教學(xué)工作計劃是教師專業(yè)發(fā)展的重要組成部分,能夠促使教師不斷提高自身的教育教學(xué)水平。以下是小編為大家搜集的教學(xué)工作計劃范文,供大家參考,希望能對大家的教學(xué)工作有所幫助。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇一
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下反比例函數(shù)的基本理論,“學(xué)習(xí)理論是為了服務(wù)于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點處理實際問題,主要圍繞著路程、工程這樣的實際問題,通過在速度一定的條件下路程與時間的關(guān)系,認識到反比例函數(shù)與實際問題的關(guān)系,在講解這幾個例子的時候,創(chuàng)設(shè)了學(xué)生熟悉的情境,簡單的一句話引出問題,這樣更能引起學(xué)生的興趣,使學(xué)生更積極地參與到教學(xué)中來,因為情境熟悉,也能快速地與學(xué)生產(chǎn)生共鳴。
創(chuàng)設(shè)了輕松和諧的教學(xué)環(huán)境與氛圍,師生互動較好,這樣能使學(xué)生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學(xué)生利用圖象解決問題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實際情境中的取值范圍問題。而后,給學(xué)生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關(guān)反比例函數(shù)的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結(jié)中讓學(xué)生體會到利用反比例函數(shù)解決實際問題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。從總體看整個教學(xué)環(huán)節(jié)也比較完整。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇二
2、能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。
3、在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
重點:能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實際問題。
難點:根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。
為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量(g)與時間x(in)成正比例。藥物燃燒后,與x成反比例(如圖所示),現(xiàn)測得藥物8in燃畢,此時室內(nèi)空氣中每立方米的含藥量為6g,請根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時,關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后關(guān)于x的函數(shù)關(guān)系式為_______.
(1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務(wù)?
(2)錄入文字的速度v(字/in)與完成錄入的時間t(in)有怎樣的函數(shù)關(guān)系?
(3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數(shù)關(guān)系?
(2)如果蓄水池的深度設(shè)計為5,那么蓄水池的底面積應(yīng)為多少平方米?
(3)由于綠化以及輔助用地的需要,經(jīng)過實地測量,蓄水池的長與寬最多只能設(shè)計為100和60,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數(shù))。
1、一定質(zhì)量的氧氣,它的密度(g/3)是它的體積v(3)的反比例函數(shù),當(dāng)v=103時,=1.43g/3.(1)求與v的函數(shù)關(guān)系式;(2)求當(dāng)v=23時求氧氣的密度。
2、某地上年度電價為0.8元&nt/&nt度,年用電量為1億度。本年度計劃將電價調(diào)至0.55元至0.75元之間。經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時,=-0.8。
(1)求與x之間的函數(shù)關(guān)系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設(shè)pa=x,點d到pa的距離de=.求與x之間的函數(shù)關(guān)系式及自變量x的取值范圍。
30.3——1、2、3。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇三
本節(jié)課的教學(xué),我本意是通過反比例函數(shù)及其圖像相關(guān)問題的復(fù)習(xí),引出本節(jié)課所要討論的問題反比例函數(shù)的應(yīng)用,而后通過對問題1的討論切入正題,重點研究“數(shù)”與“形”的互相滲透,并通過這節(jié)課的學(xué)習(xí)讓學(xué)生體會“數(shù)形結(jié)合”的數(shù)學(xué)思想,利用函數(shù)圖像來解決應(yīng)用題。在教學(xué)中,我發(fā)現(xiàn)這種教學(xué)設(shè)計出現(xiàn)了以下幾個問題。
首先,目標教學(xué)的第一環(huán)節(jié),前測激趣,但沒有達到激趣的目的,這種引課方式,在課堂反映出來顯得非常平淡,沒有新意,沒能引起學(xué)生的認知發(fā)生沖突,激發(fā)學(xué)生的求知欲。
其次,在導(dǎo)探激勵環(huán)節(jié)中,問題設(shè)計較好,但問題的處理上操之過急,沒能讓學(xué)生切實做出函數(shù)圖像,通過問題迫使學(xué)生利用函數(shù)圖像來解決問題,達到真正看圖說話,因此就數(shù)形的內(nèi)在聯(lián)系學(xué)生體會不是很深刻。
為了一開始就能充分調(diào)動學(xué)生的情商,激發(fā)他們的學(xué)習(xí)動機和好奇心,激發(fā)他們的求知欲,使他們的思維進入最佳狀態(tài),我就上面存在的問題作如下改進。
在整個題目的處理過程,鼓勵學(xué)生畫出函數(shù)圖像,更好的認識整個過程自變量和應(yīng)變量變化的整體情況,處理好題目中的量與自變量和應(yīng)變量的關(guān)系。
作以上改進,可以很好地讓學(xué)生體會到“數(shù)”與“形”之間的聯(lián)系,并且會根據(jù)反比例函數(shù)求應(yīng)用題。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇四
1、借助正比例的意義理解反比例的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
2、在小組合作學(xué)習(xí)過程中,掌握合作學(xué)習(xí)技能,體驗合作學(xué)習(xí)的快樂。
一、創(chuàng)設(shè)情境,明確問題。
同學(xué)們,昨天老師去幼兒園接小朋友,看見幼兒園的老師正在給小朋友們分餅干,想知道他們是怎么分的嗎?我們一起去看一看:
人數(shù)(人)。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇五
教學(xué)目標:
2、培養(yǎng)學(xué)生的邏輯思維能力。
3、感知生活中的數(shù)學(xué)知識。
重點難點1.通過具體問題認識反比例的量。
2、掌握成反比例的量的變化規(guī)律及其特征。
教學(xué)難點:
認識反比例,能根據(jù)反比例的意義判斷兩個相關(guān)聯(lián)的量是不是成反比例。
教學(xué)過程:
一、課前預(yù)習(xí)。
預(yù)習(xí)24---26頁內(nèi)容。
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的兩個表中量變化關(guān)系相同嗎?
3、三個情境中的兩個量哪些是成反比例的量?為什么?
二、展示與交流。
利用反義詞來導(dǎo)入今天研究的課題。今天研究兩種量成反比例關(guān)系的變化規(guī)律。
情境(一)。
認識加法表中和是12的直線及乘法表中積是12的曲線。
引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個加數(shù)隨另一個加數(shù)的變化而變化;乘法表中積是12,一個乘數(shù)隨另一個乘數(shù)的變化而變化。
情境(二)。
讓學(xué)生把汽車行駛的速度和時間的表填完整,當(dāng)速度發(fā)生變化時,時間怎樣變化?每。
兩個相對應(yīng)的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?獨立觀察,思考。
同桌交流,用自己的語言表達。
寫出關(guān)系式:速度×?xí)r間=路程(一定)。
觀察思考并用自己的語言描述變化關(guān)系乘積(路程)一定。
情境(三)。
寫出關(guān)系式:每杯果汁量×杯數(shù)=果汗總量(一定)。
5、以上兩個情境中有什么共同點?
引導(dǎo)小結(jié):都有兩種相關(guān)聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對應(yīng)的兩個數(shù)的乘積是一定的。這兩種量之間是反比例關(guān)系。
活動四:想一想。
二、反饋與檢測。
1、判斷下面每題是否成反比例。
(1)出油率一定,香油的質(zhì)量與芝麻的質(zhì)量。
(2)三角形的面積一定,它的底與高。
(3)一個數(shù)和它的倒數(shù)。
(4)一捆100米電線,用去長度與剩下長度。
(5)圓柱體的體積一定,底面積和高。
(6)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(7)長方形的長一定,面積和寬。
(8)平行四邊形面積一定,底和高。
2、教材“練一練”p33第1題。
3、教材“練一練”p33第2題。
4、找一找生活中成反比例的例子,并與同伴交流。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇六
本節(jié)課是在學(xué)習(xí)了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質(zhì)等相關(guān)知識的基礎(chǔ)上引入的。首先創(chuàng)設(shè)問題情境,展示反比例函數(shù)在實際生活中的應(yīng)用情況,激發(fā)學(xué)生的求知欲和濃厚的學(xué)習(xí)興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實際問題中的應(yīng)用。分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。
知識與技能。
1.能靈活列反比例函數(shù)表達式解決一些實際問題。
2.能綜合利用幾何、方程、反比例函數(shù)的知識解決一些實際問題。
過程與方法。
1.經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。
2.體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強應(yīng)用意識,提高運用代數(shù)方法解決問題的能力。
情感態(tài)度與價值觀。
體驗反比例函數(shù)是有效地描述現(xiàn)實世界的重要手段,認識到數(shù)學(xué)是解決實際問題和進行交流的重要工具。
難點:從實際問題中尋找變量之間的關(guān)系。關(guān)鍵是充分運用所學(xué)知識分析實際情況,建立函數(shù)模型,教學(xué)時注意分析過程,滲透數(shù)形結(jié)合的思想。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇七
這節(jié)課是在學(xué)生掌握了反比例函數(shù)的概念及其圖像與性質(zhì)的基礎(chǔ)之上而學(xué)習(xí)的,并且上學(xué)學(xué)習(xí)了正比例函數(shù)和一次函數(shù),因此學(xué)生已經(jīng)有了一定的知識準備,但是由于學(xué)生的知識所限,對于例題中的信息并不了解,這樣容易造成學(xué)生在了解上的困難,所以在教學(xué)時我選用了學(xué)生所熟悉的實例進行教學(xué)。使學(xué)生從身邊事物入手,真正體會到數(shù)學(xué)知識來源于生活,有一種親切感,另外對于本節(jié)的問題,文字多,閱讀量大,所以我應(yīng)用幻燈片的形式展現(xiàn),效果要好,注意要讓學(xué)生經(jīng)歷實踐、思考、表達與交流的過程,給學(xué)生留下充足的時間來活動,不斷引導(dǎo)學(xué)生利用數(shù)學(xué)知識解決實際問題,本節(jié)課效果較好。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇八
1、本節(jié)課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進一步熟悉其圖象和性質(zhì)的過程。
2、對教材的分析。
(1)教學(xué)目標:進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對函數(shù)進行認識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2)重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3)難點:探索并掌握反比例函數(shù)的主要性質(zhì)。
1、提問:
(1)=4/x是什么函數(shù)?你會作反比例函數(shù)的圖象嗎?
(2)作圖的步驟是怎樣的。
(3)填寫電腦上的表格,開始在坐標紙上描點連線。
2、按照上述方法作=—4/x的圖象。
3、對照你所作的兩個函數(shù)圖象,找一下它們的相同點和不同點。
1、讓學(xué)生觀察函數(shù)=/x的圖象,按下動畫按鈕,在運動中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
2、演示反比例函數(shù)中心對稱的性質(zhì)以及軸對稱性質(zhì),顯示反比例函數(shù)的兩條對稱軸。
3、讓學(xué)生觀察函數(shù)=/x的圖象,觀察過反比例函數(shù)上任意一點作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
(1)拖動,使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。
(2)拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。
1、給出兩個反比例函數(shù)的圖象,判斷哪一個是=2/x和=—2/x的圖象。
2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。
:課本137頁第1題、141頁第2題。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇九
知識與技能:
1、進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象。
2、體會函數(shù)的三種表示方法的相互轉(zhuǎn)換,對函數(shù)進行認識上的整合。
3、培養(yǎng)學(xué)生從函數(shù)圖象中獲取信息的能力,初步探索反比例函數(shù)的性質(zhì)。
過程與方法:通過學(xué)生自己動手列表,描點,連線,提高學(xué)生的作圖能力;通過觀察圖象,概括反比例函數(shù)圖象的有關(guān)性質(zhì),訓(xùn)練學(xué)生的概括總結(jié)能力。
情感、態(tài)度與價值觀:讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中去,增強他們對數(shù)學(xué)學(xué)習(xí)的好奇心和求知欲。
教學(xué)難點。
1)重點:畫反比例函數(shù)圖象并認識圖象的特點。
教學(xué)關(guān)鍵教師畫圖中要規(guī)范,為學(xué)生樹立一個可以學(xué)習(xí)的模板。
教學(xué)方法激發(fā)誘導(dǎo),探索交流,講練結(jié)合三位一體的教學(xué)方式。
教學(xué)手段教師畫圖,學(xué)生模仿。
教具三角板,小黑板。
學(xué)法學(xué)生動手,動眼,動耳,采用自主,合作,探究的學(xué)習(xí)方法。
(包含課前檢測、新課導(dǎo)入、新課講解、課堂練習(xí)、小結(jié)、形成性檢測、反饋拓展、作業(yè)布置)。
內(nèi)容設(shè)計意圖。
(一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=(k為常數(shù),k0)的形式,那么稱y是x的反比例函數(shù)。)。
(1)k為常數(shù),k0。
(2)從y=中可知x作為分母,所以x不能為零。
y=kx+by=kx。
k0一、二、三一、三。
b0一、三、四。
k0一、二、四二、四。
b0二、三、四。
問題3:畫圖象的步驟有哪些呢?
(1)列表。
(2)描點。
(3)連線。
(教學(xué)片斷:
師:上一節(jié)課我們研究了反比例函數(shù),今天我們繼續(xù)研究反比例函數(shù),下面哪位同學(xué)說一下自己對反比例函數(shù)的了解。
生:我知道反比例函數(shù)來源于生活,生活中的許多問題都屬于反比例函數(shù)問題,例如,在勻速運動中當(dāng)路程一定時,且路程不等于零,則速度與時間成反比例函數(shù)關(guān)系。
生:我知道反比例函數(shù)的解析式為且k不等于0。
師:現(xiàn)在給大家?guī)追昼姷臅r間探討一下反比例函數(shù)圖象該怎么畫?
學(xué)生思考、交流、回答。
提問:你能畫出的圖象嗎?
學(xué)生動手畫圖,相互觀摩。
(1)列表(取值的特殊與有效性)。
x-8-4-2-1-1/21/21248。
(2)描點(描點的準確)。
(3)連線(注意光滑曲線)。
議一議。
(1)你認為作反比例函數(shù)圖象時應(yīng)注意哪些問題?與同伴進行交流。
(2)如果在列表時所選取的數(shù)值不同,那么圖象的形狀是否相同?
(3)連接時能否連成折線?為什么必須用光滑的曲線連接各點?
(4)曲線的發(fā)展趨勢如何?
曲線無限接近坐標軸但不與坐標軸相交。
學(xué)生先分四人小組進行討論,而后小組匯報。
做一做。
學(xué)生動手畫圖,相互觀摩。
想一想。
觀察和的圖象,它們有什么相同點和不同點?
學(xué)生小組討論,弄清上述兩個圖象的異同點。
相同點:
(1)圖象分別都是由兩支曲線組成。
(2)都不與坐標軸相交。
(3)都是軸對稱圖形(y=x、y=-x)和中心對稱圖形(對稱中心(0,0)即坐標原點)。
不同點:第一個圖象位于一、三象限;第二個圖象位于二、四象限。
反比例函數(shù)y=有下列性質(zhì):反比例函數(shù)的圖象y=是由兩支曲線組成的。
(1)當(dāng)k0時,兩支曲線分別位于第___、___象限,
(2)當(dāng)k0時,兩支曲線分別位于第___、___象限。
(1)。
(1)已知函數(shù)的圖象分布在第二、四象限內(nèi),則的取值范圍是_________。
(2)若ab0,則函數(shù)與在同一坐標系內(nèi)的圖象大致可能是下圖中的()。
(a)(b)(c)(d)。
(3)畫和的圖象。
在同一坐標系中作出函數(shù)y=2/x與函數(shù)y=x-1的圖象,并利用圖象求它們的交點坐標。
(1)作反比例函數(shù)y=2/x,y=4/x,y=6/x的圖象。
(2)習(xí)題5.2.1。
(3)預(yù)習(xí)下一節(jié)反比例函數(shù)的圖象與性質(zhì)ii。
復(fù)習(xí)上節(jié)主要內(nèi)容。
(3分鐘)。
(5分鐘)。
運用類比研究一次函數(shù)性質(zhì)的方法,來研究反比例函數(shù)圖象與性質(zhì)。
由于初中學(xué)生屬于義務(wù)教育階段,沒有經(jīng)過入學(xué)選拔,所以兩極分化比較嚴重,上面提出的問題帶有一定的開放性,面向各層次的學(xué)生,使不同層次的學(xué)生都有一定的問題可答,從而激發(fā)起不同層次學(xué)生的學(xué)習(xí)積極性。
數(shù)學(xué)教學(xué)重要目的之一是使學(xué)生學(xué)會學(xué)習(xí),利用這個問題可以使學(xué)生學(xué)會尋找研究的方向,會提出研究的課題,提高學(xué)習(xí)的能力。
數(shù)學(xué)學(xué)習(xí)活動是學(xué)生對自己頭腦中已有知識的重新建構(gòu),所以利用學(xué)生頭腦中已有的一次函數(shù)圖象與性質(zhì),及研究一次函數(shù)圖象與性質(zhì)的方法,創(chuàng)設(shè)問題情境,可以激發(fā)學(xué)習(xí)研究的熱情,點燃學(xué)生思維的火花,并使學(xué)生知道如何研究新問題,使學(xué)生在探究過程中實現(xiàn)知識的遷移,形成新的認知結(jié)構(gòu)。
(12分鐘)。
引導(dǎo)學(xué)生正確畫出反比例函數(shù)圖象,并能歸納反比例函數(shù)圖象的有關(guān)性質(zhì)。
在畫第一個圖象時,教師要在黑板上用三角板一步一步的示范,在重要地方再重點強調(diào),直到整個圖象的完成。只有以身示范,同學(xué)學(xué)習(xí)才有樣可依,有了正確標準的樣板,學(xué)生學(xué)習(xí)也變得容易。這樣可以培養(yǎng)學(xué)生嚴謹與嚴密的做題步驟以及做題的規(guī)范性。
注:
(1)x取絕對值相等符號相反的數(shù)值。
(2)x取值要盡可能多,而且有代表性。
(3)連線時用光滑曲線從小到大依次連接。
(4)圖象不與坐標軸相交。
在此學(xué)生若是回答圖象是軸對稱圖象或者中心對稱圖象都要予以肯定,這些內(nèi)容留給學(xué)生課下探討,并鼓勵提出問題的學(xué)生繼續(xù)探索不要放棄。
(3分鐘)。
此時圖象由學(xué)生仿照第一個在下邊自己獨立畫出,并且監(jiān)督學(xué)生,在有學(xué)生畫的不對的地方及時指出,并使其改正后鼓勵。最后在黑板上畫出正確的圖象,使學(xué)生自己畫的圖象與黑板對比。
(5分鐘)。
(4分鐘)。
培養(yǎng)學(xué)生歸納,語言表達能力。
此中注意分類討論思想的應(yīng)用。
(2分鐘)。
與新課較接近的簡化檢測可以再次回顧所學(xué)內(nèi)容,以及內(nèi)容重點。這類題多為口算或口答,題目簡單不過所學(xué)內(nèi)容可以全部體現(xiàn)。
(5分鐘)。
這類練習(xí)要求動筆計算或者畫圖,有一定難度,可以深化所學(xué)內(nèi)容。
(4分鐘)。
此題既是對函數(shù)圖象畫法的復(fù)習(xí)又是對方程求解的深化。其中蘊含了數(shù)形結(jié)合思想。
(1分鐘)。
鞏固作反比例函數(shù)圖象的步驟,預(yù)習(xí)下一節(jié)課內(nèi)容。
本節(jié)課通過學(xué)生自主探索,合作交流,自主畫圖,以認知規(guī)律為主線,以發(fā)展能力為目標,以從直觀感受到分析歸納為手段,培養(yǎng)學(xué)生的合情推理能力和積極的情感態(tài)度,促進良好的數(shù)學(xué)觀的形成。培養(yǎng)了學(xué)生的抽象思維能力,同時也向?qū)W生滲透了歸納類比,數(shù)形結(jié)合以及分類討論的數(shù)學(xué)思想方法。
由于此節(jié)課是動手畫圖,限于器材以及教學(xué)設(shè)備,圖象顯示不能用幾何畫板和投影儀,不過一筆一筆的教學(xué)生一個范例,既可給學(xué)生思考也可有學(xué)習(xí)的空間。
在由圖象獲取性質(zhì)的時候有一些不足,以后教課時要注意引導(dǎo),使學(xué)生較快獲得有效信息,從而歸納出要得到的性質(zhì)和結(jié)論。在這節(jié)課要多強調(diào)光滑曲線以及畫法。
(1)列表(取值的特殊與有效性)。
x-8-4-2-1-1/21/21248。
(2)描點(描點的準確)。
(3)連線(注意光滑曲線)。
注:(1)x取絕對值相等符號相反的數(shù)值。
(2)x取值要盡可能多,而且有代表性三:練習(xí)。
(3)連線時用光滑曲線從小到大依次連接。
(4)圖象不與坐標軸相交。
(1)當(dāng)k0時,兩支曲線分別位于第一、三象限,
(2)當(dāng)k0時,兩支曲線分別位于第二、四象限。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十
(一)教材地位:
本小節(jié)屬于《全日制義務(wù)教育數(shù)學(xué)課程標準實驗稿》中“數(shù)與代數(shù)”領(lǐng)域,是我們在。
學(xué)習(xí)了平面直角坐標系和一次函數(shù)的基礎(chǔ)上,再一次進入函數(shù)領(lǐng)域,通過本小節(jié)的學(xué)習(xí),讓學(xué)生感受到函數(shù)是反映現(xiàn)實生活的一種有效模型,同時,本小節(jié)的學(xué)習(xí)內(nèi)容,直接關(guān)系到后續(xù)內(nèi)容的學(xué)習(xí),也可以說是后續(xù)內(nèi)容的基礎(chǔ)。
(二)教學(xué)重點:
2、能根據(jù)問題中的已知條件確定反比例函數(shù)解析式;
3、能判斷一個函數(shù)是否為反比例函數(shù)及比例系數(shù);
4、培養(yǎng)學(xué)生的觀察、比較、概括能力。
(三)教學(xué)重學(xué):
2、能根據(jù)已知條件確定反比例函數(shù)解析式。
(四)教學(xué)難點:
2、能根據(jù)已知條件確定反比例函數(shù)解析式。
二、分析教法與學(xué)法:
(一)教法:
(二)學(xué)法:
通過觀察、比較、發(fā)現(xiàn)、概括的方法來學(xué)習(xí)新知識。
三、分析教學(xué)過程。
(一)創(chuàng)設(shè)情境:教育大全。
1、由于學(xué)生所學(xué)過的反比例關(guān)系,一次函數(shù)等概念時間已較長,所以在創(chuàng)設(shè)情境時對這些知識加以復(fù)習(xí),以換取學(xué)生以以有知識的記憶。
2、在情境中,列舉大量實例,讓學(xué)生裝根據(jù)已知條件,列出一次函數(shù)、正比例函數(shù)、反比例函數(shù)為學(xué)生的探險索創(chuàng)造條件。
(二)探索過程。
1、學(xué)生的探索能力不是很強,因此在列出的'大量函數(shù)中,教師發(fā)揮主導(dǎo)作用,啟發(fā)學(xué)生思考。
2、通過一系列的探索,讓學(xué)生概括出反比例函數(shù)的共同特征,從而給出概念。
3、在學(xué)生得出反比例函數(shù)后,再進行深化,給出比例系數(shù)為負數(shù)或分。
(三)小結(jié)和作業(yè):
在學(xué)生的自我小結(jié)中教師加以完善,對反比例函數(shù)有一定程度上的掌握。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十一
1、經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題的過程。
2、體會數(shù)學(xué)與現(xiàn)實。
生活的緊密聯(lián)系,增強應(yīng)用意識。提高運用代數(shù)方法解決問題的能力。
通過對反比例函數(shù)的應(yīng)用,培養(yǎng)學(xué)生解決問題的能力。
經(jīng)歷將一些實際問題抽象為數(shù)學(xué)問題的過程,初步學(xué)會從數(shù)學(xué)的角度提出問題。理解問題,并能綜合運用所學(xué)的知識和技能解決問題。發(fā)展應(yīng)用意識,初步認識數(shù)學(xué)與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用。
如何從實際問題中抽象出數(shù)學(xué)問題、建立數(shù)學(xué)模型,用數(shù)學(xué)知識去解決實際問題。
教師引導(dǎo)學(xué)生探索法。
[生]是為了應(yīng)用。
[師]很好。學(xué)習(xí)的目的是為了用學(xué)到的知識解決實際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)。
投影片:(5.3a)。
某校科技小組進行野外考察,途中遇到片十幾米寬的爛泥濕地。為了安全、迅速通過這片濕地,他們沿著前進路線鋪墊了若干塊木板,構(gòu)筑成一條臨時通道,從而順利完成了任務(wù)。你能解釋他們這樣做的道理嗎?當(dāng)人和木板對濕地的壓力一定時隨著木板面積s(m2)的變化,人和木板對地面的壓強p(pa)將如何變化?如果人和木板對濕地地面的壓力合計600n,那么:
(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?
(2)當(dāng)木板畫積為0.2m2時。壓強是多少?
(3)如果要求壓強不超過6000pa,木板面積至少要多大?
(4)在直角坐標系中,作出相應(yīng)的函數(shù)圖象。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十二
2、能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。
3、在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
重點:能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實際問題。
難點:根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。
為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg,請根據(jù)題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_______.
(1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務(wù)?
(3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個字?
例2某自來水公司計劃新建一個容積為的'長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數(shù)關(guān)系?
(2)如果蓄水池的深度設(shè)計為5m,那么蓄水池的底面積應(yīng)為多少平方米?
(3)由于綠化以及輔助用地的需要,經(jīng)過實地測量,蓄水池的長與寬最多只能設(shè)計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數(shù))。
1、一定質(zhì)量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數(shù),當(dāng)v=10m3時,=1.43kg/m3.(1)求與v的函數(shù)關(guān)系式;(2)求當(dāng)v=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調(diào)至0.55元至0.75元之間.經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時,y=-0.8.
(1)求y與x之間的函數(shù)關(guān)系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設(shè)pa=x,點d到pa的距離de=y.求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍.
30.31、2、3。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十三
1. 本節(jié) 課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》 的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例 函數(shù)的意義和概念的基礎(chǔ)上,進一步熟悉其圖象和性質(zhì)的過程。
2. 對教材的分析
(1) 教學(xué)目標:進 一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對 函數(shù)進行認識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2) 重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3) 難點:探索并掌握反比例函數(shù)的主要性質(zhì)。
1、提問:
(1)=4/x 是什么函數(shù)?你會作反比例函數(shù)的圖象嗎?
(2)作圖的步驟是 怎樣的(3)填寫電腦上的表格,開始在坐標紙上描點連線。
2、按照上述方法作 =―4/x 的圖象3、 對照你所作的兩個函數(shù)圖象,找一下它們的相同點和不同點。
1、讓學(xué)生觀察函 數(shù) =/x 的圖象 ,按下動畫按鈕,在運動中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
2、演示反比例函數(shù)中心 對稱的性質(zhì)以及軸對稱性質(zhì),顯示反比例函數(shù)的兩條對稱軸。
3、讓學(xué)生觀察函數(shù) =/x 的圖象,觀察過反比例函數(shù)上任意一 點作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
(1) 拖動,使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出 結(jié)論。
(2) 拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。
1、給出兩個反比例函數(shù)的圖象,判斷哪一個是 =2/x 和 =―2/x 的圖象。
2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。
3、下列函數(shù)中,其圖象位于第一、三象限
的有哪幾個?在其圖象所在象限內(nèi),的值隨x的增大而增
大的有哪幾個?
:課本137頁第1題、141頁第2題
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十四
運用反比例函數(shù)解釋生活中的一些規(guī)律、解決一些實際問題
難點
把實際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決
活動流程圖
活動內(nèi)容和目的
活動1創(chuàng)設(shè)情境,引出問題
活動2分析解決問題
活動3從函數(shù)的觀點進一步分析規(guī)律
活動4鞏固練習(xí)
活動5課堂小結(jié)、布置作業(yè)
教師提出生活中遇到的難題,請學(xué)生幫助解決,激發(fā)學(xué)生的興趣
與學(xué)生共同分析實際問題中的變量關(guān)系,引導(dǎo)學(xué)生利用反比例函數(shù)解決問題
引導(dǎo)學(xué)生追尋杠桿原理中蘊涵的規(guī)律,從反比例函數(shù)的圖象、性質(zhì)等角度挖掘
通過課堂練習(xí),提高學(xué)生運用反比例函數(shù)解決實際問題的能力
歸納、總結(jié)所學(xué),體會利用函數(shù)的觀點解決實際問題
問題與情境
師生行為
設(shè)計意圖
如何打開這個未開封的奶粉桶呢?―
教師提出實際生活中的問題,學(xué)生提出解決辦法,教師引出利用杠桿原理解決問題。
能否從數(shù)學(xué)角度探索杠桿原理中蘊涵的變量關(guān)系呢?
讓學(xué)生了解到日常生活中存在著許多兩個量之間具有反比例關(guān)系的例子,自然引入課題
展示問題1:
幾位同學(xué)玩撬石頭的游戲,已知阻力和阻力臂不變,分別是1200牛頓和0.5米,設(shè)動力為f,動力臂為。回答下列問題:
(1)動力f與動力臂有怎樣的函數(shù)關(guān)系?
不妨列表描點畫出圖象
(圖象在第三象限會有嗎?)
分析問題中變量間的關(guān)系
教師按照學(xué)生的認知規(guī)律有層次、有步驟地引導(dǎo)學(xué)生分析解決問題
從函數(shù)的觀點進一步分析規(guī)律
(5)地球重量的近似值為(即為阻力),假設(shè)阿基米德有500牛頓的力量,阻力臂為20xx千米,請你幫助阿基米德設(shè)計該用動力臂為多長的杠桿才能把地球撬動?利用反比例函數(shù)的變化規(guī)律解釋實際生活中一些問題深入挖掘動力臂與動力f又有怎樣的函數(shù)關(guān)系呢?待定系數(shù)法解決函數(shù)問題公元前3世紀,古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”:
阻力阻力臂=動力動力臂,他形象地說,“給我一個支點我可以把地球撬動”
展示練習(xí)
市政府計劃建設(shè)一項水利工程,工程需要運送的土石方總量為米,某運輸公司承辦了該項工程運送土方的任務(wù)。
歸納、總結(jié)
作業(yè):教科書習(xí)題17.2第6題
教師引導(dǎo)學(xué)生回憶、總結(jié),教師予以補充
通過小結(jié),使學(xué)生把所學(xué)知識進一步內(nèi)化、系統(tǒng)化
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十五
教學(xué)目標:
1、理解反比例函數(shù),并能從實際問題中抽象出反比例關(guān)系的函數(shù)解析式;。
2、會畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);。
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;。
4、體會數(shù)學(xué)從實踐中來又到實際中去的研究、應(yīng)用過程;。
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力。
教學(xué)重點:
教學(xué)用具:直尺。
教學(xué)方法:小組合作、探究式。
教學(xué)過程:
我們在小學(xué)學(xué)過反比例關(guān)系。例如:當(dāng)路程s一定時,時間t與速度v成反比例。
即vt=;。
當(dāng)矩形面積s一定時,長a與寬b成反比例,即ab=。
從函數(shù)的觀點看,在運動變化的過程中,有兩個變量可以分別看成自變量與函數(shù),寫成:
(s是常數(shù))。
(s是常數(shù))。
一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù)。
如上例,當(dāng)路程s是常數(shù)時,時間t就是v的反比例函數(shù).當(dāng)矩形面積s是常數(shù)時,長a是寬b的反比例函數(shù)。
在現(xiàn)實生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進行討論。
解:列表。
說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測出它的大致圖象.取點的時候最好多取幾個,正負可以對稱著取分別畫點描圖。
一般地反比例函數(shù)(k是常數(shù))的圖象由兩條曲線組成,叫做雙曲線。
3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識的學(xué)習(xí)。
顯示這兩個函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證。
(1)的圖象在第一、三象限.可以擴展到k=0時的情形,即k=0時,雙曲線兩支各在第一和第三象限。從解析式中,也可以得出這個結(jié)論:xy=k,即x與y同號,因此,圖象在第一、三象限的討論與此類似。
抓住機會,說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程。
(2)函數(shù)的圖象,在每一個象限內(nèi),y隨x的增大而減小;。
從圖象中可以看出,當(dāng)x從左向右變化時,圖象呈下坡趨勢。從列表中也可以看出這樣的變化趨勢。有理數(shù)除法說明了同樣的道理,被除數(shù)一定時,若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小。由此可歸納出,當(dāng)k0時,函數(shù)的圖象,在每一個象限內(nèi),y隨x的增大而減小。
同樣可以推出的圖象的性質(zhì)。
(3)函數(shù)的圖象不經(jīng)過原點,且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時,y的值越來越小,趨近于零;如果x取負值且越來越小時,y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子。同理,抽象出圖象的性質(zhì)。
函數(shù)的圖象性質(zhì)的討論與次類似。
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進一步的認識.數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運用已有的數(shù)學(xué)知識,給以一定的解釋.即數(shù)學(xué)是世界的一個部分,同時又隱藏在世界中。
5、布置作業(yè)習(xí)題13.81-4。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十六
本節(jié)課是在學(xué)習(xí)了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質(zhì)等相關(guān)知識的基礎(chǔ)上引入的。首先創(chuàng)設(shè)問題情境,展示反比例函數(shù)在實際生活中的應(yīng)用情況,激發(fā)學(xué)生的求知欲和濃厚的學(xué)習(xí)興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實際問題中的應(yīng)用。分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。
1.能靈活列反比例函數(shù)表達式解決一些實際問題。
2.能綜合利用幾何、方程、反比例函數(shù)的知識解決一些實際問題。
1.經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。
2.體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強應(yīng)用意識,提高運用代數(shù)方法解決問題的能力。
情感態(tài)度與價值觀。
體驗反比例函數(shù)是有效地描述現(xiàn)實世界的重要手段,認識到數(shù)學(xué)是解決實際問題和進行交流的重要工具。
從實際問題中尋找變量之間的關(guān)系。關(guān)鍵是充分運用所學(xué)知識分析實際情況,建立函數(shù)模型,教學(xué)時注意分析過程,滲透數(shù)形結(jié)合的思想。
啟發(fā)引導(dǎo)、合作探究。
(一)創(chuàng)設(shè)問題情境,引入新課。
[生]是為了應(yīng)用。
[師]很好。學(xué)習(xí)的目的是為了用學(xué)到的知識解決實際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)。
問題:某校科技小組進行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進路線鋪墊了若干塊木板,構(gòu)筑成一條臨時通道,從而順利完成了任務(wù)的情境。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十七
1、經(jīng)歷從實際問題抽象出反比例函數(shù)的探索過程,發(fā)展學(xué)生的抽象思維能力。
2、理解反比例函數(shù)的概念,會列出實際問題的反比例函數(shù)關(guān)系式。
4、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì)。
1、使學(xué)生了解反比例函數(shù)的表達式,會畫反比例函數(shù)圖象。
1、列函數(shù)表達式。
一、作業(yè)檢查與講評。
二、復(fù)習(xí)導(dǎo)入。
我們知道當(dāng)。
(1)當(dāng)路程s一定,時間t與速度v成反比例,即vt=當(dāng)矩形面積一定時,長a和寬b成反比例,即ab=,求另一邊的長y(米)與x的函數(shù)關(guān)系式。
分析根據(jù)矩形面積可知。
xy=24,即。
從這個關(guān)系中發(fā)現(xiàn):
2、自變量的取值是x0.
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十八
1、能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實際問題。
2、能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。
3、在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
重點:能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實際問題。
難點:根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。
為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg,請根據(jù)題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_______。
(1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務(wù)?
(3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數(shù)關(guān)系?
(2)如果蓄水池的深度設(shè)計為5m,那么蓄水池的底面積應(yīng)為多少平方米?
(3)由于綠化以及輔助用地的需要,經(jīng)過實地測量,蓄水池的長與寬最多只能設(shè)計為100m和60m,那么蓄水池的.深度至少達到多少才能滿足要求?(保留兩位小數(shù))。
1、一定質(zhì)量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數(shù),當(dāng)v=10m3時,=1.43kg/m3.(1)求與v的函數(shù)關(guān)系式;(2)求當(dāng)v=2m3時求氧氣的密度。
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調(diào)至0.55元至0.75元之間.經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時,y=-0.8。
(1)求y與x之間的函數(shù)關(guān)系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設(shè)pa=x,點d到pa的距離de=y.求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍。
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇十九
知識與技能:1.進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象。
2.體會函數(shù)的三種表示方法的相互轉(zhuǎn)換,對函數(shù)進行認識上的整合。
3.培養(yǎng)學(xué)生從函數(shù)圖象中獲取信息的能力,初步探索反比例函數(shù)的性質(zhì)。
過程與方法:通過學(xué)生自己動手列表,描點,連線,提高學(xué)生的作圖能力;通過觀察圖象,概括反比例函數(shù)圖象的有關(guān)性質(zhì),訓(xùn)練學(xué)生的概括總結(jié)能力.
情感、態(tài)度與價值觀:讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中去,增強他們對數(shù)學(xué)學(xué)習(xí)的好奇心和求知欲。
教學(xué)難點 1) 重點:畫反比例函數(shù)圖象并認識圖象的特點.
2)難點:畫反比例函數(shù)圖象.
教學(xué)關(guān)鍵 教師畫圖中要規(guī)范,為學(xué)生樹立一個可以學(xué)習(xí)的模板
教學(xué)方法 激發(fā)誘導(dǎo),探索交流,講練結(jié)合三位一體的教學(xué)方式
教學(xué)手段 教師畫圖,學(xué)生模仿
教具 三角板,小黑板
學(xué)法 學(xué)生動手,動眼,動耳,采用自主,合作,探究的學(xué)習(xí)方法
(包含課前檢測、新課導(dǎo)入、新課講解、課堂練習(xí)、小結(jié)、形成性檢測、反饋拓展、作業(yè)布置)
內(nèi) 容 設(shè)計意圖
1.什么叫做反比例函數(shù);
(一般地,如果兩個變量x、y之間的關(guān)系可以表示成y= (k為常數(shù),k0)的形式,那么稱y是x的反比例函數(shù)。)
2.反比例函數(shù)的定義中需要注意什么?
(1)k為常數(shù),k0
(2)從y= 中可知x作為分母,所以x不能為零.
y=kx+b y=kx
k0 一、二、三 一、三
b0 一、三、四
k0 一、二、四 二、四
b0 二、三、四
可以
問題3:畫圖象的步驟有哪些呢?
(1)列表
(2)描點
(3)連線
(教學(xué)片斷:
師:上一節(jié)課我們研究了反比例函數(shù),今天我們繼續(xù)研究反比例函數(shù),下面哪位同學(xué)說一下自己對反比例函數(shù)的了解。
生:我知道反比例函數(shù)來源于生活,生活中的許多問題都屬于反比例函數(shù)問題,例如,在勻速運動中當(dāng)路程一定時,且路程不等于零,則速度與時間成反比例函數(shù)關(guān)系。
生:我知道反比例函數(shù)的解析式為 且k不等于0
生:我知道反比例函數(shù)的圖象是曲線。
生:該研究反比例函數(shù)圖象和性質(zhì)了。
師:現(xiàn)在給大家?guī)追昼姷臅r間探討一下反比例函數(shù)圖象該怎么畫?
學(xué)生思考、交流、回答。
提問:你能畫出 的圖象嗎?
學(xué)生動手畫圖,相互觀摩。
(1) 列表(取值的特殊與有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描點(描點的準確)
(3)連線(注意光滑曲線)
議一議
(1)你認為作反比例函數(shù)圖象時應(yīng)注意哪些問題?與同伴進行交流。
(2)如果在列表時所選取的數(shù)值不同,那么圖象的形狀是否相同?
(3)連接時能否連成折線?為什么必須用光滑的曲線連接各點?
(4)曲線的發(fā)展趨勢如何?
曲線無限接近坐標軸但不與坐標軸相交
學(xué)生先分四人小組進行討論,而后小組匯報
做一做
作反比例函數(shù) 的圖象。
學(xué)生動手畫圖,相互觀摩。
想一想
觀察 和 的圖象,它們有什么相同點和不同點?
學(xué)生小組討論,弄清上述兩個圖象的異同點
相同點:(1)圖象分別都是由兩支曲線組成(2)都不與坐標軸相交(3)都是軸對稱圖形(y=x、y=-x)和中心對稱圖形(對稱中心(0,0)即坐標原點)
不同點:第一個圖象位于一、三象限;第二個圖象位于二、四象限
反比例函數(shù) y = 有下列性質(zhì):反比例函數(shù)的圖象y = 是由兩支曲線組成的。
(1) 當(dāng) k0 時,兩支曲線分別位于第___、___象限,
(2) 當(dāng) k0 時,兩支曲線分別位于第___、___象限.
(1)
(1)已知函數(shù) 的圖象分布在第二、四象限內(nèi),則 的取值范圍是_________
(2)若ab0,則函數(shù) 與 在同一坐標系內(nèi)的圖象大致可能是下圖中的 ( )
(a) (b) (c) (d)
(3)畫 和 的圖象
在同一坐標系中作出函數(shù)y=2/x與函數(shù)y=x-1的圖象,并利用圖象求它們的交點坐標.
(1) 作反比例函數(shù)y=2/x,y=4/x,y=6/x的圖象
(2) 習(xí)題5.2.1
(3)預(yù)習(xí)下一節(jié) 反比例函數(shù)的圖象與性質(zhì)ii
復(fù)習(xí)上節(jié)主要內(nèi)容
(3分鐘)
(5分鐘)
運用類比研究一次函數(shù)性質(zhì)的方法,來研究反比例函數(shù)圖象與性質(zhì)
由于初中學(xué)生屬于義務(wù)教育階段,沒有經(jīng)過入學(xué)選拔,所以兩極分化比較嚴重,上面提出的問題帶有一定的開放性,面向各層次的學(xué)生,使不同層次的學(xué)生都有一定的問題可答,從而激發(fā)起不同層次學(xué)生的學(xué)習(xí)積極性。
數(shù)學(xué)教學(xué)重要目的之一是使學(xué)生學(xué)會學(xué)習(xí),利用這個問題可以使學(xué)生學(xué)會尋找研究的方向,會提出研究的課題,提高學(xué)習(xí)的能力。
數(shù)學(xué)學(xué)習(xí)活動是學(xué)生對自己頭腦中已有知識的重新建構(gòu),所以利用學(xué)生頭腦中已有的一次函數(shù)圖象與性質(zhì),及研究一次函數(shù)圖象與性質(zhì)的方法,創(chuàng)設(shè)問題情境,可以激發(fā)學(xué)習(xí)研究的熱情,點燃學(xué)生思維的火花,并使學(xué)生知道如何研究新問題,使學(xué)生在探究過程中實現(xiàn)知識的遷移,形成新的認知結(jié)構(gòu)。
(12分鐘)
引導(dǎo)學(xué)生正確畫出反比例函數(shù)圖象,并能歸納反比例函數(shù)圖象的有關(guān)性質(zhì).
在畫第一個圖象時,教師要在黑板上用三角板一步一步的示范,在重要地方再重點強調(diào),直到整個圖象的完成。只有以身示范,同學(xué)學(xué)習(xí)才有樣可依,有了正確標準的樣板,學(xué)生學(xué)習(xí)也變得容易。這樣可以培養(yǎng)學(xué)生嚴謹與嚴密的做題步驟以及做題的規(guī)范性。
注:(1)x取絕對值相等符號相反的數(shù)值
(2) x取值要盡可能多,而且有代表性
(3)連線時用光滑曲線從小到大依次連接
(4)圖象不與坐標軸相交
在此學(xué)生若是回答圖象是軸對稱圖象或者中心對稱圖象都要予以肯定,這些內(nèi)容留給學(xué)生課下探討,并鼓勵提出問題的學(xué)生繼續(xù)探索不要放棄。
(3分鐘)
此時圖象由學(xué)生仿照第一個在下邊自己獨立畫出,并且監(jiān)督學(xué)生,在有學(xué)生畫的不對的地方及時指出,并使其改正后鼓勵。最后在黑板上畫出正確的圖象,使學(xué)生自己畫的圖象與黑板對比。
(5分鐘)
(4分鐘)
培養(yǎng)學(xué)生歸納,語言表達能力
此中注意分類討論思想的應(yīng)用
鞏固反比例函數(shù)圖象性質(zhì)
(2分鐘)
與新課較接近的簡化檢測可以再次回顧所學(xué)內(nèi)容,以及內(nèi)容重點。這類題多為口算或口答,題目簡單不過所學(xué)內(nèi)容可以全部體現(xiàn)。
(5分鐘)
這類練習(xí)要求動筆計算或者畫圖,有一定難度,可以深化所學(xué)內(nèi)容。
(4分鐘)
此題既是對函數(shù)圖象畫法的復(fù)習(xí)又是對方程求解的深化。其中蘊含了數(shù)形結(jié)合思想。
(1分鐘)
鞏固作反比例函數(shù)圖象的步驟,預(yù)習(xí)下一節(jié)課內(nèi)容
本節(jié)課通過學(xué)生自主探索,合作交流,自主畫圖,以認知規(guī)律為主線,以發(fā)展能力為目標,以從直觀感受到分析歸納為手段,培養(yǎng)學(xué)生的合情推理能力和積極的情感態(tài)度,促進良好的數(shù)學(xué)觀的形成。培養(yǎng)了學(xué)生的抽象思維能力,同時也向?qū)W生滲透了歸納類比,數(shù)形結(jié)合以及分類討論的數(shù)學(xué)思想方法。
由于此節(jié)課是動手畫圖,限于器材以及教學(xué)設(shè)備,圖象顯示不能用幾何畫板和投影儀,不過一筆一筆的教學(xué)生一個范例,既可給學(xué)生思考也可有學(xué)習(xí)的空間。
在由圖象獲取性質(zhì)的時候有一些不足,以后教課時要注意引導(dǎo),使學(xué)生較快獲得有效信息,從而歸納出要得到的性質(zhì)和結(jié)論。在這節(jié)課要多強調(diào)光滑曲線以及畫法。
(1)列表(取值的特殊與有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描點(描點的準確)
(3)連線(注意光滑曲線)
注:(1)x取絕對值相等符號相反的數(shù)值
(2)x取值要盡可能多,而且有代表性 三:練習(xí)
(3)連線時用光滑曲線從小到大依次連接
(4)圖象不與坐標軸相交
(1) 當(dāng) k0 時,兩支曲線分別位于第一、三象限,
(2) 當(dāng) k0 時,兩支曲線分別位于第二、四象限.
反比例函數(shù)教案(優(yōu)質(zhì)20篇)篇二十
1、借助正比例的意義理解反比例的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
2、在小組合作學(xué)習(xí)過程中,掌握合作學(xué)習(xí)技能,體驗合作學(xué)習(xí)的快樂。
一、創(chuàng)設(shè)情境,明確問題
同學(xué)們,昨天老師去幼兒園接小朋友,看見幼兒園的老師正在給小朋友們分餅干,想知道他們是怎么分的嗎?我們一起去看一看:
人數(shù)(人) | 1 | 2 | 3 | 4 | 5 |
塊數(shù)(塊) | 3 | 6 | 9 | 12 | 15 |
每人分的塊數(shù)(塊) | 3 | 3 | 3 | 3 | 3 |
仔細觀察,從這個表中,你知道了什么?你知道表中的哪兩種量成正比例嗎?(說明理由)
說一說成正比例的兩個量的變化規(guī)律。
師小明的媽媽要去銀行換一些零錢,請你幫忙算一算,各換多少張:
面值(元) | 1 | 2 | 5 | 10 | 20 |
張數(shù)(張) | 20 | ||||
總錢數(shù)(元) |
1、獨立思考:出示表格,讓學(xué)生自己觀察,提出問題并解決問題。
2、小組合作,交流探討問題。
要求:認真聽取別人的意見,詳細說明自己的'觀點,如果有不懂的地方要虛心求助,最重要的是要控制好自己的言行,小組長要協(xié)調(diào)好本組的合作過程。
3、匯報交流,發(fā)現(xiàn)規(guī)律。
4、教師小結(jié),明確概念,呈現(xiàn)課題。
5、在理解概念的基礎(chǔ)上增加記憶。
1、給車棚的地面鋪上水泥磚,每塊水泥磚的面積與所需數(shù)量如下:
沒塊水泥磚的面積(平方厘米) | 500 | 400 | 300 |
數(shù)量(塊) | 600 | 750 | 1000 |
每塊水泥磚的面積與所需數(shù)量是否成反比例?為什么?
2、下表中x和y兩個量成反比例,請把表格填寫完整。
x | 2 | 40 | |||
y | 5 | 0.1 |
3、判斷下面每題中的兩種量是否成反比例,并說明理由。
(1)全班的人數(shù)一定,每組的人數(shù)和組數(shù)。
(2)圓柱的體積一定,圓柱的底面積和高。
(3)書的總頁數(shù)一定,已經(jīng)看的頁數(shù)和未看的頁數(shù)。
(4)圓柱的側(cè)面積一定,它的底面周長和高。
(5)、六(1)班學(xué)生的出席人數(shù)與缺席人數(shù)。
4、下面各題中的兩種量是不是成比例?如果成比 例,成什么比例?
(1)、訂閱《小學(xué)生天地》的份數(shù)和總錢數(shù)。
(2)、小新跳高的高度與他的身高。
(3)、平行四邊形的面積一定,底和高。
(4)、正方行的邊長與它的周長。
(5)、三角形的面積一定,底和高。
5、生活中還有哪些成反比例關(guān)系的量?
1、這節(jié)課學(xué)會了什么知識?反比例的意義是什么?
2、這節(jié)課你與小組同學(xué)合作的怎么樣?以后應(yīng)該怎么做?