知識點總結可以幫助我們發現和彌補學習中的欠缺和不足。以下是一些學生在知識點總結中的經驗和體會,希望對大家的寫作有所幫助。
數學知識點歸納總結(模板15篇)篇一
(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
b)指數是1時,不要誤以為沒有指數;。
二、冪的乘方與積的乘方。
三、同底數冪的除法。
(1)運用法則的前提是底數相同,只有底數相同,才能用此法則。
(2)底數可以是具體的數,也可以是單項式或多項式。
(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負。
四、整式的乘法。
1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。
如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。
2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。
數學知識點歸納總結(模板15篇)篇二
主要是指認真閱讀數學課本。許多同學沒有養成這個習慣,把課本當成練習冊;也有一部分同學不知怎么閱讀,這是他們學不好數學的主要原因之一。一般地,閱讀可以分以下三個層次:
1.課前預習閱讀。預習課文時,要準備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。
2.課堂閱讀。預習時,我們只對所要學的教材內容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預習時所做的標記和批注,結合老師的講授,進一步閱讀課文,從而掌握重點、關鍵,解決預習中的疑難問題。
3.課后復習閱讀。課后復習是課堂學習的延伸,既可解決在預習和課堂中仍然沒有解決的問題,又能使知識系統化,加深和鞏固對課堂學習內容的理解和記憶。一節課后,必須先閱讀課本,然后再做作業;一個單元后,應全面閱讀課本,對本單元的內容前后聯系起來,進行綜合概括,寫出知識小結,進行查缺補漏。
二、多想。
主要是指養成思考的習慣,學會思考的方法。獨立思考是學習數學必須具備的能力。
同學們在學習時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數學知識,歸納總結數學規律,靈活解決數學問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做。
主要是指做習題,學數學一定要做習題,并且應該適當地多做些。做習題的目的首先是熟練和鞏固學習的知識;其次是初步啟發靈活應用知識和培養獨立思考的能力;第三是融會貫通,把不同內容的數學知識溝通起來。在做習題時,要認真審題,認真思考,應該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結,通過練習加深對知識的理解。
四、多問。
是指在學習過程中要善于發現和提出疑問,這是衡量一個學生學習是否有進步的重要標志之一。有經驗的老師認為:能夠發現和提出疑問的學生才更有希望獲得學習的成功;反之,那種一問三不知,自己又提不出任何問題的學生,是無法學好數學的。那么,怎樣才能發現和提出問題呢?第一,要深入觀察,逐步培養自己敏銳的觀察能力;第二,要肯動腦筋,不愿意動腦筋,不去思考,當然發現不了什么問題,也提不出疑問。發現問題后,經過自己的獨立思考,問題仍得不到解決時,應當虛心向別人請教,向老師、同學、家長,向一切在這個問題上比自己強的人請教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學習的人,才有可能成為真正的學習上的強者。
返回目錄。
數學知識點歸納總結(模板15篇)篇三
學生一定要明確,現在正做著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結一下自己的收獲。
二、主動復習與總結提高。
(1)要把課本,筆記,區單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習慣,學生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復習的材料。這樣積累起來的資料才有活力,才能用的上。
(2)把本章節的內容一分為二,一部分是基礎知識,一部分是典型問題。要把對技能的要求(對“鋸,斧,鑿子…”的使用總結),列進這兩部分中的一部分,不要遺漏。
(3)在基礎知識的疏理中,要羅列出所學的所有定義,定理,法則,公式。要做到三會兩用。即:會代字表述,會圖象符號表述,會推導證明。同時能從正反兩方面對其進行應用。
(4)把重要的,典型的各種問題進行編隊。(怎樣做“板凳,椅子,書架…”)要盡量地把他們分類,找出它們之間的位置關系,總結出問題間的來龍去脈。就象我們欣賞一場團體操表演,我們不能只盯住一個人看,看他從哪跑到哪,都做了些什么動作。我們一定要居高臨下地看,看全場的結構和變化。不然的話,陷入題海,徒勞無益。這一點,是提高高中數學水平的關鍵所在。
(5)總結那些尚未歸類的問題,作為備注進行補充說明。
(6)找一份適當的測驗試卷。一定要計時測驗。然后再對照答案,查漏補缺。
三、
重視改錯,錯不重犯。
一定要重視改錯工作,做到錯不再犯。高中數學課沒有那么多時間,除了少數幾種典型錯,其它錯誤,不能一一顧及。如果能及時改錯,那么錯誤就可能轉變為財富,成為不再犯這種錯誤的預防針。但是,如果不能及時改錯,這個錯誤就將形成一處隱患,一處“地雷”,遲早要惹禍。有的學生認為,自己考試成績上不去,是因為自己做題太粗心。而且,自己特愛粗心。打一個比方。比如說,學習開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機械原理,設計原因,操作規程都可以講的清清楚楚。如果新司機真正掌握了這一套,請問,可以同意他開車上街嗎?恐怕他自己也知道自己還缺乏練習。一兩次能正確地完成任務,并不能說明永遠不出錯。
圖是初等數學的生命線,能不能用圖支撐思維活動是能否學好初等數學的關鍵。無論是幾何還是代數,拿到題的第一件事都應該是畫圖。有的時候,一些簡單題只要把圖畫出來,答案就直接出來了。遇到難題時就更應該畫圖,圖可以清楚地呈現出已知條件。而且解難題時至少一問畫一個圖,這樣看起來清晰,做題的時候也好捋順思路。
數學知識點歸納總結(模板15篇)篇四
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
3、整數指數冪的加減乘除法。
4、分式方程及其解法。
第二章反比例函數。
1、反比例函數的表達式、圖像、性質。
圖像:雙曲線。
表達式:y=k/x(k不為0)。
性質:兩支的增減性相同;。
2、反比例函數在實際問題中的應用。
第三章勾股定理。
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方。
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。
第四章四邊形。
1、平行四邊形。
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;。
兩組對角分別相等的四邊形是平行四邊形;。
對角線互相平分的四邊形是平行四邊形;。
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形。
(1)矩形。
性質:矩形的四個角都是直角;。
矩形的對角線相等;。
矩形具有平行四邊形的所有性質。
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;。
推論:直角三角形斜邊的中線等于斜邊的一半。
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3、梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析。
加權平均數、中位數、眾數、極差、方差。
數學知識點歸納總結(模板15篇)篇五
數學是我們的一個主要學科,初中數學的知識點有很多,學生們一定要掌握扎實,以下是小編整理的一些初中數學重要知識點總結歸納,歡迎閱讀參考。
1有理數加法法則。
1、同號兩數相加,取相同的符號,并把絕對值相加;。
2、異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;。
3、一個數與0相加,仍得這個數。
2有理數加法的運算律。
1、加法的交換律:a+b=b+a;。
2、加法的結合律:(a+b)+c=a+(b+c)。
3有理數減法法則。
減去一個數,等于加上這個數的相反數;即a-b=a+(-b)。
4有理數乘法法則。
1、兩數相乘,同號為正,異號為負,并把絕對值相乘;。
2、任何數同零相乘都得零;。
3、幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
5有理數乘法的運算律。
1、乘法的交換律:ab=ba;。
2、乘法的結合律:(ab)c=a(bc);。
3、乘法的分配律:a(b+c)=ab+ac。
6單項式。
只含有數字與字母的積的代數式叫做單項式。
注意:單項式是由系數、字母、字母的指數構成的。
7多項式。
1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。
2、同類項所有字母相同,并且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。
8中心對稱。
1、定義:把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心.這兩個圖形中的對應點叫做關于中心的對稱點。
2、心對稱的兩條基本性質:
(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。
(2)關于中心對稱的兩個圖形是全等圖形。
3、中心對稱圖形。
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
重視每一節課。
初中數學是一個關鍵時期,初中數學是與小學數學完全不同的,初中數學開始進入了一個高難度的層次,想要學好數學必須要重視每一節課,曾經有一個笑話說:“那年我低頭撿了一支筆,從此之后再也沒有學會過數學”,當然了這樣說是全完在開玩笑的,但是數學每一節課也是非常的重要的,如果一節課沒有跟上學習,就可能會被落下很多。
同時,要想上好每一節課,必須做到課前先預習。讓自己在學習的過程中能夠輕松一點。
想要學好數學知識點是不可以缺少的,學好數學的第一步就是能夠掌握基本的知識點,知識點是學習數學的一個入門必備的。無論是數學知識點和概念都是同樣的重要的。掌握了數學的知識點之后就要學會利用知識點去做題了,光是記住了知識點是沒有用的,一定要勤加練習,先從基礎題型開始,再從難度一點點上升的題型開始練習,讓數學課學與練相結合。,一般做好與知識點有關的兩道練習題即可,如果遇到不懂的難題,一定要提出來,及時的問老師或者問同學進行解答。
獨立的完成作業和習題。
學數學最忌諱的就是依賴,依賴課本、依賴參考答案、依賴教科書。這樣做的題是完全不是自己的,想要學好數學首先應該讓自己的有能夠獨立完成作業和習題的能力,不依賴于課本的知識點和概念,這就回歸到第一點了,就是數學的基礎知識是一定要掌握好的,能夠在將來做題中獨立思考,完成作業和習題才能提高數學成績。
一、從變更了命題的表達形式上,培養自己思維的深刻性。加強了這方面的訓練,可以使我們養成深刻理解知識的本質,從而達到培養自己的審題能力。
二、從尋求不同的解題途徑與思維方式上,培養自己思維的廣闊性。對問題解答的思維方式不同,產生的解題方法各異,這樣的訓練有益于打破形成的思維定勢,開拓我們的思路,優化解題方法,從而培養唯美的發散思維能力。
三、從變換幾何圖形的位置、形狀和大小上,培養唯美思維的靈活性、敏捷性。逐步學會把課本中的例題和習題多層次變換,既加強了知識之間的聯系,又激發了自己的學習興趣,達到既鞏固知識又培養能力的目的。
四、從改變題目的條件和結論上,培養我們思維的批判性。這樣的訓練可以克服自己靜止、孤立地看問題的習慣,促進自己對數學思想方法的再認識,培養我們研究和探索問題的能力。
數學知識點歸納總結(模板15篇)篇六
動點的軌跡方程動點的軌跡方程:
在直角坐標系中,動點所經過的軌跡用一個二元方程f(x,y)=0表示出來。
求動點的軌跡方程的基本方法:
直接法、定義法、相關點法、參數法、交軌法等。
用直接法求動點軌跡一般有建系,設點,列式,化簡,證明五個步驟,最后的證明可以省略,但要注意“挖”與“補”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。
動點所滿足的條件不易表述或求出,但形成軌跡的動點p(x,y)卻隨另一動點q(x′,y′)的運動而有規律的運動,且動點q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入q的軌跡方程,然而整理得p的軌跡方程,代入法也稱相關點法。一般地:定比分點問題,對稱問題或能轉化為這兩類的軌跡問題,都可用相關點法。
求軌跡方程有時很難直接找到動點的橫坐標、縱坐標之間的關系,則可借助中間變量(參數),使x,y之間建立起聯系,然而再從所求式子中消去參數,得出動點的軌跡方程。用什么變量為參數,要看動點隨什么量的變化而變化,常見的參數有:斜率、截距、定比、角、點的坐標等。要特別注意消參前后保持范圍的等價性。多參問題中,根據方程的觀點,引入n個參數,需建立n+1個方程,才能消參(特殊情況下,能整體處理時,方程個數可減少)。
求兩動曲線交點軌跡時,可由方程直接消去參數,例如求兩動直線的交點時常用此法,也可以引入參數來建立這些動曲線的聯系,然而消去參數得到軌跡方程。可以說是參數法的一種變種。用交軌法求交點的軌跡方程時,不一定非要求出交點坐標,只要能消去參數,得到交點的兩個坐標間的關系即可。交軌法實際上是參數法中的一種特殊情況。
(l)建系,設點建立適當的坐標系,設曲線上任意一點的坐標為m(x,y);
(2)寫集合寫出符合條件p的點m的集合p(m);
(3)列式用坐標表示p(m),列出方程f(x,y)=0;
(4)化簡化方程f(x,y)=0為最簡形式;
(5)證明證明以化簡后的方程的解為坐標的點都是曲線上的點,
數學知識點歸納總結(模板15篇)篇七
考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理。
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算.
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用.
考點3:相似三角形的概念。
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義.
考點4:相似三角形的判定和性質及其應用。
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,并能較好地應用.
考點5:三角形的重心。
考核要求:知道重心的定義并初步應用.
考點6:向量的有關概念。
考點7:向量的加法、減法、實數與向量相乘、向量的線性運算。
考核要求:掌握實數與向量相乘、向量的線性運算。
考點8:銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.
考點9:解直角三角形及其應用。
考核要求:(1)理解解直角三角形的意義;(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形.
考點10:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數。
考核要求:(1)通過實例認識變量、自變量、因變量,知道函數以及函數的定義域、函數值等概念;(2)知道常值函數;(3)知道函數的表示方法,知道符號的意義.
考點11:用待定系數法求二次函數的解析式。
考核要求:(1)掌握求函數解析式的方法;(2)在求函數解析式中熟練運用待定系數法.
注意求函數解析式的步驟:一設、二代、三列、四還原.
考點12:畫二次函數的圖像。
考核要求:(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像;(2)理解二次函數的圖像,體會數形結合思想;(3)會畫二次函數的大致圖像.
考點13:二次函數的圖像及其基本性質。
考核要求:(1)借助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;(2)會用配方法求二次函數的頂點坐標,并說出二次函數的有關性質.
注意:(1)解題時要數形結合;(2)二次函數的平移要化成頂點式.
考點14:圓心角、弦、弦心距的概念。
考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷.
考點15:圓心角、弧、弦、弦心距之間的關系。
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明.
考點16:垂徑定理及其推論。
垂徑定理及其推論是圓這一板塊中最重要的知識點之一.
考點17:直線與圓、圓與圓的位置關系及其相應的數量關系。
直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映.在圓與圓的位置關系中,常需要分類討論求解.
考點18:正多邊形的有關概念和基本性質。
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題.
考點19:畫正三、四、六邊形.
考核要求:能用基本作圖工具,正確作出正三、四、六邊形.
考點20:確定事件和隨機事件。
考核要求:(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件.
考點21:事件發生的可能性大小,事件的概率。
考核要求:(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小并排出大小順序;(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率.注意:(1)在給可能性的大小排序前可先用“一定發生”、“很有可能發生”、“可能發生”、“不太可能發生”、“一定不會發生”等詞語來表述事件發生的可能性的大小;(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確.
考點22:等可能試驗中事件的概率問題及概率計算。
本考點的考核要求是(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;(2)會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題.
在求解概率問題中要注意:(1)計算前要先確定是否為可能事件;(2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整.
考點23:數據整理與統計圖表。
本考點考核要求是:(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,并能通過圖表獲取有關信息.
考點24:統計的含義。
本考點的考核要求是:(1)知道統計的意義和一般研究過程;(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法.
考點25:平均數、加權平均數的概念和計算。
本考點的考核要是:(1)理解平均數、加權平均數的概念;(2)掌握平均數、加權平均數的計算公式.注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率.
考點26:中位數、眾數、方差、標準差的概念和計算。
考核要求:(1)知道中位數、眾數、方差、標準差的概念;(2)會求一組數據的中位數、眾數、方差、標準差,并能用于解決簡單的統計問題.
注意:當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;(2)求中位數之前必須先將數據排序.
考點27:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖。
考核要求:(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;(2)會畫頻數分布直方圖和頻率分布直方圖,并能用于解決有關的實際問題.解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.
考點28:中位數、眾數、方差、標準差、頻數、頻率的應用。
本考點的考核要是:(1)了解基本統計量(平均數、眾數、中位數、方差、標準差、頻數、頻率)的意計算及其應用,并掌握其概念和計算方法;(2)正確理解樣本數據的特征和數據的代表,能根據計算結果作出判斷和預測;(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然后作出合理的解決.
數學知識點歸納總結(模板15篇)篇八
【知識點】:
1、為學生創設具體的數學情境,通過描一描樹葉的邊線,摸一摸課桌數學書的邊線,再量一量自己的腰圍和頭圍,從而知道了一個圖形一周的長度就是這個圖形的周長。
2、學生在動手操作中,可以畫出并能計算出圖形的周長。
【知識點】:
1、為學生創設游園的情境,引導學生體驗用不同的方法去計算小公園的周長。就是把圍成小公園的所有線段加在一起。
2、算一算中出現了4種不同的圖形,鼓勵學生用多種方法計算,為后面學習長方形、正方形周長的計算作好鋪墊。
【知識點】:
1、學生要明確已知的條件和問題,然后先獨立思考,再在小組中交流自己的想法,鼓勵學生用不同的方法來解決問題,從而發現(長+寬)﹡2是求長方形周長最簡便的方法。不必用公式化的算式去約束學生,他們可以自己喜歡的方法去計算。
2、在做一做中出現的兩個不同的長方形可以讓學生用自己喜歡的方法求周長。
【知識點】:
1、學生要明確已知條件和問題,利用學習長方形周長的知識經驗,知識遷移到怎樣求出正方形的周長,就是把正方形的四條邊長加起來,還可以用邊長乘4。
2、做一做中出現的兩個正方形周長的計算,可以放手讓學生用自己喜歡的方法去解決。
3、練一練中的第2小題要讓學生明確求籬笆長多少米,就是在求正方形實驗園地的周長。
【知識點】:
1、練習六中的1——8小題通過計算各種圖形的不同周長,進一步鞏固學生已經掌握的計算周長的方法。
而第9小題則是讓學生發現圖形之間的變化關系,從而發現這四幅圖形的周長是相等的。
2、在實踐活動中,可以讓學生先計算三個周長的大小,并說出估計的過程或理由,然后再讓學生自主選擇測量工具和測量方式。可以獨立測量,也可以是小組合作進行,最后組織學生對其估計和測量的結果進行對比,修正自己的估計和測量的結果。
【知識點】:
在這節實踐活動課中,要引導學生認真仔細的觀察圖片中的數學信息,從而運用周長、乘除法、搭配方法等數學知識和方法來解決實際生活中的簡單問題。
數學知識點歸納總結(模板15篇)篇九
1、按定義分類: 2.按性質符號分類:
注:0既不是正數也不是負數.
1.相反數
(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
(3)互為相反數的兩個數之和等于0.a、b互為相反數 a+b=0.
2.絕對值 |a|0.
3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數,a、b互為倒數。
4.平方根
(1)如果一個數的平方等于a,這個數就叫做a的平方根。一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a0)的平方根記作。
(2)一個正數a的正的平方根,叫做a的算術平方根,a(a0)的算術平方根記作。
5.立方根
數軸定義: 規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可;
1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大;
3.無理數的比較大小:
1.加法
2.減法:減去一個數等于加上這個數的相反數;
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0。
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數都得0。
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數。
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方。
(3)零指數與負指數
1.有效數字:
一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.
2.科學記數法:
把一個數用 (110,n為整數)的形式記數的方法叫科學記數法.
有了上文梳理的人教版數學期中考試知識點匯總(2),相信大家對考試充滿了信心,同時預祝大家考試取得好成績。
數學知識點歸納總結(模板15篇)篇十
例:已知,正四面體中,一枚棋子從一個頂點出發,選任何一條棱移動的概率都相等,每次移動前,擲一次骰子,出現偶數點,則棋子原地不動;若出現奇數點,則移動。 一枚棋子從點開始移動到點,求擲次骰子,才到達點的概率。
點撥:此題位置不確定,擲點奇偶不定,關系復雜,利用遞推思想是最有郊的方法,通過構建遞推數列,問題迎刃而解。一般存在相互依存關系問題的概率都可運用遞推思路去解決。
綜上所述,靈活運用遞推思維,構造遞推數列解決某些問題,可以起到化繁為簡、化抽象為具體的奇效。 其運用過程中,融高度的邏輯性于一體,是數學中化歸思想的深度體現,因此在平時高考復習中,應引起我們足夠的重視。
二、數列遞推思想在計數方面的應用
點撥:在一些復雜的計數問題中,運用數列遞推思維組建遞推關系可起到“皰丁解牛”的作用,使問題清晰而明了。需要說明的是,此題涉及到計數中的染色問題,通過遞歸關系得到一個一般化的'通式,此式在染色問題中應用相當廣泛。
三、數列在歸納推理中應用
例:一白珠下面掛一黑珠,每一黑珠下掛一黑珠與一白珠,則第11行黑珠的個數為________。
[…第一行][…第二行][…第三行][…第四行][…第五行][…第六行]
點撥:此題通過運用遞推思想得到一個遞推關系,正是著名的“斐波拉契數列”。 在一些數列歸納通項的推理中,利用遞推思想,構建遞推公式,使有限拓展到無限,由特殊變成一般規律,這是解決此類問題常見思路與方法,同理這也體現了合理推理的精髓所在。
數學知識點歸納總結(模板15篇)篇十一
(1)求相同因數的積的運算叫做乘方.乘方運算的結果叫冪。
一般地,記作,讀作:a的n次方,表示n個a相乘;其中,a是底數,n是指數,稱為冪。
(2)正數的任何次冪都是正數.
負數的奇數次冪是負數,
負數的偶數次冪是正數。
(3)一個數的平方為它本身,這個數是0和1;
一個數的立方為它本身,這個數是0、1和-1。
數學知識點歸納總結(模板15篇)篇十二
一、制定切實可行的計劃,家長與孩子一起討論,合理的羅列出完成某些要事的時間段及要達到的目標。
二、數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為基本問題;要反思錯誤,找出產生錯誤的原因,訂出改正的措施。
三、數學不等于做題,千萬不要忽視最基本的概念、公理、定理和公式,寒假里要把已經學過的教科書中的概念整理出來,通過讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
其次,數學需要實踐,需要大量做題,但要“埋下頭去做題,抬起頭來想題”,在做題中關注思路、方法、技巧,注重發現題與題之間的內在聯系,要“苦做”更要“巧做”,絕不能“傻做”。在做一道與以前相似的題目時,要會通過比較,發現規律,穿透實質,以達到“觸類旁通”的境界。此外,大家在平時做題中就要及時記錄錯題,還要想一想為什么會錯、以後要特別注意哪些地方,這樣就能避免不必要的失分。如果試題中涉及到你的薄弱環節,一定要通過短時間的專題學習,集中優勢兵力,攻克難關,別留下陷阱。
數學知識點歸納總結(模板15篇)篇十三
知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
注:有限小數和無限循環小數都可看作分數。
知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
知識點4:絕對值的概念:
(1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
注:任何一個數的絕對值均大于或等于0(即非負數).
知識點5:相反數的概念:
(2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大于零,負數都小于零,正數大于負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(3)一個數與0相加,仍得這個數.
知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
知識點9:有理數減法法則:減去一個數,等于加上這個數的相反數。
知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。
數學知識點歸納總結(模板15篇)篇十四
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5 點和圓的位置關系
點在圓外
點在圓上 d=r
點在圓內 d
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的`三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關系
相交 d
相切 d=r
相離 dr
切線的性質定理:圓的切線垂直于過切點的半徑;
切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
7 圓和圓的位置關系
外離 dr+r
外切 d=r+r
相交 r-r
內切 d=r-r
內含 d
8 正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9 弧長和扇形面積
弧長
扇形面積:
10 圓錐的側面積和全面積
側面積:
全面積
11 (附加)相交弦定理、切割線定理
第五章 概率初步
1 概率意義:在大量重復試驗中,事件a發生的頻率 穩定在某個常數p附近,則常數p叫做事件a的概率。
2 用列舉法求概率
3 用頻率去估計概率
數學知識點歸納總結(模板15篇)篇十五
1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對稱性,根據圖形的特殊性質,找準討論對象,逐一解決。在探討等腰或直角三角形存在時,一定要按照一定的原則,不要遺漏,最后要綜合。這是中考數學的注意點之一。
2、討論點的位置,一定要看清點所在的范圍,是在直線上,還是在射線或者線段上。
4、代數式變形中如果有絕對值、平方時,里面的數開出來要注意正負號的取舍。
5、考查點的取值情況或范圍。這部分多是考查自變量的取值范圍的分類,解題中應十分注意性質、定理的使用條件及范圍.
6、函數題目中如果說函數圖象與坐標軸有交點,那么一定要討論這個交點是和哪一個坐標軸的'哪一半軸的交點。這也是中考數學的注意點。
7、由動點問題引出的函數關系,當運動方式改變后(比如從一條線段移動到另一條線段)是,所寫的函數應該進行分段討論。