記。
b、概率解題技巧
解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根根據向量公式將表示出來:其表示共有兩種方法,一我們必須拿全部分數。
導公式(只要題目出現了跟或者有關的角度,一定想到誘導公式),題目。
解題思路:
第一步就是求出總體的情況
第二步就是求出符合題意的情況
第三步就是將兩者比起來就是題目要求的概率
這類型題目對理科生來說一定要掌握好期望與方差的公式,同時最重要的是獨立重復試驗概率的求法。
高一數學的函數解題技巧(匯總21篇)篇五
第一:三角函數的重要性,即使你高一勉強過了,我希望你能在暑假好好學習三角函數知識.
第二:任意角三角函數.同角三角函數公式,切化弦公式以后一會常用到,恒等式公式整合了正余弦之間的關系.誘導公式就是一個bug不用管它,能記住多少算多少,通用口訣:奇變偶不變符號看象限,奇偶的辨別是pi/2的整數倍的奇偶決定.
第三:三角函數的圖像和性質.首先要明白三角函數線的知識,雖然考試不會涉及不過對于理解三角函數的圖像的繪制提供了直觀的理解.三角函數的草圖一律用五點作圖法.三角函數的性質包括最值性、單調性、奇偶性、周期性、對稱性.三角函數的這五個性質必須好好把握.
第四:(wt+y)+c.關于各個數值的含義你以后會在高中物理中的交流電理論或是簡諧振動理論里學習.其中的初相位和圓頻率之間的先后變換所產生的關系必須弄清楚,這里經常會弄錯還希望你能注意.
第五:余弦函數.和正弦函數一樣,不過還有涉及到余弦的便會涉及到向量的數量積.其實在物理學的功的定義中便接觸了.
第六:正切函數.注意它的間斷點和周期與正余弦函數的差別.最重要的還是切化弦吧,還有就是直線斜率和正切的關系.
第七:余切,正割,余割,反三角函數,球面三角函數你接觸一下吧.雖然高中基本不用對于你的學習還是有好處的.
第八:三角恒等變換.這里是三角函數的難點和重點.八個c級要求這里占了兩個.再加上數量積一個,c級要求的三角函數就占了3個.主要思路:變角變名變次數.主要公式:兩角和與差公式,二倍角公式及其推論(降冪擴角,升冪縮角),輔助角公式.
第九:兩角和與差公式.這個公式如果你不會用,那請好好學.總共六個公式.記住之間正負號和函數的位置.很好記憶的.
第十:二倍角公式.二倍角公式三個.余弦公式中比較復雜,以及由它推導出來的降冪公式升冪公式也是變換的重點.
第十一:輔助角公式.這個其實是兩角和函數的逆運算.它的出現頻率卻不低于二倍角函數,故特引起重視.
第十二:其他變換公式.萬能代換就是一個bug,由半角公式推導而來.積化和差和差化積高中應用不多,大學就很重要了,最基本的極限理論就得用到它.三角公式繁多還有其他不列舉.
第十二:解三角形.兩個公式.正弦定理,余弦定理.優美公式勾股定理不要遺忘哦.計算三角形的面積的方法應該要掌握至少七種吧.
第十二:三角函數的導數.記住三個公式就可以了.
第十三:三角函數的應用.物理問題一般使用正余弦函數居多.實際問題或者是幾何問題一般是正切函數居多.
第十四:若有興趣請以后詳讀天文學基礎教程和傅立葉分析教程.你就深深地被三角所迷了.
高一數學的函數解題技巧(匯總21篇)篇六
內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,y=x是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
點線面三位一體,柱錐臺球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典范。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
有些同學可能會想,數學又不是、,書上的習題又大都極簡單,何必看課本呢?殊不知,課本對于數學來說,也是很重要的。數學有20%的基礎題目,只要花上一點點時間把課本好好看看,要拿下這些題易如反掌;反之,要是對一些基本的概念、定理都含混不清,不但基礎題會失分,難題也不可能做得很好,畢竟這些都是基礎啊。數學的邏輯性、分析性極強,可以說是一種純理性的科學,要求一定要清晰明了,是不太可能出現做出題目卻不知是如何做對的情況的,因而基礎知識十分重要。
其次,相當多的習題自然是必不可少的。在理解了基本的概念以后,必須要做大量的練習,這樣才能鞏固所學到的知識,加深對概念的了解。所謂熟能生巧,數學最能體現這句話的哲理性。數學的思維、解題的技巧,只有在做題中摸索,印象才會深刻,運用起來才會得心應手。當然,這并不是提倡題海戰術,適量就可,習題做得太多,很容易產生厭煩情緒。最重要的還是選題,一定要選好題、精題。在這一方面,的建議是很值得考慮的,最好買推薦的參考。同時做題還要根據自己的實際情況。一般而言,要先做基礎題,把基礎打牢固,然后再逐步加深難度,做一些提高性的題目。每一個知識點都要做一定量的上難度的題來鞏固,這樣才能將其牢牢掌握做完每個題之后,要回頭看一遍(尤其是難題),想想做這一題有什么收獲,這樣,就不會做了很多題卻沒有什么效果。
運算也是很重要的`一個環節,與的重要性不相上下。培養一種發散性思維,尋求解題的多種,當然非常重要。但是,有一些同學,他們具有很強的思維,能夠從多種角度思考問題,可是計算卻不強,平時也不訓練,時往往是找對了卻算錯了答案,非常可惜。的確 高中政治,繁瑣的運算是令人望而生畏的,但是,在運算過程中你將發現許多新的問題,而運算也就在訓練中漸漸提高了。因而,數學方法要與計算并重。一方面,要重視做題方法的訓練,從多角度、多方面去思考問題;同時,也要注意鍛煉計算能力,注重計算的精確性,而不能偏向一方。
總結。把專題的卷子和綜合的卷子分門別類,每一份都進行認真細致的總結,挑出其中含金量最高的題,同時,“旁征博引”,把曾經遇到過的相關的題目總結到一起,一道也不放過。這樣總結下來,一定能對各類題型都能夠了如指掌,對出題者的出題角度也有了準確的把握。通過對上百份的細致歸納總結,很多同學的數學都有了大幅度的提高。需要強調的是在總結試卷的過程中一定要深入下去,千萬不能走形式,只有深入方能有所收獲。在深入的過程中不要在乎時間,有時候,在總結一道大題時,會把相關的題型總結到一起,這項其實是相當繁雜的,絕不等同于弄懂一道題。而做這項的收益也將是巨大的。所以,即使用一個晚上來做這件事也非常值得。千萬不要心情急躁,看見別人一道接一道的做題而不安。
平時的學習要注意以下幾點:
1、按部就班。數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。
2、強調理解。概念、定理、公式要在理解的基礎上。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
3、基本訓練。學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鉆難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。
4、重視平時考試出現的錯誤。訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。
的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容后將書后習題認真寫好,有些同學可能認為書后習題太簡單不值得做,這種想法是極不可取的,書后習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
高一數學的函數解題技巧(匯總21篇)篇七
數學解題的思維過程 數學解題的思維過程是指從理解問題開始,經過探索思路,轉換問題直至解決問題,進行回顧的全過程的思維活動。 對于數學解題思維過程,g . 波利亞提出了四個階段*(見附錄),即弄清問題、擬定計劃、實現計劃和回顧。這四個階段思維過程的實質,可以用下列八個字加以概括:理解、轉換、實施、反思。 第一階段:理解問題是解題思維活動的開始。 第二階段:轉換問題是解題思維活動的核心,是探索解題方向和途徑的積極的嘗試發現過程,是思維策略的選擇和調整過程。 第三階段:計劃實施是解決問題過程的實現,它包含著一系列基礎知識和基本技能的靈活運用和思維過程的具體表達,是解題思維活動的重要組成部分。 第四階段:反思問題往往容易為人們所忽視,它是發展數學思維的一個重要方面,是一個思維活動過程的結束包含另一個新的思維活動過程的開始。
數學解題的技巧 為了使回想、聯想、猜想的方向更明確,思路更加活潑,進一步提高探索的成效,我們必須掌握一些解題的策略。 一切解題的策略的基本出發點在于變換,即把面臨的問題轉化為一道或幾道易于解答的新題,以通過對新題的考察,發現原題的解題思路,最終達到解決原題的目的。 基于這樣的認識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。
一、 熟悉化策略所謂熟悉化策略,就是當我們面臨的是一道以前沒有接觸過的陌生題目時,要設法把它化為曾經解過的或比較熟悉的題目,以便充分利用已有的知識、經驗或解題模式,順利地解出原題。 一般說來,對于題目的熟悉程度,取決于對題目自身結構的認識和理解。從結構上來分析,任何一道解答題,都包含條件和結論(或問題)兩個方面。因此,要把陌生題轉化為熟悉題,可以在變換題目的條件、結論(或問題)以及它們的聯系方式上多下功夫。 常用的途徑有:
(一)、充分聯想回憶基本知識和題型: 按照波利亞的觀點,在解決問題之前,我們應充分聯想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結論,從而解決現有的問題。
(二)、全方位、多角度分析題意: 對于同一道數學題,常常可以不同的側面、不同的角度去認識。因此,根據自己的知識和經驗,適時調整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
(三)恰當構造輔助元素: 數學中,同一素材的題目,常常可以有不同的表現形式;條件與結論(或問題)之間,也存在著多種聯系方式。因此,恰當構造輔助元素,有助于改變題目的形式,溝通條件與結論(或條件與問題)的內在聯系,把陌生題轉化為熟悉題。 數學解題中,構造的輔助元素是多種多樣的,常見的有構造圖形(點、線、面、體),構造算法,構造多項式,構造方程(組),構造坐標系,構造數列,構造行列式,構造等價性命題,構造反例,構造數學模型等等。
二、簡單化策略 所謂簡單化策略,就是當我們面臨的是一道結構復雜、難以入手的題目時,要設法把轉化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。 簡單化是熟悉化的補充和發揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。 因此,在實際解題時,這兩種策略常常是結合在一起進行的,只是著眼點有所不同而已。 解題中,實施簡單化策略的途徑是多方面的,常用的有: 尋求中間環節,分類考察討論,簡化已知條件,恰當分解結論等。
1、尋求中間環節,挖掘隱含條件: 在些結構復雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經過適當組合抽去中間環節而構成的。 因此,從題目的因果關系入手,尋求可能的中間環節和隱含條件,把原題分解成一組相互聯系的系列題,是實現復雜問題簡單化的一條重要途徑。
2、分類考察討論: 在些數學題,解題的復雜性,主要在于它的條件、結論(或問題)包含多種不易識別的可能情形。對于這類問題,選擇恰當的分類標準,把原題分解成一組并列的簡單題,有助于實現復雜問題簡單化。
3、簡單化已知條件: 有些數學題,條件比較抽象、復雜,不太容易入手。這時,不妨簡化題中某些已知條件,甚至暫時撇開不顧,先考慮一個簡化問題。這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。
4、恰當分解結論: 有些問題,解題的主要困難,來自結論的抽象概括,難以直接和條件聯系起來,這時,不妨猜想一下,能否把結論分解為幾個比較簡單的部分,以便各個擊破,解出原題。
三、直觀化策略: 所謂直觀化策略,就是當我們面臨的是一道內容抽象,不易捉摸的題目時,要設法把它轉化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對象之間的聯系,找到原題的解題思路。
(一)、圖表直觀: 有些數學題,內容抽象,關系復雜,給理解題意增添了困難,常常會由于題目的抽象性和復雜性,使正常的思維難以以進行到底。 對于這類題目,借助圖表直觀,利用示意圖或表格分析題意,有助于抽象內容形象化,復雜關系條理化,使思維有相對具體的依托,便于深入思考,發現解題線索。
(二)、圖形直觀: 有些涉及數量關系的題目,用代數方法求解,道路崎嶇曲折,計算量偏大。這時,不妨借助圖形直觀,給題中有關數量以恰當的幾何分析,拓寬解題思路,找出簡捷、合理的解題途徑。
(三)、圖象直觀: 不少涉及數量關系的題目,與函數的圖象密切相關,靈活運用圖象的直觀性,常常能以簡馭繁,獲取簡便,巧妙的解法。
四、特殊化策略 所謂特殊化策略,就是當我們面臨的是一道難以入手的一般性題目時,要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發現解答原題的方向或途徑。
五、一般化策略 所謂一般化策略,就是當我們面臨的是一個計算比較復雜或內在聯系不甚明顯的特殊問題時,要設法把特殊問題一般化,找出一個能夠揭示事物本質屬性的一般情形的方法、技巧或結果,順利解出原題。
六、整體化策略 所謂整體化策略,就是當我們面臨的是一道按常規思路進行局部處理難以奏效或計算冗繁的題目時,要適時調整視角,把問題作為一個有機整體,從整體入手,對整體結構進行全面、深刻的分析和改造,以便從整體特性的研究中,找到解決問題的途徑和辦法。
七、間接化策略 所謂間接化策略,就是當我們面臨的是一道從正面入手復雜繁難,或在特定場合甚至找不到解題依據的題目時,要隨時改變思維方向,從結論(或問題)的反面進行思考,以便化難為易解出原題。
高一數學的函數解題技巧(匯總21篇)篇八
首先,要認真審題。做題時忌諱的就是不認真讀題,埋頭苦算,結果不但浪費了大量的時間,甚至有時候還選錯,結果事倍功半。所以一定要讀透題,由題迅速聯想到涉及到的概念,公式,定理以及知識點中要注意的問題。發掘題目中的隱含條件,要去偽存真,領會題目的真正含義。
其次,要注意解題方法。做題時除了按照解答題的思路直接來求以外,還要注意一些特殊的方法,比如說特殊值法,代入法,排除法,驗證法,數形結合法等等。
直接法。
有些選擇題本身就是由一些填空題,判斷題,解答題改編而來的,因此往往可采用直接法,直接由概念、公式、定理及性質出發,按照做解答題的方法一步步來求。我們在做解答題時大部分都是采用這種方法。
排除法。
選擇題因其答案是四選一,必然只有一個正確答案,那么我們就可以采用排除法,從四個選項中排除掉易于判斷是錯誤的答案,那么留下的一個自然就是正確的答案。
驗證法。
通過對選擇支的觀察,分析,將各選擇支逐個代入題干中,進行驗證、或適當選取特殊值進行檢驗、或采取其他驗證手段,以判斷選擇支正誤的方法。
特殊值法。
有些選擇題用常規方法求解比較困難,若根據答案中所提供的信息,選擇某些特殊情況進行分析,或選擇某些特殊值進行計算,或將字母參數換成具體數值代入,把一般形式變為特殊形式,再進行判斷往往十分簡單。
數形結合法。
也叫圖象法,有些選擇題用代數方法解計算較繁,但若能根據題意,做出草圖,然后根據圖形的形狀、位置、性質、綜合特征等,由圖形的直觀性得出選擇題的答案。
選擇題的解題方法還有很多,但做題時也不要拘泥于固定思維,有時候一道題可采用多種特殊方法綜合運用。
還有,在做選擇題的過程中,遇到關鍵性的詞語可用筆做個記號,以引起自己的注意,比如說至少,沒有一個,至多一個等等。第一遍沒做的題也要做個記號,但要注意與其它記號區分開來,這樣不容易遺漏。
最后,做完題后要仔細檢查,有沒有遺漏的,有沒有涂錯的,全面認真的再做一遍,可用不同的方法做一下,驗證答案。另外遇到真不會做的,也不要空著不做,一定要選個答案。
一、直接法。
這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善于通過現象看本質,熟練應用解方程和解不等式的方法,自覺地、有意識地采取靈活、簡捷的解法。
二、特殊化法。
當填空題的結論唯一或題設條件中提供的信息暗示答案是一個定值時,而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當特殊值(或特殊函數,或特殊角,圖形特殊位置,特殊點,特殊方程,特殊模型等)進行處理,從而得出探求的結論。這樣可大大地簡化推理、論證的過程。
三、數形結合法。
“數缺形時少直觀,形缺數時難入微。”數學中大量數的問題后面都隱含著形的信息,圖形的特征上也體現著數的關系。我們要將抽象、復雜的數量關系,通過形的形象、直觀揭示出來,以達到“形幫數”的目的;同時我們又要運用數的規律、數值的計算,來尋找處理形的方法,來達到“數促形”的目的。對于一些含有幾何背景的填空題,若能數中思形,以形助數,則往往可以簡捷地解決問題,得出正確的結果。
四、等價轉化法。
通過“化復雜為簡單、化陌生為熟悉”,將問題等價地轉化成便于解決的問題,從而得出正確的結果。
1、要因題制宜。在做選擇填空題時,由于只需要選選項、寫結果,不要求有計算過程,所以,我們應該采取最直接、最簡單的方法來解題,而不是按部就班的來寫解題過程。比如:選擇題中最經常用到的排除法,很多時候不需要計算,一眼過去就知道哪個選項不正確,第一時間予以排除,這樣就能為接下來的題目爭取到更多的時間。
而在做后面簡答題時,就不能忽略計算過程,通常情況下后面的大題都是按照步驟給分的,即使最后結果錯了,但是解題思路、過程正確,也能得到一部分分數。
2、要放平心態。很多考生不是因為被題考倒了,而是被嚇倒了。一看到題有些難度心里就發慌,導致發揮失常。其實,高考作為選拔考試,極少出現偏題、怪題,一旦覺得有難度,可多嘗試幾種方法來解題,或者是換一種思路,要始終堅信考題內容就是自己學過的知識,只要找準思路、找對方法就一定能解開。
3、要跳躍答題。方法君在此建議,高考數學并不一定非要按照從前至后的順序答題,按照往年的考試規律,無論是選擇題、填空題還是簡答題,難度都是逐步遞增的,所以,每種題型的前幾題一定是比較簡單的,如果我們先將基礎題做完,就能拿到接近70%的分數,然后,再做中等難度和難度題,這樣不僅時間上有優勢,也能建立一定的心理優勢,有利于考試的發揮。
4、要學會舍得。數學考試中,如果自覺基礎不是很好,或者是時間不允許,那么就放棄最后一道大題。與其匆匆忙忙、慌慌張張做題,不如舍棄一些不容易得分的題,將注意力集中到可以得分的題上。如果時間允許,再考慮最后一道題;如果時間如允許,就把已知條件抄一遍,這樣也有可能拿到一些分數。
高一數學的函數解題技巧(匯總21篇)篇九
2.利用這些特殊函數的有界性,結合不等式推導出函數的值域。
方法二分離常數法。
1.觀察函數類型,型如;。
2.對函數變形成形式;。
3.求出函數在定義域范圍內的值域,進而求函數的值域。
方法三配方法。
1.將二次函數配方成;。
2.根據二次函數的圖像和性質即可求出函數的值域。
方法四反函數法。
1.求已知函數的反函數;。
2.求反函數的定義域;。
3.利用反函數的定義域是原函數的值域的關系即可求出原函數的值域。
方法五換元法。
1.第一步觀察函數解析式的形式,函數變量較多且相互關聯;。
2.另新元代換整體,得一新函數,求出新函數的值域即為原函數的值域。
高一數學的函數解題技巧(匯總21篇)篇十
考點:對于數列,我對大家的要求不是很高,我只是希望大家能盡自己的所能,盡量的去多拿分數,如果要是有人能全部做對,我也替你高興,這類題型,主要是考大家對等比等差數列的理解,包括通項與求和,難度還是有的,其實你要是留意生活的話,這類題還是不是我們想象中那么困難哈。
題型:一般分為證明和計算(包括通項公式、求和、比較大小),解題思路:
證明:就是要求我們證明一個數列是等比數列后還是等差數列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個等差數列或者等比數列。另一種方法就是應用等差中項或者等比中項來證明數列。計算(通項公式):一般這個題都還是比較簡單的,這類型的題,我只要求大家能掌握其中題目表達式的關鍵字眼(如出現要用什么方法,如果出現要用什么方法,如果出現如果出現),我相信通項公式對大家來說應該是達到駕輕就熟的地步了,希望大家能把握這么容易的分數。
求和:這種題對文科生來說,應該知道我要說什么了吧,王福叉數列(等比等差數列)呀!!,三個步驟:乘公比,錯位相減,化系數為一。光是記住步驟沒有用的,同時我也希望同學們不要眼高手低,不要以為很簡單的,其實真正能算正確的不一定那么容易的,所以我還是希望大家多加練習,親自操作一下。對理科生來說,也要注意這樣的數列求和,同時還要掌握一種數列求和,就是這個數列求和是將其中的一個等差或等比數列按照一定的順序抽調了一部分數列,然后構成一個新的數列求和,還有就是要注意了如果題目里面涉及到這個的時候,一定要記住數列相互奇偶性的討論了,非常的重要哈。
比較大小:這種題目我對大家的要求很低,因為一般都是放縮法的問題,我也不是要求大家非要怎么樣怎么樣的,對這類問題需要我們的基本功底很深,要學會適當的放大和放小的問題,對這個問題的把握,需要大家對一些經常遇到的放縮公式印在腦海里面。
補充:在不是導數的其他大題中,如果遇到求最值的問題,一般有兩種方法求解,一種是二次函數求最值,一種就是基本不等式求最值。
高一數學的函數解題技巧(匯總21篇)篇十一
如果從中考的角度看,初中函數部分可以說是為了函數而函數,只是先把函數的概念填進大腦再說。
三種主要函數的解析式的形式和求解方法,正比例和一次函數就當一種,二次函數解析式的三種形式,三種解析式的求解方法及各個常數的意義、對圖像的影響。三種函數的圖像,一次函數和二次函數,一次函數和反比例函數的結合。
直接求解析式,或者求出解析式再求上面的點坐標,是很常見的考題,這類題了解基本概念就行。利用二次函數求最值是一類應用。二次函數和方程的聯系也是考點,需要對所學概念熟記于心、融會貫通,多練習,形成對數學的敏感性,做到看到什么類型,就想到腦中的哪個知識點和基本概念。
還有一種所謂大題,平面幾何和函數綜合題,別被唬住了,往往也包括了送分的球解析式小題,但其實更多的只是平面幾何的問題,只是批了層函數的外衣,單純來看,比一般的平面幾何更簡單,只是因為批了這么層外衣,就把人迷惑了。所以遇到這種題,首先別被它嚇住了,只要基本概念清楚,剝掉函數的外衣,其實質就是平面幾何。
應付中考,這就夠了,雖然初中函數引入時,教材就幾乎明示,函數作為一種工具,要把你帶了研究變量數學的領域,讓你更關注運動和聯系。但于此相矛盾的是,在應試上,學函數還是為了函數本身,這或許是初中階段對函數學習的教學要求所致――了解函數,但是這卻造成了機械地學習函數,脫離函數本質。
靜止地、孤立地學習函數,應付中考還真沒問題,但任何事物是運動的,事物之間是普遍聯系的,函數就是揭示運動規律和內在聯系的一個數學工具。同樣,人也是運動發展的,知識也是有連續性的。很多人在初中時可以用機械的方法把函數“學得很好”,一進高中,不到一個學期,集合、映射、函數,一下就暈了,以至到后面脫節越來越嚴重。
高一數學的函數解題技巧(匯總21篇)篇十二
遇到難題一時想不出來,可以考慮換一種方法,換一種思路,如果仍然沒有頭緒,不妨先放一放,記下題號,等后面的解答完了再回來看看,你可能會獲得新的解題方法。最后如果仍然沒有想出來的也不能放棄,是選擇題就要猜測答案了,填空題也不能空著,猜測答案往上寫,是大題,就要分步寫,只要與問題有關,能寫多少寫多少。
遇到了難題,我該怎么辦?
會做的題目要力求做對、做全、得滿分,而更多的問題是對不能完整完成的題目如何分段得分。下面有兩種常用方法。
一、面對一個疑難問題,一時間想不出方法時,可以將它劃分為幾個子問題,然后在解決會解決的部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。而且可望在上述處理中,可能一時獲得靈感,因而獲得解題方法。
二。有些問題好幾問,每問都很難,比如前面的小問你解答不出,但后面的小問如果根基前面的結論你能夠解答出來,這時候不妨先解答后面的,此時可以引用前面的結論,這樣仍然可以得分。如果稍后想出了前面的解答方法,可以補上:“事實上,第一問可以如下證明”。
1、直接求解法。
從題目的條件出發,通過正確的運算或推理,直接求得結論,再與選擇支對照來確定選擇支。
2、篩選排除法。
在幾個選擇支中,排除不符合要求的選擇支,以確定符合要求的選擇支。
3、特殊化方法。
就是取滿足條件的特例(包括取特殊值、特殊點、以特殊圖形代替一般圖形等),并將得出的結論與四個選項進行比較,若出現矛盾,則否定,可能會否定三個選項;若結論與某一選項相符,則肯定,可能會一次成功,這種方法可以彌補其它方法的不足。
高一數學的函數解題技巧(匯總21篇)篇十三
初中數學與高中數學的差別比較大,從原本的實際思維轉入抽象思維,需要一個大幅度轉變。這就需要重新整理初中數學知識,形成良好的知識基礎,在此基礎上,再根據高中知識特點,較快的吸收新的知識,形成新的知識結構。
認真理解,反復推敲思考高中各知識點的涵義,各種表示方法。容易混淆的知識,仔細辨識、區別,達到熟練掌握,逐步建立與高中數學結構相適應的理論本質與思考方法,切忌急于求成。
通過學習,要努力培養自己觀察,比較抽象,概括能力初步形成運用知識準確地表達數學問題和實際問題的意識和能力;培養科學的、嚴謹的`學習態度,為樹立辯證唯物主義科學的世界觀認識世界打下基礎。
我們應試時,時常發現厭試心理,有時會有些緊張,這是很正常的。但過分緊張也會導致考不好,所以平時應把練習當作考試,但考試時則平視為練習,心態好了,成績自己就上去了。
如何減少解題失誤,這是一個考高分的關鍵。失誤少了,分數就會濺漲。這需要學生的仔細觀察與認真閱讀題目,抓住題目重點、題心,并圍繞重點、題心考慮其他條件與答案。其次,考慮要周全,避免出現遺漏情況,各個方面都要考慮到,這需要平日思考事物的長期積累。
高一數學的函數解題技巧(匯總21篇)篇十四
很多學生或家長不知道,按照大型的考試的要求,考前五分鐘是發卷時間,考生填寫準考證。這五分鐘是不準做題的,但是可以看題。
發現很多考生拿到試卷之后,就從第一個題開始看,給大家的建議是,拿過這套卷子來,這五分鐘是用來制定整個戰略的關鍵時刻。之前沒看到題目,你只是空想,當你看到題目以后,你得利用這五分鐘迅速制定出整個考試的戰略來。
高考數學整體時間分配。
做選擇題和填空題時,每道題的答題時間平均為3分鐘,容易的題爭取一分鐘出答案。選擇題有12道,填空題有4道,每道題占5分,爭取在48分鐘內拿下這80分。因為基本沒有時間回頭檢查,要力求將試題一次搞定。
平時學習成績一般的同學,對后幾道大題,能做幾問就做幾問,爭取拿到步驟分;平時成績薄弱的考生,一般來說應主攻選擇題和填空題,大題能做幾問就做幾問,最后答不出來的題可以選擇放棄。
進入考試先審題。
考試開始后,很多學生喜歡奮筆疾書;但切記:審題一定要仔細,一定要慢。數學題經常在一個字、一個數據里邊暗藏著解題的關鍵,這個字、這個數據沒讀懂,要么找不著解題的關鍵,要么你誤讀了這個題目。
你在誤讀的基礎上來做的話,你可能感覺做得很輕松,但這個題一分不得。所以審題一定要仔細,你只有把題意弄明白了,這個題目才有可能做對。
會做的題目是不耽誤時間的,真正耽誤時間的是在審題的過程中,在找思路的過程中,只要找到思路了,單純地寫那些步驟并不占用時間。
高一數學的函數解題技巧(匯總21篇)篇十五
在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律深化數學思想方法在解題實踐中的指導作用。
在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯系,形成更完整的知識網絡,提高分析問題和解決問題的能力。
培養學生善于分析題意,富于聯想,以適應新的背景,新的設問方式,提高學生用函數的思想、方程的思想研究數列問題的自覺性、培養學生主動探索的精神和科學理性的思維方法。
高一數學的函數解題技巧(匯總21篇)篇十六
在進入高等數學,概念是非常重要的,可以很不客氣的說,概念支撐起了我們所有高等數學的內容,沒有概念就沒有我們的高等數學,請大家在復習的過程中不要忽視掉我們概念。針對這一塊的內容,我給大家的方法是:首先按照自己認為的重要到次重要的順序進行回憶,之后比照考試大綱所規定的考試內容,看自己有哪些遺漏了,從而形成完整的知識網絡。我們還要對遺漏的知識點進行分析,要搞清楚這個知識點是由于和這個小的知識模塊關系不緊密而沒有聯系起來,還是自己在復習過程中忽略了。對于前一種情況大家不用放在心上,只要看一看這個知識點說的是什么意思就可以了,比如:在我們回憶一元微積分學時,如果沒想起來曲率的概念,這關系不是很大,要知道和整個知識模塊相對游離的知識點往往不是考研的重點,我們知道即可。可是對于那些本來很重要的知識點由于自己的忽視而沒有想起來,這時我們要高度的重視起來了,這些知識應該是自己的相對弱點和盲點,對這些知識點的復習是我們是否能考出好成績的關鍵!對這些知識點我們要想盡一切辦法去理解,去練習,直到掌握了為止!在這一層次中大家要知道,考研中的重要的考點往往是不同部分的節點,這樣的知識點可能聯系著兩個或多個的概念,是起橋梁作用的知識。
在這里,我希望大家能夠明白我這里的題型并不是大家所認為的選擇題、填空題、解答題,因為你告訴我的是考試形式,考研數學是不重視考試形式。我這里說的題型是從考試的能力的角度來說的。大家需要做完第一個層次的總結,我們只是把考研要考的一些小的知識點形成了一個知識的網絡圖,但我們還不知道考研是從什么角度,如何考查大家,這時我們要進行第二個層次的總結。我們歸納總結的方法是先根據自己看過的和做過的輔導材料憑記憶總結出若干的題型,之后比照自己所看的材料看自己總結的是否能涵蓋復習材料中大部分的例題,另外,大家還可以參照專門講題型的書,用自己總結的題型和復習材料上的進行對照,過對照充實自己總結出來的題型。
針對每一種題型往往都會它的固定解法,這一點還請各位考生注意。有了第二個層次的歸納總結,我們對考研數學的畏懼心理都消失了,你已經知道了考研數學可能考你的方式、方法和角度了,現在要做的是對總結的題型進行解題方法的總結了。我們的方法是首先根據自己做過的一種題型的若干例題總結出典型的解題思路形成有效的解題程序和過程。對于一種題型我們可以從不同的例題中歸納出多種的方法和思路。之后,我們對照復習材料進行充實和改造自己歸納的解題思路和方法,盡可能多的把能用的思路和方法總結出來。
在有了題型解題方法的歸納總結之后,大家一定綱要注意對比各個方法,諳熟各個方法的精妙所在,每一種方法都對應著題目特有的細節問題。有了第三個層次的歸納總結,我們對自己遇到的題目就心中有底了,我們已經知道,一般的題目只要按照自己總結的方法一種一種的去試,基本上能把題目做出來,只不過我們的解題的速度不快,這時侯我們需要在第三個層次的基礎上進行思路的升華,找到比較好的對付一類題型的解題方法,提高我們的解題速度!我們的方法是在自己總結的方法中找比較快捷和適合自己發揮的解題思路,之后去找些有關題型的復習材料做些比較,再看看自己的方法和這些材料的方法哪個更適合自己!
高一數學的函數解題技巧(匯總21篇)篇十七
大家拿到考卷后,先看是不是本科考試的試卷,再清點試卷頁碼是否齊全,檢查試卷有無破損或漏印、重印、字跡模糊不清等情況。如果發現問題,要及時報告監考老師處理。
答題時,一般遵循如下原則:
1.從前向后,先易后難。通常試題的難易分布是按每一類題型從前向后,由易到難。因此,解題順序也宜按試卷題號從小到大,從前至后依次解答。當然,有時但也不能機械地按部就班。中間有難題出現時,可先跳過去,到最后攻它或放棄它。先把容易得到的分數拿到手,不要“一條胡同走到黑”,總的原則是先易后難,先選擇、填空題,后解答題。
2.規范答題,分分計較。數學分i、ii卷,第i卷客觀性試題,用計算機閱讀,一要嚴格按規定涂卡,二要認真選擇答案。第ii卷為主觀性試題,一般情況下,除填空題外,大多解答題一題設若干小題,通常獨立給分。解答時要分步驟(層次)解答,爭取步步得分。解題中遇到困難時,能做幾步做幾步,一分一分地爭取,也可以跳過某一小題直接做下一小題。
3.得分優先、隨機應變。在答題時掌握的基本原則是“熟題細做,生題慢做”,保證能得分的地方絕不丟分,不易得分的地方爭取得分,但是要防止被難題耗時過多而影響總分。
4.填充實地,不留空白。考試閱卷是連續性的流水作業,如果你在試卷上留下的空白太多,會給閱卷老師留下不好印象,會認為你確實不行。另外每道題都有若干采分點,觸到采分點便可給分,未能觸到采分點也沒有倒扣分的規定。因此只要時間允許,應盡量把試題提問下面的空白處寫上相應的公式或定理等有關結論。
5.觀點正確,理性答卷。不能因為答題過于求新,結果造成觀點錯誤,邏輯不嚴密;或在試卷上即興發揮,涂寫與試卷內容無關的字畫,可能會給自己帶來意想不到的損失。胡亂涂寫可以認為是在試卷上做記號,而判作弊。因此,要理性答卷。
6.字跡清晰,合理規劃。這對任何一科考試都很重要,尤其是對“精確度”較高的數理化,若字跡不清無法辨認極易造成閱卷老師的誤判,如填空題填寫帶圈的序號、數字等,如不清晰就可能使本來正確的失了分。另外,卷面答題書寫的位置和大小要計劃好,盡量讓卷面安排做到“前緊后松”而不是“前松后緊”。特別注意只能在規定位置答題,轉頁答題不予計分。
二、審題要點。
審題包括瀏覽全卷和細讀試題兩個方面。
一是開考前瀏覽。開考前5分鐘開始發卷,大家利用發卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據此統籌安排答題順序,做到心中有數。此時考生要做到“寵辱不驚”,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,“這道題做時不可輕敵,小心有什么陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同”。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,“我沒做過,別人也沒有。這是我的機會。”時刻提醒自己:我易人易,我不大意;我難人難,我不畏難。
二是答題過程中的仔細審題。這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題方法和策略,評分方式也不同,對不同的題型,審題時側重點有所不同。
1.選擇題是所占比例較大(40%)的客觀性試題,考察的內容具體,知識點多,“雙基”與能力并重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,采用特殊什么方法求解等。
2.填空題屬于客觀性試題。一般是中檔題,但是由于沒有中間解題過程,也就沒有過程分,稍微出現點錯誤就和一點不會做結果相同,“后果嚴重”。審題時注意題目考查的知識點、方法和此類問題的易錯點等。
3.解答題在試卷中所占分數較多(74分),不僅需要解出結果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。
三、時間分配。
中應有“分數時間比”的概念,花10分鐘去做一道分值為12分的中檔大題無疑比用10分鐘去攻克1道分值為4分的中檔填空題更有價值。有效地利用最好的答題時間段,通常各時間段內的答題效率是不同的,一般情況下,最后10分鐘左右多數考生心理上會發生變化,影響正常答卷。特別是那些還沒有答完試卷的考生會分心、產生急躁心理,這個時間段效率要低于其它時間段。
在試卷發下來后,通過瀏覽全卷,大致了解試題的類型、數量、分值和難度,熟悉“題情”,進而初步確定各題目相應的作答時間。通常一般水平的考生,解答選擇題(12個)不能超過40分鐘,填空題(4個)不能超過15分鐘,留下的時間給解答題(6個)和驗算。當然這個時間安排還要因人而異。
在解答過程中,要注意原來的時間安排,譬如,1道題目計劃用3分鐘,但3分鐘過后一點眉目也沒有,則可以暫時跳過這道題;但若已接近成功,延長一點時間也是必要的。需要說明的是,分配時間應服從于考試成功的目的,靈活掌握時間而不墨守最初安排。時間安排只是大致的整體調度,沒有必要把時間精確到每1小題或是每1分鐘。更不要因為時間安排過緊,造成太大的心理壓力,而影響正常答卷。
一般地,在時間安排上有必要留出5—10分鐘的檢查時間,但若題量很大,對自己作答的準確性又較為放心的話,檢查的時間可以縮短或去除。但是需要注意的是,通常數學試卷的設計只有少數優秀考生才可能在規定時間內答完。
五、大題和難題。
一張考卷必不可少地要有大題、難題以區分考生的知識和能力水平,以便拉開檔次。一般大題、難題分值都較高,遇到難題,要盡量放到最后去攻克;如果別的題目全部做完而且檢查無誤,而又有一定時間的話,就應想辦法攻克難題。不是每個人都能得150的,先把會的做完,也可以給自己奠定心里優勢。
(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題干的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。
(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對于方程或不等式求解、確定參數的取值范圍等問題格外有效。
(3)反例法。把選擇題各選擇項中錯誤的答案排除,余下的便是正確答案。
(4)猜測法。因為數學選擇題沒有選錯倒扣分的規定,實在解不出來,猜測可以為你創造更多的得分機會。除須計算的題目外,一般不猜a。
2.填空題答題技巧。
(1)要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能準確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了并集等等。
(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往后放。
(1)仔細審題。注意題目中的關鍵詞,準確理解考題要求。
(2)規范表述。分清層次,要注意計算的準確性和簡約性、邏輯的條理性和連貫性。
(3)給出結論。注意分類討論的問題,最后要歸納結論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。
七、如何檢查。
在考試中,主動安排時間檢查答卷是保證考試成功的一個重要環節,它是防漏補遺、去偽存真的過程,尤其是考生如果采用靈活的答題順序,更應該與最后檢查結合起來。因為在你跳躍式往返答題過程中很可能遺漏題目,通過檢查可彌補這種答題策略的漏洞。
檢查過程的第一步是看有無遺漏或沒有做的題目,發現之后,應迅速完成或再次思考解法。對各類題型的做答過程和結果,如果有時間要結合草稿紙的解題過程全面復查一遍,時間不夠,則重點檢查。
選擇題的檢查主要是查看有無遺漏,并復查你心存疑慮的題目。但是若沒有充分的理由,一般不要改變你依據第一感覺作出的判斷。
對解答題的檢查,要注意結合審查草稿紙的演算過程,改正計算和推理中的錯誤。另外要補充遺漏的理由和步驟,刪去或修改錯誤或不準確的觀點。
八、強調的一點是草稿紙,這是考試時和試卷同等重要的東西。
同學們拿到草稿紙后,請先將它三折。然后按順序使用。草稿紙上每道題之間留空,標清題號。字跡要做到能夠準確辨認,切不可胡寫亂畫。這樣做的好處是:
1.草稿紙展現的是你的答題思路。草稿紙清晰,答題思路也會清晰,最起碼你清楚你已經做到了哪一步。如果草稿混亂的話,這一步推出來了,往往又忘了上一步是怎么得到的。
2.對于前面提到的暫時不會,回頭再做的題,由于你第一次做本題時已經進行了一定的思維過程。第二次做時如果重頭再思考非常浪費時間。利用草稿紙,可以迅速找到上次的思維斷點。從而繼續攻破。關鍵結論要特殊標記。
3.檢查過程中,草稿紙更是最好的幫手。如果連演算過程都可從草稿紙上清晰找到的話,無疑會節省大量時間。
提高解題速度的八步驟。
在考試時,我們常常感到時間很緊,試卷還沒來得及做完,就到收卷時間了,雖然有些試題,只要再努一把力,我們是有可能做出來的。這其中的原因之一,就是解題速度太慢。
幾乎每個學生都知道,要想取得好成績,必須努力學習,只有加強練習,多做習題,才能熟能生巧。可是有些學生天天趴在那里做題,但解出的題量卻不多,花了大量的時間,卻沒有解出大量的習題,難道不應找一找原因嗎?何況,我們并不比別人的時間更多。試想,如果你的解題速度提高10倍,那會是怎樣一種情景?解題速度提高10倍?可能嗎?答案是肯定的,完全可能。關鍵在于你想與不想了。
那么,究竟怎樣才能提高解題速度呢?
首先,應十分熟悉習題中所涉及的內容,做到概念清晰,對定義、公式、定理和規則非常熟悉。你應該知道,解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做后面所配的練習,一刻也不要停留。我指導學生按此方法學習,幾乎所有的學生都大大提高了解題的速度,其效果非常之好。
第二,還要熟悉習題中所涉及到的以前學過的知識和與其他學科相關的知識。例如,有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是數學題中要用到的一個物理概念,而我們對此已不是十分清晰了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。這時我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然后再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。
第三,對基本的解題步驟和解題方法也要熟悉。解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。
第四,要學會歸納總結。在解過一定數量的習題之后,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對于類似的習題一目了然,可以節約大量的解題時間。
第五,應先易后難,逐步增加習題的難度。人們認識事物的過程都是從簡單到復雜,一步一步由表及里地深入下去。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。
其實,解簡單容易的習題,并不一定比解一道復雜難題的勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那么,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由于太重,超出了扛米人的能力,以至于扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許并不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。因此,我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
第六,認真、仔細地審題。對于一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,并從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經結成了一張網,并有了初步的思路和解題方案,然后就是根據自己的思路,演算一遍,加以驗證。有些學生沒有養成讀題、思考的習慣,心里著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生來問問題,我和他一起讀題,讀到一半時,他說:“老師,我會了。”所以,在實際解題時,應特別注意,審題要認真、仔細。
第七,學會畫圖。畫圖是一個翻譯的過程。讀題時,若能根據題義,把對數學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對于提高解題速度非常重要。畫圖時應注意盡量畫得準確。畫圖準確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。
最后,對于常用的公式,如數學中的乘法公式、三角函數公式,常用的數字,如11~25的平方,特殊角的三角函數值,化學中常用元素的化學性質、化合價以及化學反應方程式等等,都要熟記在心,需用時信手拈來,則對提高演算速度極為有利。
高一數學的函數解題技巧(匯總21篇)篇十八
進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態準備應考,保證數學滿分答題狀態。
二、集中注意,消除焦慮怯場。
但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松好的情緒可以幫助考試在高考數學時取得滿分。
三、沉著應戰。
讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之后做一題得一題,不斷產生正激勵,穩拿中低,見機攀高,沖擊數學滿分。
高一數學的函數解題技巧(匯總21篇)篇十九
排除解題法一般用于解決數學選擇題,當我們應用排除法解決問題時,需掌握各種數學概念及公式,對題目中的答案進行論證,對不符合論證關系的答案進行排除,從而有效解決數學問題。當我們在解決選擇題時,必須將題目及答案都認真看完,對其之間的聯系進行合理分析,并通過嚴謹的解題思路將不符合論證關系的條件進行排除,從而選擇正確的答案。
排除解題法主要用于縮小答案范圍,從而簡化我們的解題步驟,提高接替效率,這樣方法具有較高的準確率。例如,題目為“z的共軛復數為z,復數z=1+i,求zz-z-1的值。選項a為-2i、選項b為i、選項c為-i、選項d為2i。”
當我們在解決這個題目時,不僅要對題目已知條件進行合理分析,而且還要對選項進行合理考慮,并根據它們之間的聯系進行有效論證。我們可以采取排除法來解決這個問題,已知z=1+i,所以我們可以求出z的共軛復數,由于題目中含有負號,所以我們可以排除b項和d項;然后我們可以將z的共軛復數帶進表達式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我們可以將a項排除,最終選擇c項。
高一數學的函數解題技巧(匯總21篇)篇二十
除了用了知識點之外,用選擇題本身固有漏洞做題。大家記住一點,所有選擇題,題目或者答案必然存在做題暗示點。因為首先我們必須得承認,這題能做,只要題能做,必須要有暗示。
1)有選項。利用選項之間的關系,我們可以判斷答案是選或不選。如兩個選項意思完全相反,則必有正確答案。
2)答案只有一個。大家都有這個經驗,當時不明白什么道理,但是看到答案就能明白。由此選項將產生暗示3)題目暗示。選擇題的題目必須得說清楚。大家在審題過程中,是必須要用到有效的訊息的,題目本身就給出了暗示。
4)利用干擾選項做題。選擇題除了正確答案外,其他的都是干擾選項,除非是亂出的選項,否則都是可以利用選項的干擾性做題。一般出題者不會隨意出個選項,總是和正確答案有點關系,或者是可能出錯的結果,我們就可以借助這個命題過程得出正確的結論。
5)選擇題只管結果,不管中間過程,因此在解題過程中可以大膽的簡化中間過程。
6)選擇題必須考察課本知識,做題過程中,可以判斷和課本哪個知識相關?那個選項與這個知識點無關的可立即排除。因此聯系課本知識點做題。
8)選擇題必須保證考生在有限時間內可以做出來的,因此當大家花很多時間想不對的時候,說明思路錯了。選擇題必須是由一個簡單的思路構成的。
2.選擇題解答方法和技巧。
一、直接法:根據選擇題的題設條件,通過計算、推理或判斷,最后達到題目要求。這種直接根據已知條件進行計算、判斷或推理而得到的答案的解選擇題的方法稱之為直接法。
二、間接法:間接法又稱試驗法、排除法或篩選法,又可將間接法分為結論排除法、特殊值排除法、逐步排除法和邏輯排除法等方法。
1)結論排除法:把題目所給的四個結論逐一代回原題中進行驗證,把錯誤的排除掉,直至找到正確的答案,這一逐一驗證所給結論正確性的解答選擇題的方法稱之為結論排除法。
2)特殊值排除法:有些選擇題所涉及的數學命題與字母的取值范圍有關,在解決這類解答題,可以考慮從取值范圍內選取某幾個特殊的值,代入原命題進行驗證,然后排除錯誤的,保留正確的,這種解決答題的方法稱之為特殊值排除法。
3)逐步排除法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,即采用“走一走、瞧一瞧”的辦法,每走一步都與四個結論比較一次,排除掉不可能的,這樣也許走不到最后一步,三個錯誤的結論就被全排除掉了。
4)邏輯排除法:在選擇題的編制過程中,應該注意四個選擇答案之間的邏輯關系,盡量避免等價、包含、對抗等關系的出現,但實際上有些選擇題并沒有注意到這些原則,致使又產生了一種新的解答選擇題的方法。它是拋開題目的已知條件,利用四個選擇答案之間的邏輯關系進行取舍的一種方法,當然最后還有可能使用其他排除的方法才能得到正確的答案。
邏輯排除法使用的邏輯關系有以下幾條:
如果在四個結論中,有a=b,則a可以被排除,若a、b是等價命題時,即a=b,那么根據選擇題的命題結構,則a、b可同時被排除。
若a、b是對立的,即a=b,a、b中必有一真一假,則另兩個選擇答案c、d可以被排除。
對邏輯排除法要慎用,主要是因為初中階段所學的命題及邏輯知識有限,又由于是命題本身造成的,并且能用這種方法解決的題目很少。
總之,這幾種方法中,采用直接法、結論排除法的題型較多。
5)通過猜想、測量的方法,直接觀察或得出結果。這類方法在近年來的中考題中常被運用于探索規律性的問題,此類題的主要解法是運用不完全歸納法,通過試驗、猜想、試誤驗證、總結、歸納等過程使問題得解。
三、數形結合法:就是把問題中的數量關系和空間圖形結合起來思考問題。數與型相互轉化,使問題化繁為簡,得以解決。
四、特殊值法:有些問題從理論上論證它的正確性比較困難,但是代入一些滿足題意的特殊值,驗證它是錯誤的比較容易,此時,我們就可以用這種方法來解決問題。
五、劃歸轉化法:運用某種方法把生疏問題轉化為熟悉問題,把復雜問題轉化為簡單問題,使問題得以解決。
六、方程法:通過設未知數,找等量關系,建方程,解方程,使問題得以解決的方法。
七、實踐操作法:近幾年中考,出現了一些紙片折疊剪裁的題目,我們在考試中實際動手操作一下,就會很容易得出答案。
八、假設法:中考時,有些題目情況繁多,無從下手,這時候我們就可以先假設一種情況,然后從這個假設出發,排除不可能的情況,得出正確結論。
上面是一些做選擇題的常用方法,同學們要常思考,多總結。要善于抓住題目的特點,采取靈活多樣的方法,快捷準確的找到答案。此外,還有一些特殊題型可以用其他方法解答。如:
九、作圖法:有的選擇題可通過命題條件的函數關系或幾何意義,作出函數的圖象或幾何圖形,借助于圖象或圖形的直觀性從中找出正確答案.這種應用“數形結合”來解數學選擇題的方法,我們稱之為“作圖法”.
十、驗證法:直接將各選擇支中的結論代人題設條件進行檢驗,從而選出符合題意的答案.
十一、定義法:運用相關的定義、概念、定理、公理等內容,作出正確選擇的一種方法.
十二、綜合法:為了對選擇題迅速、正確地作出判斷,有時需要綜合運用前面介紹的幾種方法.
十三、特值檢驗法:對于具有一般性的數學問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
十四、極端性原則:將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。
十五、遞推歸納法通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。
十六、正難則反法從題的正面解決比較難時,可從選擇支出發逐步逆推找出符合條件的結論,或從反面出發得出結論。
十七、特征分析法對題設和選擇支的特點進行分析,發現規律,歸納得出正確判斷的方法。
十八、估值選擇法。
有些問題,由于題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
解選擇題的原則是既要注意題目特點,充分應用供選擇的答案所提供的信息,又要有效地排除錯誤答案可能造成的于抗,須注意以下幾點:(1)要認真審題;(2)要大膽猜想;(3)要小心驗證;(4)先易后難,先簡后繁。
在解數學選擇題時,直接法是最基本和使用率最高的一種方法。當題目具備一定的條件和特征時,可考慮采用其他四種方法。有時解一個選擇題需要幾種方法配合使用。另外還要注意充分利用題干和選擇支兩方面所提供的信息,全面審題。不但要審清題干給出的條件,還要考察四個選項所提供的信息(它們之間的異同點及關系、選項與題干的關系等),通過審題對可能存在的各種解法(直接的、間接的)進行比較,包括其思維的難易程度、運算量大小等,初步確定解題的切入點。
高一數學的函數解題技巧(匯總21篇)篇二十一
數學必需保持為知識,技能與文化的主要構成要素,而知識與技能是得傳授給下一代,文化則得傳承給下一代的。下面是初一數學解題技巧,歡迎各位閱讀和借鑒。
一、開考前瀏覽。
考試開始前5分鐘發卷,大家用發卷開始答題這個有限的時間,通過之前的答題瀏覽對整個卷有大致的了解,初步估計試卷難度和時間分配,據此將答題順序統籌,做到知悉。
現在考生應該實現“寵辱不驚”,也就是說,當看到一個似曾相識的問題,心里不希望偷偷高興,而且應該提醒自己,“這道題做時不可輕敵,小心什么陷阱,可能這個稱號,只是類似,有點聽不清的變化會導致一個不同的答案”。
遇到一個從未見過,突然沒有思路的問題時,不要煩惱,相反,這個時候應該是快樂的,“我沒有做過,別人也沒有做過。”這是我的機會。總是提醒自己:我容易得人容易,我不粗心;我不怕困難。
第二,在過程中要仔細檢查。
這是關鍵的一步,要求不遺漏問題,看清問題,弄清問題的含義,理解問題給出的條件和要求回答的問題。不同類型的問題,調查能力不同,用不同的方法和策略來解決問題,評分方法也不同,對于不同類型的問題,關注點也不同。
1.從前向后,先易后難。
一般來說,試題的難度分布是由前到后,由易到難。因此,解決問題順序也宜按試卷編號從小到大,從前到后依次解決。
當然,有時會,但不是機械地。當中間出現問題時,您可以跳過它并攻擊它,或者最終放棄它。先取容易的分數,不要“走黑胡同”,一般原則是先易后難,先選,填空,后答題。
2.得分優先、隨機應變。
在回答問題時,基本原則是“認真做熟悉的問題,慢慢做新問題”,以確保分數不會丟失,不容易為分數加分,但要防止問題太耗時而影響總分。
3.填充實地,不留空白。
考試分數是作業的連續流,如果你在試卷上留下太多的空白,會給打分老師留下不好的印象,會覺得你真的不好。
此外,每個問題都有若干挖掘點,如果這些挖掘點與挖掘點相接觸,就可以給這些挖掘點。因此,在時間允許的情況下,應盡量把問題寫在空白處,寫出相應的公式或定理等相關結論。
三、如何檢查。
在考試中,主動安排時間檢查答案是確保考試的一個重要組成部分的成功,這是為了防止遺漏補充,摒棄虛假和保存真實過程,特別是如果候選人使用一個靈活的回答序列,應該加上期末考試。
因為你更有可能跳過問題,你可以通過檢查來縮小你的策略中的差距。
檢查過程的第一步是檢查是否有遺漏或未做的問題。回答過程中出現的各種問題和結果,如果有時間結合解決過程中出現的問題再對論文草稿進行審核,時間是不夠的,然后重點檢查。
多項選擇題測試的主要目的是看是否有遺漏,以及復習你有疑問的問題。但是如果沒有充分的理由,不要基于你的第一感覺來改變你的判斷。
檢查問題的答案,應注意審核論文草稿計算過程,糾正計算和推理錯誤。此外,還應增加遺漏的原因和步驟,刪除或修改錯誤或不準確的視圖。