總結(jié)是寫給人看的,條理不清,人們就看不下去,即使看了也不知其所以然,這樣就達(dá)不到總結(jié)的目的。寫總結(jié)的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以下我給大家整理了一些優(yōu)質(zhì)的總結(jié)范文,希望對(duì)大家能夠有所幫助。
線性代數(shù)課題總結(jié)與反思篇一
關(guān)鍵詞:矩陣與線性方程組高階矩陣簡(jiǎn)化方法財(cái)務(wù)數(shù)據(jù)分析工具
在本學(xué)期的線性代數(shù)課程的第二章中,我接觸了矩陣的相關(guān)概念,發(fā)現(xiàn)其不僅能夠在數(shù)學(xué)中幫助研究線性變換、向量的線性相關(guān)性及線性方程的解法,還能為日常許多數(shù)據(jù)統(tǒng)計(jì)與分析中看似雜亂無章毫無關(guān)系的數(shù)據(jù)按一定的規(guī)則清晰展現(xiàn),并能通過矩陣的運(yùn)算刻畫其內(nèi)在聯(lián)系,這對(duì)于審計(jì)專業(yè)的我們將來開展財(cái)務(wù)數(shù)據(jù)統(tǒng)計(jì)與分析能帶來巨大的幫助。
在運(yùn)用矩陣解方程組時(shí),可以將線性方程組簡(jiǎn)化為矩陣形式:ax=b,來進(jìn)行矩陣計(jì)算,這種方法不僅書寫方便,而且可以把線性方程組的理論與矩陣?yán)碚撀?lián)系起來,給線性方程組的討論帶來很大的便利。
在具體的矩陣運(yùn)算過程中,我們可以通過等式兩邊同時(shí)左乘?1來求x,這就引出了第二章第三節(jié)的逆矩陣概念,逆在以前高中的實(shí)數(shù)乘法中便起著重要作用,在學(xué)習(xí)線性代數(shù)課程中,逆矩陣也是一個(gè)重要概念,且因?yàn)閮删仃嚦朔e的定義,我們需要注意所討論的矩陣是方陣形式,否則就會(huì)帶來運(yùn)算上的錯(cuò)誤。
而對(duì)于高階的復(fù)雜矩陣,還可以利用分塊矩陣,將大矩陣的運(yùn)算化成若干小矩陣,間接使高階矩陣轉(zhuǎn)化成多個(gè)低階矩陣來運(yùn)算,以及矩陣的初等變換規(guī)律對(duì)矩陣進(jìn)行轉(zhuǎn)換:如通過公式(ae)
(?1)可以對(duì)前面逆矩陣的運(yùn)算起到簡(jiǎn)化作用,通過公式(ab)初等行變換初等行變換
(?1b)則可以借此求解矩陣方程ax=b。通過一步一步的學(xué)習(xí),我慢慢對(duì)線性代數(shù)矩陣這一章節(jié)有了進(jìn)一步的理解掌握,發(fā)現(xiàn)各個(gè)章節(jié)看似無關(guān)的概念,其實(shí)最后都可以聯(lián)系在一起,為求解線性方程組、甚至后面章節(jié)的線性變換、線性相關(guān)性等都起到極大的鋪墊基礎(chǔ)作用。
談了這么多矩陣對(duì)于求解線性方程組過程中的體會(huì),更吸引我的是矩陣對(duì)于數(shù)據(jù)處理方面的作用,作為審計(jì)專業(yè)的學(xué)生,未來工作中會(huì)遇到很多處理產(chǎn)品成本的核算的問題,而通過矩陣這一工具,可以通過特殊的“數(shù)型結(jié)合”恰當(dāng)?shù)娘@示出各種數(shù)據(jù)間的內(nèi)在聯(lián)系,例如:可12以用矩陣(12)來表示一個(gè)公司的單位產(chǎn)品成本構(gòu)成(兩列分別代表產(chǎn)品1和產(chǎn)品2,121三行分別代表材料成本、勞動(dòng)力成本、其他輔助成本),當(dāng)與產(chǎn)品產(chǎn)量矩陣()
211+22相乘時(shí),則可以得出兩種材料的總成本矩陣( 11+22 )將產(chǎn)品總成本的構(gòu)成以更清晰
11+22明了的方式呈現(xiàn)出來,可以為財(cái)務(wù)數(shù)據(jù)的處理帶來很大的助益。
線性代數(shù)課題總結(jié)與反思篇二
線性代數(shù)
關(guān)鍵詞:高等數(shù)學(xué)自學(xué)理解
線性代數(shù)是數(shù)學(xué)的一個(gè)分支,它的研究對(duì)象是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。
線性代數(shù)是繼微積分之后又一門高等數(shù)學(xué),與微積分想比,線性代數(shù)的基礎(chǔ)行列式和矩陣是在高中有所學(xué)習(xí)的,入門還是相對(duì)比較簡(jiǎn)單的。線性代數(shù)從內(nèi)容上看前后聯(lián)系緊密,環(huán)環(huán)相扣,因此解題方法靈活多變,學(xué)習(xí)時(shí)應(yīng)當(dāng)常問自己做得對(duì)不對(duì)?再問做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開闊了。所以多做題也是積累經(jīng)驗(yàn)來方便自己在解題時(shí)能更快更準(zhǔn)確得運(yùn)用適當(dāng)?shù)男再|(zhì)來簡(jiǎn)化題目。
認(rèn)真上好每一堂課對(duì)于學(xué)習(xí)好線性代數(shù)是格外重要的.教材上的知識(shí)和技巧主要由老師在課堂上以授課的形式傳授給你。你在上課時(shí)應(yīng)集中精力聽講,積極思考老師提出的問題,迅速而恰當(dāng)?shù)刈龉P記??磿臏?zhǔn)確程序是:課前預(yù)習(xí)內(nèi)容,課上跟著老師的思路走,盡量不看書來回答上課提出的問題,課后進(jìn)行復(fù)習(xí)鞏固。而有的人恰恰相反,他們?cè)谡n上埋頭看自己的書,絲毫不理會(huì)老師在講什么,這樣做只會(huì)降低效率
線性代數(shù)的許多公式定理難理解,但一定要理解這些東西才能記得牢,理解不需要知道它的證明過程的每一步,只要能朦朦朧朧地想到它的所以然就行了。學(xué)習(xí)線代及其它任何學(xué)科時(shí)都要靜下心來,如果學(xué)習(xí)前很亢奮就拿出一兩分鐘時(shí)間平靜下來再開始學(xué)習(xí)。遇到不會(huì)做的題時(shí)不要去想“這道題我怎么又不會(huì)做”等與這道題無關(guān)的東西,一心想題,這樣解出來的可能性會(huì)大很多。做完題后要想想答案上的方法和自己的方法是怎么想出來的,尤其對(duì)于自己不會(huì)做的題或某個(gè)題答案給出的解法非常好且較難想到,然后將這種思路記住,即做完題目后要總結(jié)自己做題的思路,活用在之后的做題中。
很多人都說,審計(jì)是文科的,學(xué)像微積分和線代這樣的理科課程沒有什么意義,雖然表面看起來是這樣的,但實(shí)際上卻不然。理科注重的邏輯,在學(xué)習(xí)的理科的過程中,我們的思路會(huì)變得清晰,會(huì)計(jì)是很復(fù)雜的一個(gè)專業(yè),很多時(shí)候不同的條件會(huì)需要進(jìn)行不同的處理,而理科會(huì)讓這些復(fù)雜的東西在我們腦海中變得僅僅有條,所以學(xué)習(xí)線代也是有必要的。
線性代數(shù)課題總結(jié)與反思篇三
淺談線性代數(shù)的心得體會(huì)
系別:xxx系 班級(jí):xxx班 姓名:xxx
線性代數(shù)心得
姓名:xxx 學(xué)號(hào):xxx 通過線性代數(shù)的學(xué)習(xí),能使學(xué)生獲得應(yīng)用科學(xué)中常用的矩陣、線性方程組等理論及其有關(guān)基本知識(shí),并具有較熟練的矩陣運(yùn)算能力和用矩陣方法解決一些實(shí)際問題的能力。同時(shí),該課程對(duì)于培養(yǎng)學(xué)生的邏輯推理和抽象思維能力、空間直觀和想象能力具有重要的作用。
在現(xiàn)代社會(huì),除了算術(shù)以外,線性代數(shù)是應(yīng)用最廣泛的數(shù)學(xué)學(xué)科了。但是線性代數(shù)教學(xué)卻對(duì)線性代數(shù)的應(yīng)用涉及太少,課本上涉及最多的應(yīng)用只有算解線性方程組,但這只是線性代數(shù)很初級(jí)的應(yīng)用。而線性代數(shù)在計(jì)算機(jī)數(shù)據(jù)結(jié)構(gòu)、算法、密碼學(xué)、對(duì)策論等等中都有著相當(dāng)大的作用。
線性代數(shù)被不少同學(xué)稱為天書,足見這門課給同學(xué)們?cè)斐傻睦щy。我認(rèn)為,每門課程都是有章可循的,線性代數(shù)也不例外,只要有正確的方法,再加上自己的努力,就可以學(xué)好它。
線性代數(shù)主要研究三種對(duì)象:矩陣、方程組和向量。這三種對(duì)象的理論是密切相關(guān)的,大部分問題在這三種理論中都有等價(jià)說法。因此,熟練地從一種理論的敘述轉(zhuǎn)移到另一種中去,是學(xué)習(xí)線性代數(shù)時(shí)應(yīng)養(yǎng)成的一種重要習(xí)慣和素質(zhì)。如果說與實(shí)際計(jì)算結(jié)合最多的是矩陣的觀點(diǎn),那么向量的觀點(diǎn)則著眼于從整體性和結(jié)構(gòu)性考慮問題,因而可以更深刻、更透徹地揭示線性代數(shù)中各種問題的內(nèi)在聯(lián)系和本質(zhì)屬性。由此可見,只要掌握矩陣、方程組和向量的內(nèi)在聯(lián)系,遇到問題就能左右逢源,舉一反三,化難為易。
線性代數(shù)課程特點(diǎn)比較鮮明:概念多、運(yùn)算法則多內(nèi)容相互縱橫交錯(cuò)正是因?yàn)榫€性代數(shù)各知識(shí)點(diǎn)之間有著千絲萬縷的聯(lián)系,線性代數(shù)題的綜合性與靈活性較大,線性代數(shù)的概念多比如代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,矩陣的秩,線性組合與線性表示,線性相關(guān)與線性無關(guān)等。