每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。那么我們該如何寫一篇較為完美的范文呢?下面我給大家整理了一些優秀范文,希望能夠幫助到大家,我們一起來看一看吧。
人教版初中數學教學設計篇一
不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認識來認識與它相似的另一事物,這種認識事物的思維方法就是類比法,利用類比的思想進行教學設計實施教學,可稱為類比教學.在函數教學中我們期望的是通過對前面知識的學習方法的傳授,達到對后續知識的學習產生影響,使學生達到舉一反三,觸類旁通的目的,讓學生順利地由學會到會學,真正實現教是為了不教的目的.有經驗的老師都會發現,初中學習的正比例函數、一次函數、反比例函數、二次函數在概念的得來、圖象性質的研究、及基本解題方法上都有著本質上的相似。因此采用類比的教學方法不但省時、省力,還有助于學生的理解和應用。是一種既經濟又實效的教學方法。下面我就舉例說明如何采用類比的方法實現函數的教學。
首先是正比例函數,它是一次函數特例,也是初中數學中的一種簡單最基本的函數。但是,我們有些教師卻因為正比例函數過于簡單,而輕視。匆匆給出概念,然后應用。等到講到一次函數、反比例函數、二次函數又感到力不從心,學生接受起來概念模糊,性質混亂,解題方法不明確。造成這種困擾的原因是因為忽視正比例函數的基礎作用,我們應該借助正比例函數這個最簡單的函數載體,把函數研究經典流程完整呈現,正所謂麻雀雖小,五臟俱全。再學習其他函數時,在此基礎上類比學習,循序漸進,螺旋上升。例如:
《正比例函數》教學流程
(一)環節一:概念的建立
通過對問題的處理用函數y=200x來反映汽車的行程與時間的對應規律引入新課。學生自覺思考教師提問,共同得出每個問題的函數關系式。引導學生觀察以上函數關系式的特點得出正比例函數的描述定義及解析式特點。
(二)環節二:函數圖象
這個環節是教學的重點,由學生先動手按列表——描點——連線的過程畫函數y=2x和y=-2x的圖象,相互交流比較然后教師利用多媒體展示畫函數圖象的過程并通過比較使學生正確掌握畫函數圖象的方法。
(三)環節三:探究函數性質
讓學生觀察函數圖象并引導學生通過比較來歸納正比例函數的性質,這個環節是本課的難點,教師要引導學生從圖象的形狀,從左往右的升降情況,經過的象限及自變量變化時函數值的變化規律。這幾個方面來歸納,最終得出正比例函數的性質。
(四)環節四:概念的歸納
將觀察、探究出的函數圖象的特征、函數的性質等做出系統的歸納。
數形結合的思想方法是初中數學中一種重要的思想方法。數學是研究現實世界數量關系和空間形式的科學。而數形結合就是通過數與形之間的對應和轉化來解決數學問題。它包含以形助數和以數解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數的嚴謹與形的直觀之長。
函數的三種表示方法:解析法、列表法、圖象法本身就體現著函數的數形結合。函數圖象就是將變化抽象的函數拍照下來研究的有效工具,函數教學離不開函數圖象的研究。在借助圖象研究函數的過程中,我們需要注意以下幾點原則:
(1)讓學生經歷繪制函數圖象的具體過程。首先,對于函數圖象的意義,只有學生在親身經歷了列表、描點、連線等繪制函數圖象的具體過程,才能知道函數圖象的由來,才能了解圖象上點的橫、縱坐標與自變量值、函數值的對應關系,為學生利用函數圖象數形結合研究函數性質打好基礎。其次,對于具體的一次函數、反比例函數、二次函數的圖象的認識,學生通過親身畫圖,自己發現函數圖象的形狀、變化趨勢,感悟不同函數圖象之間的關系,為發現函數圖象間的規律,探索函數的性質做好準備。
(2)切莫急于呈現畫函數圖象的簡單畫法。首先,在探索具體函數形狀時,不能取得點太少,否則學生無法發現點分布的規律,從而猜想出圖象的形狀;其次,教師過早強調圖象的簡單畫法,追求方法的最優化,縮短了學生知識探索的經歷過程。所以,在教新知識時,教師要允許學生從最簡單甚至最笨拙的方法做起,漸漸過渡到最佳方法的掌握,達到認識上的最佳狀態。
(3)注意讓學生體會研究具體函數圖象規律的方法。初中階段一般采用兩種方法研究函數圖象:一是有特殊到一般的歸納法,二是控制參數法。
函數是一個整體,各個具體函數是函數的特例,研究方法應是相同的,通過類比和數形結合的方法,對比性質的差異性,將具體函數逐步納入到整個函數學習中去,這也符合教材設計的螺旋式上升的理念。這樣自然使二次函數變得難著不難,水到渠成。
關于待定系數法,首先要讓學生理解感受到待定系數法的本質:對于某些數學問題,如果已知所求結果具有某種確定的形式,則可引進一些尚待確定的系數來表示這種結果,通過已知條件建立起給定的算式和結果之間的恒等式,得到以待定系數為元的方程或方程組,解之即得待定的系數。待定系數法在確定各種函數解析式中有著重要的作用,不論是正、反比例函數,還是一次函數、二次函數,確定函數解析式時都離不開待定系數法。因此我們要重視簡單的正比例函數、一次函數的待定系數法的應用。要在簡單的函數中講出待定系數法的本質來,等到了反比例函數和二次函數及綜合情況,學生已能形成能力,自如使用此方法,這時就是技巧的點撥。
人教版初中數學教學設計篇二
反比例函數是初中階段所要學習的三種函數中的一種,是一類比較簡單但很重要的函數,現實生活中充滿了反比例函數的例子。因此反比例函數的概念與意義的教學是基礎。
由于之前學習過函數,學生對函數概念已經有了一定的認識能力,另外在前一章我們學習過分式的知識,因此為本節課的教學奠定的一定的基礎。
知識目標:理解反比例函數意義;能夠根據已知條件確定反比例函數的表達式.
解決問題:能從實際問題中抽象出反比例函數并確定其表達式. 情感態度:讓學生經歷從實際問題中抽象出反比例函數模型的過程,體會反比例函數來源于實際.
重點:理解反比例函數意義,確定反比例函數的表達式.
難點:反比例函數表達式的確立.
(1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化;
(2)某住宅小區要種植一個面積1000m2的矩形草坪,草坪的長y(單
位:m)隨寬x(單位:m)的變化而變化。
請同學們寫出上述函數的表達式
14631000(2)y= tx
k可知:形如y= (k為常數,k≠0)的函數稱為反比例函數,其中xx(1)v=
是自變量,y是函數。
此過程的目的在于讓學生從實際問題中抽象出反比例函數模型的過程,體會反比例函數來源于實際. 由于是分式,當x=0時,分式無意義,所以x≠0。
當y= 中k=0時,y=0,函數y是一個常數,通常我們把這樣的函數稱為常函數。此時y就不是反比例函數了。
舉例:下列屬于反比例函數的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此過程的目的是通過分析與練習讓學生更加了解反比例函數的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設其解析式(函數關系式)
已知y與x成反比例,則可設y與x的函數關系式為y=
k x?1
k已知y+1與x成反比例,則可設y與x的函數關系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設y與x的函數關系式為y=
已知y+1與x-1成反比例,則可設y與x的函數關系式為y+1= k x?1此過程的目的是為了讓學生更深刻的了解反比例函數的概念,為以后在求函數解析式做好鋪墊。
例:已知y與x2反比例,并且當x=3時y=4
(1)求出y和x之間的函數解析式
(2)求當x=1.5時y的值
解析:因為y與x2反比例,所以設y?k,只要將k求出即可得到yx2
和x之間的函數解析式。之后引導學生書寫過程。能從實際問題中抽象出反比例函數并確定其表達式最后學生練習并布置作業
通過此環節,加深對本節課所內容的認識,以達到鞏固的目的。
本節課是在學生現有的認識基礎上進行講解,便于學生理解反比例函數的概念。而本節課的重點在于理解反比例函數意義,確定反比例函數的表達式.應該對這一方面的內容多練習鞏固。
人教版初中數學教學設計篇三
1.通過案例理解正比例函數,能列出正比例函數關系式
2.教會學生應用正比例函數解決生活實際問題的能力
理解正比例函數的概念
利用正比例函數解決生活實際問題
【提出問題】
1.《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數圈,假設他從德州到加州行進了千米,耗費了他150天時間。
(1)阿甘大約平均每天跑步多少千米?
(3)阿甘一個月(30天)的行程是多少千米?
【生】列算式回答
【師】點評總結
2.寫出下列變量間的函數表達式
(1)正方形的周長l和半徑r之間的關系【進一步抽象問題讓學生思考】
(2)大米每千克四元,則售價y元與數量x(kg)的函數關系式是什么?
(3)下列函數關系式有什么共同點?(小組合作)【分析共同點和不同點,找出規律】
(1)y=200x(2) l=2∏r(3) m=
【生回答,師點評】
【引入新課】
1、正比例函數的概念:一般地,形如y=kx (k≠0)的函數,叫做正比例函數,其中k叫做比例系數.【板書概念,引導學生分析正比例函數的定義】
2 、【例題講解】
例1在同一坐標系里,畫出下列函數的圖像:y==x y=3x
解:【略】 【掌握函數圖像的畫法:列表,描點,連線】
3、練習
(1)已知正比例函數y=kx.當x=3時y=6 。求k的值
(2)一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的?當銷售金額為360元時,則售出了多少本這種筆記本?
【反思】
由于函數的概念比較抽象,學生不容易理解。而理解函數的概念是教學的重點。這節課首先通過實例,回顧函數的概念,其次抽象提出正比例函數關系式,由學生觀察得到特點,然后引出正比例函數的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數解決生活中的問題。
人教版初中數學教學設計篇四
現代教學論研究指出,從本質上講,學生學習的根本原因是問題。在數學課堂教學中,教師可根據不同的教學內容,圍繞不同的教學目標,設計出符合學生實際的教學問題,圍繞所設計的問題開展教學活動。這樣,在課堂教學環節中,問題該怎樣設計?圍繞問題該怎樣進行教學,才能使教學效率得以提高?這是擺在我們面前急需解決的問題。
本文將結合自己的教學實踐,就問題設計的策略及反思等方面談談自己的看法。
著名數學家費賴登塔爾認為:“數學源于現實又寓于現實,數學教學應從學生所接觸的客觀實際中提出問題,然后升華為數學概念、運算法則或數學思想?!边@一觀念既反映了數學的本質,同時說明了在數學課堂教學中創設問題情境的重要性。比如,在《有理數的加法》一節的教學導入時,我首先出示了一周來本班的積分統計表(表中的得分用正數表示,失分用負數表示,)讓學生觀察:
星期 一 二 三 四 五 六 合計
積分 +3 -2 -4 -2 +2 +4
然后提出問題:“誰能幫我們班算出這一周的總積分呢?”結果我發現大多數同學能用“抵消”的方法統計出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發現學生不知道該怎樣算。當學生產生這樣的認知沖突時我便引入了本節課要學習的內容,最后我用表中的數據分成了幾種類型,如正數加正數、負數加負數、正數加負數等,展開新知學習,教學效果較以前有明顯改觀。
本節課成功之處在于:(1)導入的情境問題貼近學生的現實,調動了學生的積極性。(2)情境問題為后面的教學埋下了伏筆,引發了學生的認知沖突。當然,情境問題的創設不當,會直接影響教學。比如,在《函數》一節的教學時,我用游樂園中的摩天輪引入,當我提出問題:“同學們,當你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的?”我發現學生幾乎沒有反應,只是偶爾聽到:“摩天輪?”“很危險……”本來是一個很典型的函數問題,只因為農村學生對該情境的認識模糊,一時沒有進入到虛擬情境中來,導致課堂開端出現“僵局”,也影響了后面的教學工作的勝利開展。
2、教學重點、難點處的問題設計
初中數學課堂教學中重點與難點的處理將直接影響教學效果。通過設計好的問題串可以強化重點與突破難點。例如,《結識拋物線》一節的教學重點就是做二次函數y=x2的圖像并根據圖像認識和理解函數的性質。而作圖過程又是一個難點問題,要從所畫的圖像中發現并歸納性質,首先得畫出較準確的函數圖像。在學生畫圖像的過程中,我抓住學生的幾種錯誤畫法提出了三個問題讓學生討論交流:(1)根據你畫的圖像,給自變量x任取一個值,函數y有唯一的值與它對應嗎?(2)自變量x的范圍是什么?(3)在0 3、例題或課堂練習中的問題設計 例題教學具有及時鞏固知識和靈活運用知識的雙重功能,隨堂練習是檢查學生的數學學習效果和培養學生思維的有效手段之一。數學課堂教學中,教師通過優選例題,精心設計層次分明的練習,能夠讓學生以積極的態度去思考并解決問題,獲得問題解決的成就感和快樂感。例如筆者在《反比例函數的圖像與性質》一節的教學中設計了一道這樣的問題:已知a(-2,y1)、b(-1,y2)、c(2,y3)三點都在反比例函數y=k/x(k>0)圖像上,(1)比較y1、y2、y3的大小關系。(2)若d(a,y1)、e(b,y2)、f(c,y3)三點也在反比例函數y=k/x(k>0)的圖像上,其中a0判斷y1、y2、y3的大小關系。教學中我發現多數學生對問題(1)采用了直接代入計算的方法得到結果,對問題(2)顯然用代入法難以得到結果,這時,我讓學生小組討論來解決。經過討論后,學生a回答:“因為k>0時,反比例函數y隨x的增大而減小,而a 初中學生學習數學的方法相對欠缺,學生“重結論,輕過程”的現象較普遍,對學習結果的反思意識淡薄,自我評價不徹底,做錯的題目一錯再錯。作為教師,在平時的教學中要注重引導,徹底分析錯因,讓學生在錯題中有反思的機會。例如,在一元一次方程的教學中,我發現學生解含有分母的方程時很容易出錯,針對學生做錯的題目,我設計了如的表格: 通過引導學生對錯因徹底分析與校正,學生明白了產生錯誤的真正原因是什么,認識到了自己的不足。然后我出了幾道解方程的練習,結果發現,學生確實重視了錯誤,效果明顯有所好轉。 總之,在數學教學中,教學問題的設計確實是一種學問,是一種藝術。要讓學生在實實在在的問題情境中去親歷體驗,在對問題的分析、探索與交流的過程中主動思考,與人分享成果,來體驗成功的快樂,增強他們的自信心。 本節課的主題:通過一系列的`探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。 關鍵信息: 1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。 2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。 1、在學習本課之前應具備的基本知識和技能: ①同類項的定義。 ②合并同類項法則 ③多項式乘以多項式法則。 2、學習者對即將學習的內容已經具備的水平: 在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。 (一)教學目標: 1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。 2、會推導完全平方公式,并能運用公式進行簡單的計算。 (二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理數、實數、代數式、方程、不等式、函數;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、方程、不等式、函數等進行描述。 (三)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。 (四)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解,能從交流中獲益。 1.教師是學生學習的組織者、促進者、合作者,學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。教學是師生交往、積極互動、共同發展的過程。當學生迷路的時候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內在的精神動力,鼓勵他不斷向上攀登。 2.采用“問題情景—探究交流—得出結論—強化訓練”的模式展開教學。 3.教學評價方式: (1)通過課堂觀察,關注學生在觀察、總結、訓練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。 (2)通過判斷和舉例,給學生更多機會,在自然放松的狀態下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調查教學。 (3)通過課后訪談和作業分析,及時查漏補缺,確保達到預期的教學效果。 多媒體 〈一〉、提出問題 [引入] 同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析問題 分組交流、討論 (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特點。 (2)結果的項數特點。 (3)三項系數的特點(特別是符號的特點)。 (4)三項與原多項式中兩個單項式的關系。 2.[學生回答] 總結完全平方公式的語言描述: 兩數和的平方,等于它們平方的和,加上它們乘積的兩倍; 兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。 3.[學生回答] 完全平方公式的數學表達式: (a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2. 〈三〉、運用公式,解決問題 1.口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性) (m+n)2=____________, (m-n)2=_______________, (-m+n)2=____________, (-m-n)2=______________, (a+3)2=______________, (-c+5)2=______________, (-7-a)2=______________, (0.5-a)2=______________. 2.判斷: ()① (a-2b)2= a2-2ab+b2 () ② (2m+n)2= 2m2+4mn+n2 () ③ (-n-3m)2= n2-6mn+9m2 () ④ (5a+0.2b)2= 25a2+5ab+0.4b2 () ⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 () ⑥ (-a-2b)2=(a+2b)2 () ⑦ (2a-4b)2=(4a-2b)2 () ⑧ (-5m+n)2=(-n+5m)2 3.小試牛刀 ① (x+y)2 =______________; ② (-y-x)2 =_______________; ③ (2x+3)2 =_____________; ④ (3a-2)2 =_______________; ⑤ (2x+3y)2 =____________; ⑥ (4x-5y)2 =______________; ⑦ (0.5m+n)2 =___________; ⑧ (a-0.6b)2 =_____________. 〈四〉、學生小結 你認為完全平方公式在應用過程中,需要注意那些問題? (1) 公式右邊共有3項。 (2) 兩個平方項符號永遠為正。 (3)中間項的符號由等號左邊的兩項符號是否相同決定。 (4)中間項是等號左邊兩項乘積的2倍。 〈五〉、冒險島: (1)(-3a+2b)2=________________________________ (2)(-7-2m) 2 =__________________________________ (3)(-0.5m+2n) 2=_______________________________ (4)(3/5a-1/2b) 2=________________________________ (5)(mn+3) 2=__________________________________ (6)(a2b-0.2) 2=_________________________________ (7)(2xy2-3x2y) 2=_______________________________ (8)(2n3-3m3) 2=________________________________ 〈六〉、學生自我評價 [小結] 通過本節課的學習,你有什么收獲和感悟? 本節課,我們自己通過計算、分析結果,總結出了完全平方公式。在知識探索的過程中,同學們積極思考,大膽探索,團結協作共同取得了進步。 〈七〉[作業] p34 隨堂練習 p36 習題 本節課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應注重讓學生總結公式等號兩邊的特點,讓學生用語言表達公式的內容,由于語言缺陷的原因,這一點對聾生來說比較困難,讓學生說明運用公式過程中容易出現的問題和特別注意的細節。然后再通過逐層深入的練習,鞏固完全平方公式兩種形式的應用,為完全平方公式第二節課的實際應用和提高應用做好充分的準備。 1 . 教學內容精心組織,容量恰當,重點突出,體現內容的有效性、系統性和有序性; 2 . 重視啟發,活躍思維,方式、方法多樣,選擇適當;教學環節緊湊、合理; 3 . 教學媒體使用適時、適量、適度、有效。 4 . 教學結構組合優化,優質高效。 (一)內容 概念:不等式、不等式的解、不等式的解集、解不等式以及能在數軸上表示簡單不等式的解集. (二)內容解析 現實生活中存在大量的相等關系,也存在大量的不等關系.本節課從生活實際出發導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數形結合,用數軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.基于以上分析,可以確定本節課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數軸上. (一)教學目標 1.理解不等式的概念 2.理解不等式的解與解集的意義,理解它們的區別與聯系3.了解解不等式的概念 4.用數軸來表示簡單不等式的解集 (二)目標解析 1.達成目標1的標志是:能正確區別不等式、等式以及代數式. 2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合. 3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程. 4、達成目標4的標志是:用數軸表示不等式的解集是數形結合的又一個重要體現,也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右. 本節課實質是一節概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度. 因此,本節課的教學難點是:理解不等式解集的意義以及在數軸上正確表示不等式的解集. 利用多媒體直觀演示課前引入問題,激發學生的學習興趣. (一)動畫演示情景激趣多媒體演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現在換了一個大人上去,蹺蹺板發生了傾斜,游戲無法繼續進行下去了,這是什么原因呢?設計意圖:通過實例創設情境,從“等”過渡到“不等”,培養學生的觀察能力,分析能力,激發他們的學習興趣. (二)立足實際引出新知 問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應滿足什么條件? 小組討論,合作交流,然后小組反饋交流結果.最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充) 1.從時間方面慮:2.從行程方面:<>50 3.從速度方面考慮:x>50÷ 設計意圖:培養學生合作、交流的意識習慣,使他們積極參與問題的討論,并敢于發表自己的見解.老師對問題解決方法的梳理與補充,發散學生思維,培養學生分析問題、解決問題的能力. (三)緊扣問題概念辨析 1.不等式 設問1:什么是不等式? 設問2:能否舉例說明?由學生自學,老師可作適當補充.比如:是不等式. 2.不等式的解 設問1:什么是不等式的解?設問2:不等式的解是唯一的嗎?由學生自學再討論. 老師點撥:由x>50÷得x>75說明x任意取一個大于75的數都是不等式 3.不等式的解集 設問1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都設問2:不等式的解集與不等式的解有什么區別與聯系?由學生自學后再小組合作交流. 老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合. 4.解不等式 設問1:什么是解不等式?由學生回答. 老師強調:解不等式是一個過程. 設計意圖:培養學生的自學能力,進一步培養學生合作交流的意識.遵循學生的認知規律,有意識、有計劃、有條理地設計一些問題,可以讓學生始終處于積極的思維狀態,不知不覺中接受了新知識.老師再適當點撥,加深理解. (四)數形結合,深化認識 問題1:由上可知,x>75既是不等式的解集.那么在數軸上如何表示x>75呢?問題2:如果在數軸上表示x≤ 75,又如何表示呢?由老師講解,注意規范性,準確性.老師適當補充:“≥”與“≤”的意義,并強調用“≥”或“≤”連接的式子也是不等式.比如x≤ 75就是不等式. 設計意圖:通過數軸的直觀讓學生對不等式的解集進一步加深理解,滲透數形結合思想. (五)歸納小結,反思提高教師與學生一起回顧本節課所學主要內容,并請學生回答如下問題 1、什么是不等式?<的解集,也是不等式>50 2、什么是不等式的解? 3、什么是不等式的解集,它與不等式的解有什么區別與聯系? 4、用數軸表示不等式的解集要注意哪些方面? 設計意圖:歸納本節課的主要內容,交流心得,不斷積累學習經驗. (六)布置作業,課外反饋 教科書第119頁第1題,第120頁第2,3題. 設計意圖:通過課后作業,教師及時了解學生對本節課知識的掌握情況,以便對教學進度和方法進行適當的調整. 1.填空 下列式子中屬于不等式的有___________________________ ①x +7> ②x≥ y + 2 = 0 ③ 5x + 7 設計意圖:讓學生正確區分不等式、等式與代數式,進一步鞏固不等式的概念. 2.用不等式表示 ① a與5的和小于7 ② a的與b的3倍的和是非負數 ③正方形的邊長為xcm,它的周長不超過160cm,求x滿足的條件設計意圖:培養學生審題能力,既要正確抓住題目中的關鍵詞,如“大于(小于)、非負數(正數或負數)、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數量的實際意義. 新課標要求,應讓學生在實際背景中理解基本的數量關系和變化規律,注重使學生經歷從實際問題中建立數學模型、估計、求解、驗證解的正確性與合理性的過程。在實際工作中讓學生學會從具體問題情景中抽象出數學問題,使用各種數學語言表達問題、建立數學關系式、獲得合理的解答、理解并掌握相應的數學知識與技能,這些多數教師都注意到了,但要做好,還有一定難度。 在剛過去的這個學期,我上了一節“一元一次不等式組的應用”。 出示例題:小寶和爸爸、媽媽三人在操場上玩蹺蹺板,爸爸體重為72千克,坐在蹺蹺板的一端,體重只有媽媽一半的小寶和媽媽一同坐在另一端。這時,爸爸的一端仍然著地,后來小寶借來一副質量為6千克的啞鈴,加在他和媽媽坐的一端,結果,爸爸被高高地蹺起。猜猜看,小寶的體重約多少千克? 我問學生:“你們玩過蹺蹺板嗎?先看看題,一會請同學復述一下?!睂W生復述后,基本已經熟悉了題目。我接著讓學生思考:他們三人坐了幾次蹺蹺板?第一次坐時情況怎樣?第二次呢?學生議論了一會兒,自主發言,很快發現本題中存在的兩種文字形式的不等關系: 爸爸體重>小寶體重+媽媽體重 爸爸體重<小寶體重+媽媽體重+一副啞鈴重量 我引導:你還能怎么判斷小寶體重?學生安靜了幾分鐘后,開始議論。一學生舉手了:“可以列不等式組?!蔽医o出提示:“小寶的體重應該同時滿足上述的兩個條件。怎么把這個意思表達成數學式子呢?”這時學生們七嘴八舌地討論起來,都搶著回答, 我注意到一位平時不愛說話的學生緊鎖眉頭,便讓他發言:“可以設小寶的體重為x千克,能列出兩個不等式??墒墙酉聛砦揖筒恢懒??!蔽衣犃诵闹幸粍樱庾R到這應是思想滲透的好機會,便解釋說:“我們在初中會遇到許多問題都可以用類似的方法來研究解決,比方說前面列方程組”不等我說完,學生都齊聲答:“列不等式組。”全班12小組積極投入到解題活動中了。5分鐘后,我請學生板演,自己下去巡查、指導,發現學生的解題思路都很清楚,只是部分學生對答案的表達不夠準確。于是提議學生說說列不等式組解應用題分幾步,應注意什么。此時學生也基本上形成了對不等式方法的完整認識。我便出示拓展應用課件: 一次考試共25道選擇題,做對一道得4分,做錯一道減2分,不做得0分。若小明想確??荚嚦煽冊?0分以上,那么他至少要做對多少題? 設置這道題,既有調查本節課效果的意圖,也想鞏固拓展一下學生的思維。沒料到相當多學生對“至少”一詞理解不準確,導致失誤。這正好讓我們的“本課小結”填補了一個空白——弄清題目中描述數量關系的關鍵詞才是解題的關鍵。 本節課講完后,我感到一絲欣慰,看到孩子們躍躍欲試的學習勁頭,突然領悟到:教師的教學行為至關重要,成功的教學,能開啟學生心靈的窗戶,能幫學生樹立學習的自信心。 本節課我有幾個深刻的感受: 1、在課前準備的時候,我就覺得不等式組的應用是個難點。所以在課堂教學中設置了幾個臺階,這也正好符合了循序漸進的教學原則。 2、例題貼近學生實際,我在教學中有采用了更親近的教學語言,有利于激發學生的探究欲望。 3、關注學生的學習狀態,隨時采取靈活適宜的教學方法,師生互動,生生互動,課堂教學才更加有效。 4、學生在學習后,確實感受到“不等式的方法”就像方程的方法一樣是從字母表示數開始研究解決的。這種方法可以幫助我們用數學的方式解決實際問題。 八年級學生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理 這節課是人教版八年級第十八章第一節的內容,教學內容是勾股定理公式的推導、證明及其簡單的應用。本節課是在學生已經掌握了直角三角形有關性質的基礎上進行學習的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數量關系,將數與形密切聯系起來,為以后學習四邊形、圓、解直角三角形等數學知識奠定了基礎。它有著豐富的歷史背景,在數學的發展中起著重要的作用,在現實生活中也有著廣泛的應用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。 知識與技能 探索勾股定理的內容并證明,能夠運用勾股定理進行簡單計算和運用 過程與方法 (1)通過觀察分析,大膽猜想,探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。 (2)在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學過程,并體會數形結合和從特殊到一般的思想方法。 情感態度與價值 (1)在探索勾股定理的過程中,培養學生的合作交流意識和探索精神,增進數學學習的信心,感受數學之美,探究之趣。 (2)利用遠程教育資源介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。 教學重點 探索和證明勾股定理 ·教學難點 用拼圖的方法證明勾股定理 (學法)“引導探索法” (自主探究,合作學習,采用小組合作的方法。 課件、三角板 教學環節1 教學過程:創設情境探索新知 教師活動:出示第24屆國際數學家大會的會徽的圖案向學生提問 (1) 你見過這個圖案嗎? (2) 你聽說過“勾股定理”嗎? 學生活動:學生思考回答 設計意圖:目的在于從現實生活中提出“趙爽弦圖”,進一步激發學生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。 教學環節2 教學過程:實驗操作獲取新知歸納驗證完善新知 教師活動:出示課件,引導學生探索 學生活動:猜想實驗合作交流畫圖測量拼圖驗證 設計意圖:滲透從特殊到一般的數學思想。為學生提供參與數學活動的時間和空間,發揮學生的主體作用;讓學生自己動手拼出趙爽弦圖,培養他們學習數學的成就感。通過拼圖活動,使學生對定理的理解更加深刻,體會數學中的數形結合思想,調動學生思維的積極性,激發學生探求新知的欲望。給學生充分的時間與空間討論、交流,鼓勵學生敢于發表自己的見解,感受合作的重要性。 教學環節3 教學過程:解決問題應用新知 教師活動:出示例題和練習 學生活動:交流合作,解決問題 設計意圖:通過運用勾股定理對實際問題的解釋和應用,培養學生從身邊的事物中抽象出幾何模型的能力,使學生更加深刻地認識數學的本質:數學來源于生活,并能服務于生活,順利解決如何將實際問題轉化為求直角三角形邊長的問題,培養學生的數學應用意識。 教學環節4 教學內容:課堂小結鞏固新知布置作業 教師活動:引導學生小結 學生活動:討論交流、自由發言 設計意圖:既引導學生從面積的角度理解勾股定理,又從能力、情感、態度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。 通過布置課外作業,給學生留有繼續學習的空間和興趣,及時獲知學生對本節課知識的掌握情況,適當的調整教學進度和教學方法,并對學習有困難的學生給與指導。 勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么 a2+b2=c2。 如圖,將長為10米的梯子ac斜靠在墻上,bc長為6米。 (1)求梯子上端a到墻的底端b的距離ab。 (2)若梯子下部c向后移動2米到c1點,那么梯子上部a向下移動了多少米? 1。收集有關勾股定理的證明方法, 下節課展示、交流。 2。做一棵奇妙的勾股樹(選做) 為了提高學生的學習興趣,增大學生的學習參與面,減小差距。努力作好教學工作,在這一學期中,下文將準備了初中二年級下冊數學教學設計如下: 通過本期的學習,要使學生在情感與態度上,認識到數學來源于實踐,又反作用于實踐,認識現實生活中圖形間的數量關系,能夠設計精美的圖案,提高學生的審美情趣,培養學生實事求是、嚴肅認真的學習態度,激發學生的學習興趣,培養學生對數學的熱愛,對生活的熱愛,在民主、和諧、合作、探究、有序、分享發現快樂,感受學習的快樂。對于過程與方法,通過學生積極參與對知識的探究,經歷發現知識,發現知識間的內在聯系,讓學生經歷發現知識道路上坎坎坷坷,達到深刻理解掌握知識的目的,達到漫江碧透,魚翔淺底的境界,在經歷這些活動中,提高學生的動手實踐能力,提高學生的邏輯推理能力與邏輯思維能力,自主探究,解決問題的能力,提高運算能力,使所有學生在數學上都有不同的發展,盡可能接近其發展的最大值,培養學生良好的學習習慣,發展學生的非智力因素,使學生潛移默化的接受辯證唯物主義的熏陶,提高學生素質。 本學期教學內容共計五章,知識的前后聯系,教材的教學目標,重、難點分析如下: 第十六章 分式 本章的主要內容包括:分式的概念,分式的基本性質,分式的約分與通分,分式的加、減、乘、除運算,整數指數冪的概念及運算性質,分式方程的概念及可化為一元一次方程的分式方程的解法。 第十七章 反比例函數 函數是研究現實世界變化規律的一個重要模型,本單元學生在學習了一次函數后,進一步研究反比例函數。學生在本章中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發展能力這是本章的重點之一;經歷本章的重點之二:利用反比例函數及圖象解決實際問題的過程,發展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養,以及提高數形結合的意識和能力。 第十八章 勾股定理 直角三角形是一種特殊的三角形,它有許多重要的性質,如兩個銳角互余,30度角所對的直角邊等于斜邊的一半,本章所研究的勾股定理,也是直角三角形的性質,而且是一條非常重要的性質,本章分為兩節,第一節介紹勾股定理及其應用,第二節介紹勾股定理的逆定理。 第十九章 四邊形 四邊形是人們日常生活中應用較廣泛的一種圖形,尤其是平行四邊形、矩形、菱形、正方形、梯形等特殊四邊形的用處更多。因此,四邊形既是幾何中的基本圖形,也是空間與圖形領域研究的主要對象之一。本章是在學生前面學段已經學過的四邊形知識、本學段學過的多邊形、平行線、三角形的有關知識的基礎上來學習的,也可以說是在已有知識的基礎上做進一步系統的整理和研究,本章內容的學習也反復運用了平行線和三角形的知識。從這個角度來看,本章的內容也是前面平行線和三角形等內容的應用和深化。 第二十章 數據的分析 本章主要研究平均數、中位數、眾數以及極差、方差等統計量的統計意義,學習如何利用這些統計量分析數據的集中趨勢和離散情況,并通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。 1、認真做好教學七認真工作。把教學七認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業,認真輔導,認真制作測試試卷,也讓學生學會認真學習。 2、興趣是最好的老師,愛因斯坦如是說。激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。 3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫復習提綱,使知識來源于學生的構造。 4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。 5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。 6、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。 7、指導成立課外興趣小組的民間組織,開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發展這一部分學生的特長。 8、開展分層教學,布置作業設置a、b、c三類分層布置分別適合于差、中、好三類學生,課堂上的提問要照顧好、中、差三類學生,使他們都等到發展。 9、進行個別輔導,優生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發展鋪平道路。 10、站在系統的高度,使知識構筑在一個系統,上升到哲學的高度,八方聯系,渾然一體,使學生學得輕松,記得牢固。 全期共有六章。新授課程主要有一元一次不等式組、二元一次方程組、平面上直線的位置關系和度量關系、多項式的運算 、軸對稱圖形、數據的分析與比較。 本學期是本年級學生初中學習階段的第二學期。通過上期的學習,大多數學生對學習數學產生了濃厚的學習興趣。更有像陳琦、嚴細毛、瞿俐純等同學更是對數學探究活動情有獨衷。上期期末考試中,0901整體水平稍高于兄弟班級,但有兩極分化的趨勢。0902班的及格率稍高于兄弟班,但低分段學生高于10%,而且這部分學生對學習缺乏應有的熱情和自信,有自暴自棄之嫌。 本學期的數學教學要從學生的實際問題出發,積極引導學生觀察、思考、探究、討論、歸納數學問題,要鼓勵學生去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題。教學中既要注意知識的覆蓋面,關注中考的重點、熱點和難點,又要突出數學知識在社會、科技中的運用,讓學生在學習、練習中熟記知識要點、考試內容,掌握應試技巧和數學思想方法,提高綜合素質,培養創新意識和探索能力。在期中、期末考試中力爭生均分70分左右,合格率60%以上,優秀率30%以上,并將低分率控制到10%以下。 1、認真鉆研教材,積極捕捉課改信息,盡力倡導自主、合作、探究學習,努力培養學生的學習興趣和個性品質。 2、把握學生思想動態,及時與學生溝通,搞好師生關系。 3、充分利用課堂教學時間,幫助學生理解教學重難點,訓練考點、熱點,強化記憶,形成能力,提高成績。 4、改進教學方法,用多媒體課件,實物等創設情景進行教學,力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機會。 5、精講多練,在教學新知識的同時,注重舊知識的復習,使所學知識系統化,條理化,讓學生在練習、測試中鞏固提高,減少遺忘。 6、 開辟第二課堂,在不加重學生負擔的前提下,積極引導學生閱讀課外書,促進學生自主、合作,探究學習,培養興趣,提高能力。 1、知道一次函數與正比例函數的定義. 2、理解掌握一次函數的圖象的特征和相關的性質; 3、弄清一次函數與正比例函數的區別與聯系. 4、掌握直線的平移法則簡單應用. 5、能應用本章的基礎知識熟練地解決數學問題。 重點:初步構建比較系統的函數知識體系。 難點:對直線的平移法則的理解,體會數形結合思想。 1、一次函數與正比例函數的定義: 一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數 正比例函數:對于 y=kx+b,當b=0, k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。 2. 一次函數與正比例函數的區別與聯系: (1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。 (2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx 平行的一條直線。 基礎訓練: 1. 寫出一個圖象經過點(1,- 3)的函數解析式為: 。 2.直線y = - 2x - 2 不經過第 象限,y隨x的增大而。 3.如果p(2,k)在直線y=2x+2上,那么點p到x軸的距離是:。 4.已知正比例函數 y =(3k-1)x,,若y隨 x的增大而增大,則k是: 。 5、過點(0,2)且與直線y=3x平行的直線是: 。 6、若正比例函數y =(1-2m)x 的圖像過點a(x1,y1)和點b(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是: 。 7、若y-2與x-2成正比例,當x=-2時,y=4,則x= 時,y = -4。 8、直線y=- 5x+b與直線y=x-3都交y軸上同一點,則b的值為 。 9、已知圓o的半徑為1,過點a(2,0)的直線切圓o于點b,交y軸于點c。(1)求線段ab的長。(2)求直線ac的解析式。 教師認真備課,查閱資料,搜集有針對性的訓練題,學生只要課堂上能按照教師的思路去做就很高效了。課堂訓練以競賽的形式進行,似乎有一定的刺激性,但缺少后續的刺激活動,學生沒有保持住持久的緊張狀態。 課前先把所有的復習任務都交給學生完成,教師指導學生瀏覽教材、查閱資料歸納本章的基本概念、基本性質、基本方法,并收集與每個知識點相關的有針對性的問題,也可以自己編題,同時要把每一個問 題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學生展示自己的舞臺,在這個舞臺上學生是主角,在這個舞臺上學生可以成果共享,在這個舞臺上學生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。 從另一個角度體會到了減輕學生負擔的深刻含義,不單指減少學生課后學習的時間,更重要的是提高學生學習的質量、效率,我的這節課失敗之處就是過分的注重了前者,而忽略了實效性。那么在今后的復習課教學中我要多思多想、多問多聽(問問老師、聽聽學生的想法),力求在真正減輕學生負擔的基礎上打造高效課堂。 1.會說出怎樣的兩個圖形是全等形,并會用符號語言表示兩個三角形全等。 2.知道全等三角形的有關概念,會在全等三角形中正確地找出對應頂點、對應邊、對應角。 3.會說出全等三角形的對應邊、對應角相等的性質。 此外,通過把兩個重合的三角形變換其中一個的位置,使它們呈現各種不同位置的活動,讓學生從中了解并體會圖形變換的思想,逐步培養學生 動態的研究幾何圖形的意思。 我們身邊經??吹?一模一樣"的圖形,比如同一版面的記念郵票,同一版面的人民幣、用兩張紙疊在一起剪出的兩張窗花等,請大家舉出這類圖形的例子。 說明:讓學生在舉出實際例子以及對所舉例子的辨析中獲得對全等圖形盡可能多的精確的感知。 問題1:幾何中,我們把上述所例舉的"一模一樣"的圖形叫做"全等形",以下是描述全等形的三種不同的說法,你認為哪種說法是恰當的?(l)形狀相同的兩個圖形叫全等形。 (2)大小相等的兩個圖形叫全等形。 (3)能夠完全重合的兩個圖形叫全等形。 (學生閱讀課本第21頁,全等三角形的有關概念、全等三解形的表示方法。)操作和觀察(學生用兩塊透明塑料片疊合在一起,任意剪兩個全等的三角形,教師制作兩個全等三角形的復合投影片演示。)(1)將重合的兩塊全等三角形塑料片中的一個沿著一邊所在的直線移動,觀察移動過程中這兩個三角形有哪幾種不同位置?畫出這兩個全等三角形不同位置的組合圖形。 (2)圖是上述移動過程中的兩個全等三角形組合的圖形,說出它們的對應頂點、對應邊、對應角。 (3)將重合的兩塊三角形塑料片,以一邊所在的直線為軸,把其中一個三角形翻折180,請你畫出翻折后的兩個全等三角形組合的圖形。 (4)將兩塊全等的三角形塑料片拼合成如圖中的圖形,并指出它們的對應頂點、對應邊、對應角。 [小結] 1.識別全等三角形的對應邊、對應角的關鍵是正確識別它們的對應頂點。 2.用全等三變換的方法觀察圖形,有助于正確、迅速的從復雜圖形中識別出全等三角形。 [作業]課本組第2、3、4題。 初中數學實踐課教案設計三一、教材分析本節課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節多邊形內角和。 二、教學目標1、知識目標:了解多邊形內角和公式。 2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。 3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。 4、情感態度目標:通過猜想、推理活動感受數學活動充滿著探索以及 數學結論的確定性,提高學生學習熱情。 三、教學重、難點重點:探索多邊形內角和。 難點:探索多邊形內角和時,如何把多邊形轉化成三角形。 四、教學方法:引導發現法、討論法五、教具、學具教具:多媒體課件學具:三角板、量角器六、教學媒體:大屏幕、實物投影七、教學過程: (一)創設情境,設疑激思師:大家都知道三角形的內角和是180o,那么四邊形的內角和,你知道嗎?活動一:探究四邊形內角和。 在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。 方法一:用量角器量出四個角的度數,然后把四個角加起來,發現內角和是360o。 方法二:把兩個三角形紙板拼在一起構成四邊形,發現兩個三角形內角和相加是360o。 接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。 師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的? 活動二:探究五邊形、六邊形、十邊形的內角和。 學生先獨立思考每個問題再分組討論。 關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。 (2)學生能否采用不同的方法。 學生分組討論后進行交流(五邊形的內角和)方法1:把五邊形分成三個三角形,3個180o的和是540o。 方法2:從五邊形內部一點出發,把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結果得540o。 方法3:從五邊形一邊上任意一點出發把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結果得540o。 方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結果得540o。 師:你真聰明!做到了學以致用。 交流后,學生運用幾何畫板演示并驗證得到的方法。 得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720o,十邊形內角和是1440o。 (二)引申思考,培養創新師:通過前面的討論,你能知道多邊形內角和嗎?活動三:探究任意多邊形的內角和公式。 思考:(1)多邊形內角和與三角形內角和的關系?(2)多邊形的邊數與內角和的關系? (3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?學生結合思考題進行討論,并把討論后的結果進行交流。 發現1:四邊形內角和是2個180o的和,五邊形內角和是3個180o的和,六邊形內角和是4個180o的和,十邊形內角和是8個180o的和。 發現2:多邊形的邊數增加1,內角和增加180o。 發現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。 得出結論:多邊形內角和公式:(n-2)180。 (三)實際應用,優勢互補 1、口答: (1)七邊形內角和xx (2)九邊形內角和xx (3)十邊形內角和xx 2、搶答: (1)一個多邊形的內角和等于1260o,它是幾邊形? (2)一個多邊形的內角和是1440o,且每個內角都相等,則每個內角的度數是xx。 3、討論回答:一個多邊形的內角和比四邊形的內角和多540o,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?(四)概括存儲學生自己歸納總結: 1、多邊形內角和公式 2、運用轉化思想解決數學問題 3、用數形結合的思想解決問題(五)作業:練習冊第93頁1、2、3 八、教學反思: 1、教的轉變本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發現結論后,利用幾何畫板直觀地展示,激發學生自覺探究數學問題,體驗發現的樂趣。 2、學的轉變學生的角色從學會轉變為會學。本節課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。 3、課堂氛圍的轉變整節課以"流暢、開放、合作、隱導"為基本特征,教師對學生的思維減少干預,教學過程呈現一種比較流暢的特征。整節課學生與學生,學生與教師之間以"對話"、"討論"為出發點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。 正比例函數 1.通過案例理解正比例函數,能列出正比例函數關系式 2.教會學生應用正比例函數解決生活實際問題的能力 理解正比例函數的概念 利用正比例函數解決生活實際問題 【提出問題】 《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數圈,假設他從德州到加州行進了21000千米,耗費了他150天時間。 (1) 阿甘大約平均每天跑步多少千米? (2) 阿甘的行程y(km)與時間x(天)之間有什么關系? (3) 阿甘一個月(30天)的行程是多少千米? 【生】 列算式回答 【師】 點評總結 2.寫出下列變量間的函數表達式 (1) 正方形的周長l和半徑r之間的關系 【進一步抽象問題讓學生思考】 (2) 大米每千克四元,則售價y元與數量x(kg)的函數關系式是什么? (3) 下列函數關系式有什么共同點?(小組合作) 【分析共同點和不同點,找出規律】 (1) y=200x (2) l=2∏r (3) m=7.8v 【生回答,師點評】 【引入新課】 1.正比例函數的概念: 一般地,形如y=kx (k≠0)的函數,叫做正比例函數,其中k叫做比例系數.【板書概念,引導學生分析正比例函數的定義】 2 【例題講解】 例1 在同一坐標系里,畫出下列函數的圖像: y=0.5x y=x y=3x 解: 【略】 【掌握函數圖像的畫法:列表,描點,連線】 3.練習 (1)已知正比例函數y=kx.當 x=3 時 y=6 。求 k的值 (2) 一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的? 當銷售金額為360元時,則售出了多少本這種筆記本? 四 小結 由于函數的概念比較抽象,學生不容易理解。而理解函數的概念是教學的重點。這節課首先通過實例,回顧函數的概念,其次抽象提出正比例函數關系式,由學生觀察得到特點,然后引出正比例函數的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數解決生活中的問題。 教育改革的關鍵在于教師觀念的轉變,現代教育理論告訴我們:教師的職責現在已經越來越少地傳授知識,而是越來越多地鼓勵、思考……將越來越成為一位顧問、一位交流意見的參加者、一位幫助發現而不是拿出現成真理的人,必須拿出更多的時間和精力去從事那些有效果的和有創造性的活動:互相影響、討論、激勵、了解、鼓舞。這說明了一個道理:教師的地位發生了根本性的變化,不再僅僅是知識的傳授者,還要確定“以人為本”的觀念,把課堂教學看作自己也是學生人生中的一段激蕩的生命經歷,鼓勵、激發學生去不斷探索,把學生的“發現”與“創造”視為最有價值的勞動成果,教師與學生平等地對話,與他們共同感悟思潮的跌宕涌動。我想從三個方面談談自己在教學時的一些認識: “數學課程不僅要考慮數學自身的特點,而且應遵循學生學習數學的心理規律,強調從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型進行解釋與應用的過程?!边@就要求我們遵循學生的思維規律,在實際問題和數學模型之間架起一座橋梁,讓學生在不知不覺中走進數學、感知數學。數學來源于生活并服務于生活,主體(學生)在思考問題時,既符合自身的認知規律,又有直覺洞察、直觀猜想、合理歸納與活動思維過程,有利于提高自己對數學的認識。 “數學教學活動必須建立在學生的認識發展水平和已有的知識經驗上,教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會。 在教學時教師應根據知識的內在結構和學生的學習規律,提供現象和問題,創設思維情境,引導學生主動參與,進行觀察、思考、探索。這樣有利于激發學生解決問題的熱情,提升學生的學習水平。比如在探究一元二次方程的根與系數的關系時,我們可以按下列步驟來創設情境。 1.求三個一元二次方程的兩根之和與兩根之積。一般來說學生都是先把方程的根求出來,然后計算,學生可能體會不到什么,此時課堂氣氛比較平穩。 2.求一元二次方程的兩根之和與兩根之積,這時很多學生會感到很繁,怕動手計算,課堂出現沉悶現象。此時教師立即口答出答案,學生就會感覺到很驚奇,為之一振,進而產生疑問:“老師怎么會看出答案?這里會不會有規律?”課堂出現竊竊私語,激活了學生的思維,活躍了課堂氣氛。 3.提出問題:你能根據你開始的計算和老師的結論觀察出一元二次方程的根與系數之間的關系嗎?學生們躍躍欲試,開始投入到觀察、思考、探索中去。 4.提出問題:你敢肯定你所猜測到的結論是正確的嗎?再一次激發學生的斗志,使他們敢于說理、敢于證明,給予他們充分展示自己才華的機會。 復習不是簡單的知識重復,而是一個再認識、再提高的過程,復習中的最大矛盾是時間短、內容多、要求高。復習既要做到突出重點、抓住典型,又能在高度概括中深刻揭示知識的內在聯系,讓學生在掌握規律中理解、記憶、熟練、提高。比如在復習一元二次方程根的判別式和根與系數的關系時,可以把一元二次方程根的判別式、根與系數的關系和二次函數的有關知識相聯系,根的判別式可以作為判別二次函數的圖像與x軸的交點個數的依據:當△>0時,拋物線與x軸有兩個不同的交點;當△<0時,拋物線與x軸沒有交點;當△=0時,拋物線與x軸只有一個交點即頂點。如果拋物線與x軸有兩個不同的交點,用根與系數的關系可以求拋物線與x軸的兩個交點之間的距離,可以判別拋物線與x軸交點的位置(交點是在坐標原點的左邊還是在坐標原點的右邊)等等。這樣在復習過程中把知識拓一拓、伸一伸,能激起學生思維的火花、學習的積極性,培養學生運用知識提高分析問題和解決問題的能力。 總之,課堂教學面對的是獨立、有個性、有思維的學生,課堂教學設計應適應學生的發展,應隨“學情”的變化而變化。課堂教學設計的成效如何,完全取決于教師對教材的理解、對學生情況的了解。只有教師具備“以學生為本”的教學理念,才能一切從學生實際出發、一切為學生考慮,才能真正做到教學服務于學生,實現“不同的人在數學上得到不同的發展”。人教版初中數學教學設計篇五
人教版初中數學教學設計篇六
人教版初中數學教學設計篇七
人教版初中數學教學設計篇八
人教版初中數學教學設計篇九
人教版初中數學教學設計篇十
人教版初中數學教學設計篇十一
人教版初中數學教學設計篇十二
人教版初中數學教學設計篇十三
人教版初中數學教學設計篇十四