在制定教學工作計劃時,教師需要考慮學生的實際情況和學習需求。合理安排教學工作計劃可以提高教師的工作效率和學生的學習積極性。
二倍角公式教案大全(19篇)篇一
1、在下面數中圈出3的倍數。
284553873665。
2、選出兩個數字組成一個兩位數,分別滿足下面的條件。
3045。
(1)是3的倍數。
(2)同時是2和3的倍數。
(3)同時是3和5的倍數。
(4)同時是2,3和5的倍數。
二倍角公式教案大全(19篇)篇二
1.讓學生探索3.的倍數的特征,會判斷一個數是不是3的倍數。
2.讓學生在學習過程中學會運用分析、比較、歸納或猜想、檢驗等方法,并進一步學會與同學交流。
教學重難點。
判斷一個數是不是3的倍數。
課前準備。
小黑板、學具卡片。
教學活動。
一、引入新課,激發興趣。
教師在黑板上寫出一組數:5、6、14、18、25、27、36、41、90,問學生:誰能判斷出哪些數是3的倍數?(這些都是一些簡單的數,估計學生通過口算很快就能判斷出來)。
教師再寫出幾個數:1540、2856、3075,再問:誰能很快判斷出哪些數是3的倍數?當學生出現畏難情緒時,教師說:我能很快地說出這幾個數當中,2856和3075都是3的倍數。
學生報數,教師很快地回答,并把是3的倍數的數板書在黑板上,再讓學生用計算器進行驗證。
談話:你們一定在想:老師你有什么竅門嗎?有啊!你們想知道嗎?讓我們一起來探索3的倍數的特征。(板書課題:3的倍數的特征)。
二、自主探索。合作學習。
1.先讓學生猜一猜:3的倍數有什么特征?舉例說明。
2.根據學生猜測的結果,討論:個位上是3、6、9的數是3的倍數嗎?
如:84、51、27、90、123、2856、3075,它們用的算珠顆數分別是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。
4.引導學生觀察、分析、討論:用的算珠的顆數有什么共同點?
:每個數所用算珠的顆數都是3的倍數。
5.提問:這些數所用算珠的顆數跟什么有關系?小組討論,交流討論結果。
:一個數是3的倍數,這個數各位上的數的和一定是3的倍數。
6.進一步驗證。(1)同桌之間互相報數,驗證剛才的結論是否正確。(2)用1、2、6可以寫成126,還可以組成哪些三位數?這些三位數是3的倍數嗎?小組討論后得出結論:3的倍數,跟數字的位置沒有關系,只跟各位數上的數的和有關系。
7.試一試:如果一個數不是3的倍數,這個數各位上數的和是3的倍數嗎?
在小組里舉例驗證、討論交流。得出:一個數不是3的倍數,這個數各位上數的和不是3的倍數。歸納:一個數各位上的數的和是3的倍數,這個數就是3的倍數。
三、運用結論。鞏固拓展。
1.做“想想做做”第1題。
指名口答。提問:你是怎么判斷出67不是3的倍數,84是3的倍數的?
2.做“想想做做”第2題。
提問:每一題有沒有余數與什么有關?有什么關系?談話:在沒有余數的算式下邊畫橫線,看誰做得快。指名報結果,共同評議。
3.做“想想做做”第3題。
讓學生獨立填寫,再在小組里交流:你能找到幾種不同的填法?
4.做“想想做做”第4題。
學生涂完后,指名回答:9的倍數都是3的倍數嗎?
5.做“想想做做”第5題。
各自組數,并把組成的數記下來。
指名報答案,全班學生評議。
6.補充題。
提問:你今年幾歲?再過幾年你的歲數是3的倍數?
四、
二倍角公式教案大全(19篇)篇三
1、了解完全平方公式的特征,會用完全平方公式進行因式分解.
2、通過整式乘法逆向得出因式分解方法的過程,發展學生逆向思維能力和推理能力.
3、通過猜想、觀察、討論、歸納等活動,培養學生觀察能力,實踐能力和創新能力.
學習建議教學重點:
二倍角公式教案大全(19篇)篇四
1.使學生認識倍數和因數,能判斷兩個自然數間的因數和倍數關系;學會找一個數的因數和倍數的方法,能按順序找出100以內自然數的所有因數,10以內自然數的所有倍數;了解一個數的因數、倍數的特點。
2.使學生經歷探索求一個數的因數或倍數的方法、一個數的因數和倍數特點的過程,體會數學知識、方法的內在聯系,能有條理地展開思考,培養觀察、比較,以及分析、推理和抽象、概括等思維能力,發展數感。
3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數學的信心,養成樂于思考、勇于探究等良好品質。
二倍角公式教案大全(19篇)篇五
1.回顧知識。
提問:上節課,我們已經復習了整數和小數的有關知識。
結合學生交流,板書。
2.揭示課題。
引入:這節課,我們復習因數和倍數的相關知識。
通過復習,能進一步了解關于因數和倍數的知識,理解它們之間的聯系和區別,并能應用這些知識。
二、基本練習。
1.知識梳理。
提高:回想一下,在學習因數和倍數時,我們還學習了哪些相關的知識?
學生回顧,交流,教師適當引導回顧。
根據學生回答,板書整理。
2.做練習與實踐第10題。
學生獨立完成,指名板演。
集體交流,讓學生說說找一個數的因數和倍數的方法。
3.做練習與實踐第11題。
出示題目,學生直接口答。
提問:怎樣判斷一個數是不是2的倍數?判斷是3和5的倍數呢?
追問:這里哪些是偶數,哪些是奇數?說說你是怎樣想的。
4.做練習與實踐第12題。
學生先獨立寫出質數和合數,再指名口答。
追問:最小質數是幾?最小的合數呢?
二倍角公式教案大全(19篇)篇六
情景設置:
同學們,現在我們家里都有電視機,大家都知道電視機的橫切面是個長方形,下面我們一起來研究這樣一個問題:將幾臺型號相同的電視機疊放在一起組成電視墻,計算圖中這些電視墻的面積。
(每一個小長方形的長為a,寬為b)。
我們可以看到,電視墻是一個長方形,由9個小長方形組成。
從整體上看,電視墻的面積為長方形的長與寬的積:3a3b;
從局部看,電視墻中的每個小長方形的.面積都是ab,電視墻的面積是這些小長方形的面積和:9ab。
于是,我們有:3a3b=9ab.
新課講解:
1.探索研究。
請學生回答,教師加以總結歸納:
兩個單項式3a與3b相乘,只要把兩個單項式的系數3與3相乘,再把這兩個單項式的字母a與b相乘,即3a3b=(33)(ab)=9ab.
4ab5b這兩個單項式的積是20ab。
同學們回答的太棒了,兩個單項式相乘,實際上是運用了乘法交換律與結合律。由此,我們可以得到單項式乘單項式法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,對于只在一個單項式里含有的字母,則連同它們的指數作為積的一個因式。
2.例題。
計算:(1)a(6ab);
(2)(2x)(-3xy).
解:(1)a(6ab)。
=(6)(aa)b。
=2ab;(教師規范格式)。
(2)(2x)(-3xy).
=8x(-3xy)。
=【8(-3)】(xx)y。
=-24xy.
二倍角公式教案大全(19篇)篇七
一、談話導入,揭示課題。
我們能不能通過觀察個位上的數來確定是不是3的倍數,那么3的倍數到底有什么特征呢?今天我們共同來研究。
板書課題:3的倍數的特征。
二、探索交流、獲取新知。
(一)活動一:復習鞏固。
1、前面我們研究了2和5的倍數的特征,能用你的話說一說他們的特征呢?
2、請你舉例說明。(請學生說,教師把學生的舉例板書在黑板上。)。
3、說說能同時被2和5整除的數有什么特征?(觀察特征。用自己的話說一說。)。
(二)活動二:探索研究3的倍數的特征。
1、在書上第6頁的表中,找出3的倍數,并做上記號。
(先獨立完成,看誰找的快?)。
2、觀察3的倍數,你發現了什么?
教師參與到討論學習中。
先獨立思考,想出自己的想法。
然后與四人小組的同學說說你的發現。
生1:3的倍數個位上的數有0、1、2、3、4、5、6、7、8、9沒什么規律。
生2:十位上的數也沒有什么規律。
生3:將每個數的各個數字加起來試試看。
3、你發現的規律對三位數成立嗎?找幾個數來檢驗一下。
(1)自己先找幾個數試一試。
(2)然后在小組內說說你驗證的結論。
(三)活動三:試一試。
在下面數中圈出3的倍數。
284553873665。
(先自己圈,然后說說你是怎樣判斷的?)。
(四)活動四:練一練。
1、請將編號是3的倍數的氣球涂上顏色。
361754714548。
(自己獨立完成,在小組內說說自己的想法。)。
2、選出兩個數字組成一個兩位數,分別滿足下面的條件。
3045。
(1)是3的倍數。
(2)同時是2和3的倍數。
(3)同時是3和5的倍數。
(4)同時是2,3和5的倍數。
(獨立完成,說說你的竅門和方法。)。
(五)活動五:實踐活動。
在下表中找出9的倍數,并涂上顏色。
(可以在自主實踐以后再交流。)。
三、總結。
通過這節課的學習,你有什么收獲?
二倍角公式教案大全(19篇)篇八
教學目的:
1、由”公式“引發聯想,培養學生發散思維能力。
2、學會多角度思考問題,提高學生口頭表達能力。
教學重、難點:
引導學生多角度思考問題。
教學過程:
一、課前三分鐘:
[生]按照號數輪流《我看abc-------》。
(話題訓練:就26個英文字母之一展開合理想象)。
[生]點評。
二、活動過程:
(一)導入:打出課件:
數字笑話:
b、0對5說:”你該把肚皮收收了!
c、0碰到9,(大吃一驚):“哎,兄弟,怎么截肢了?”“。
d、學生猜:
0碰到(),很同情地說:”哎,怎么拄上雙拐了!“。
師:瞧,”0“多有意思?。▌撘姡?/p>
這節課我們也好好表現一下,怎么樣?
打出課件:
二倍角公式教案大全(19篇)篇九
2、注意培養學生分析、綜合和抽象、概括以及運算能力。
教學重點和難點。
重點:平方差公式的應用。
難點:用公式的結構特征判斷題目能否使用公式。
教學過程設計。
一、師生共同研究平方差公式。
我們已經學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
讓學生動腦、動筆進行探討,并發表自己的見解。教師根據學生的回答,引導學生進一步思考:
(當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算。以后經常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
在此基礎上,讓學生用語言敘述公式。
二、運用舉例變式練習。
例1計算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么。
例2計算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導學生發現,只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算。
課堂練習。
二倍角公式教案大全(19篇)篇十
掌握和運用自我暗示的原理,向潛意識發出指令,將自己的想法同一個或多個積極的情緒聯系起來,反復重復這一過程。
清空顯意識中所有的其他想法。經過短暫的訓練,你將能夠把自己的注意力完全集中在自己想要集中的主題上。這就是目標專注。
帶著想要實現目標的熾熱愿望,在腦海中將專注的目標形象化。在這一過程中,你應該完全相信自己可以實現這一目標。
當發現自己不能完全專注于自己的目標時,將思緒倒回去,再次重復將注意力集中在自己的目標上,直到你能很好地控制自己的思想,將無關的想法完全摒棄在外。在專注時一定要摻入自己的情感,否則你的心中所想就無法被記錄在潛意識當中。
當你處在一個安靜、沒有干擾的環境中時,專注的效果最好。
當你懷著極大的熱情專注于某一想法、計劃或目標時,潛意識最容易受到影響。熱情可以喚起你的創造性想象力,并將之付諸行動。
現在,讓我們再回到起點。只要主觀上愿意,你就可以擺脫過去不良習慣所造成的影響,按照自己想要的方式來創造生活。同樣,因為自己規定了占據頭腦的主導思想,所以你可以做想做的自己。
一個想法、計劃、目的或銷售目標如何能被植入到頭腦之中呢?答案是:通過不斷地在頭腦中將愿望形象化,任何想法、計劃或目標都能被植入到頭腦里。這也是我們希望你將自己的愿望、目的或銷售目標寫下來的原因,把它們寫出來,然后用心記住,不斷地大聲誦讀,日復一日,直到這些目標進入到你的潛意識當中。
1.在開始創造性想象之前,先清楚地寫下自己想要賺的錢的數額。在心中記住這一確切的數額。僅僅說“我要賺很多錢”,這樣是不行的。一定要有確切的數額(要求這樣準確是有心理學原因的)。
2.決定自己愿意付出什么來換取想要賺取的錢(不勞而獲是不現實的)。
3.為實現自己的愿望設定一個明確的日期。
為此,我將盡最大的努力來做好自己的工作。作為xx商品的推銷員,我將保質保量地為顧客提供最好的服務。
我相信自己能夠賺到這筆錢。我的自信是如此的強烈,仿佛現在我就能看到錢在我的眼前,甚至可以用手摸到它。它正等著我用勞動去換取。我正在等待達成這一目標的計劃的出現,一旦出現,我將堅定不移地去執行它。
每天至少要把這段話念兩遍。找一個無人打擾的安靜地方,閉上眼睛,大聲重復你想賺的錢的數額(大聲是為了你能聽見自己的話)。晚上睡覺前念一次,早上起床后念一次。
當專注于自己的目標的時候,想象自己在1年、3年、5年甚至后會怎么樣。在想象中,看到自己有了想要賺到的錢;看到自己住在用自己推銷賺來的錢買的房子里;看到自己在銀行存下的豐厚的養老金;看到自己因為善于推銷自己,而成為一個有影響力的人;看到自己從事著一份令人羨慕的職業,再不用擔心會失去自己的職位。
用想象力清晰地繪制出這幅圖畫,這將是你的愿望形象的體現。
當你開始“在心中記住這一確切的數額”時,閉上你的眼睛,將注意力集中在錢的數額上,直到你能真實地看到這筆錢。每天至少這么做一次。
你也許會認為,在真正得到這筆錢之前,一個人是不可能看到“自己有了錢”的。這里就需要殷切希望的幫助了。如果你十分強烈地想要實現自己的愿望,甚至已經達到狂熱的程度,你就可以輕易地說服自己會達成目標的。
讓自己相信你必須賺到這筆錢。讓你的潛意識相信,這筆錢正等著你去拿呢。這樣,潛意識就會為你提供獲取這筆錢的切實計劃了。
當在腦海中想象這筆錢的同時,想象為換取這筆錢,自己正在提供相應的服務或推銷相應的產品。
在第4個步驟中,提到你要“制訂實現自己愿望的詳細計劃,并立刻開始實施”、“將這一計劃付諸行動”。在制訂賺錢的計劃的時候,不要相信自己的“理性”,只要馬上開始想象自己已經有了這筆錢,要求和期待你的潛意識給你送來需要的計劃。當計劃出現時,它們很可能會以靈感或直覺的形式在大腦中一閃而過。
在第一次嘗試的時候,如果你不能控制和引導自己的情緒,請不要氣餒。要知道,沒有人可以不勞而獲。你不能弄虛作假,哪怕你想這么做。要獲得影響潛意識的能力的代價就是不斷地練習以上的方法。你自己要決定你的收獲是否值得你所付出的努力。
使用自我暗示的創造性想象方法的能力,在很大程度上取決于你專注于某一特定愿望并將之清晰化、形象化的能力,甚至將這一愿望變為一種“狂熱”的能力。
摘自《如何在人生中推銷自己》,[美]拿破侖?希爾/著。
二倍角公式教案大全(19篇)篇十一
2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。
用不同的`形式表示實驗田的總面積,并進行比較你發現了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)xxxxxxxxx_;(2);。
1.求的值,其中。
2.若。
對公式的真正理解有待加強。
二倍角公式教案大全(19篇)篇十二
1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展邏輯推理能力和有條理的表達能力。
2、體會公式的發現和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
3、了解完全平方公式的幾何背景,培養學生的數形結合意識。
4、在學習中使學生體會學習數學的樂趣,培養學習數學的信心,感愛數學的內在美。
1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;
探索討論、歸納總結。
一、回顧與思考。
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數和與這兩數差的積。
右邊是兩數的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入。
活動內容:提出問題:
用不同的形式表示實驗田的總面積,并進行比較。
活動內容:
1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數和的完全平方公式推導出兩數差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引導學生利用幾何圖形來驗證兩數差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數和(差))的平方;
右邊是兩數的平方和加上(減去)這兩數乘積的兩倍。
語言描述:兩數和(或差)的平方,等于這兩數的平方和加上(或減去)這兩數積的兩倍。
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
一、學習目標。
1、會推導完全平方公式,并能運用公式進行簡單的計算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計。
(一)預習準備。
(1)預習書p23—26。
(2)思考:和的平方等于平方的和嗎?
1、已知實數x、y都大于2,試比較這兩個數的積與這兩個數的和的大小,并說明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代數式(x+2)—(3xy—y)的值。
1、(5—x2)2等于;
答案:25—10x2+x4。
解析:解答:(5—x2)2=25—10x2+x4。
2、(x—2y)2等于;
答案:x2—8xy+4y2。
解析:解答:(x—2y)2=x2—8xy+4y2。
3、(3a—4b)2等于;
答案:9a2—24ab+16b2。
解析:解答:(3a—4b)2=9a2—24ab+16b2。
二倍角公式教案大全(19篇)篇十三
授課班級:三明四中初三(5)。
11。
教學目的:
1、由”公式“引發聯想,培養學生發散思維能力。
2、學會多角度思考問題,提高學生口頭表達能力。
教學重、難點:
引導學生多角度思考問題。
教學過程:
一、課前三分鐘:
[生]按照號數輪流《我看abc-------》。
(話題訓練:就26個英文字母之一展開合理想象)。
[生]點評。
二、活動過程:
(一)導入:打出課件:
數字笑話:
b、0對5說:”你該把肚皮收收了!
c、0碰到9,(大吃一驚):“哎,兄弟,怎么截肢了?”“。
d、學生猜:
0碰到(),很同情地說:”哎,怎么拄上雙拐了!“。
師:瞧,”0“多有意思?。▌撘姡?。
這節課我們也好好表現一下,怎么樣?
打出課件:
--------作文活動課。
(二)、準備階段:
師:我們先做一個小小的練習,造一個句子。
”我由_____想起了_________“。
下面請同學們把造好的句子念出來給大家聽聽,好嗎?
[生]發言。
師:贊評。
(二)醞釀階段:
打出課件:
w=x+y+z。
師:知道這是什么?
[生]:一個公式。
師:數、理、化有關這方面的公式多嗎?請舉例一下。
[生]:多------。
師:大家思考一下,看看你能否對這個公式有個認識。
[生]:思索。
w代表成功。
x代表勤奮y代表方法z代表惜時。
課件顯示:
成功=勤奮+方法+惜時。
讓我們齊讀一遍,共同感受一下它深刻的內涵。
[生]:齊讀。
(三)、成熟階段:
師:一個簡單的公式能夠表達出如此深刻的含義,這多么有趣?。?/p>
下面我們來試試進行公式演化的訓練,并由此進行聯想。
打出課件:
1+1=1。
師:這個公式從數學上講能成立么?
[生]:不能。
[生]:思考討論。
提問回答:
師:評議。
備份課件打出:
a、一個南半球加上一個北半球就是我們的整個地球。
b、兩根筷子合力能夾起一個雞蛋。
c、一對夫妻只生一個孩子。
d、兩個人的力量加在一起就是集體的強大力量。
師歸納:這說明只要我們轉換思維方式,展開豐富聯想,一定能賦予一個簡單的公式許多生動有趣的含義。
那么就請大家展開豐富聯想,列出你們感悟最深的公式來吧。
[生]:思考。
[生]:發言交流。
師:對學生的發言作點評。
插入課件一:
中考有7門,我語文成績不好,若再不努力追趕,即使其他成績再好,也是白搭,這叫”前功盡棄,一切趨于零。”所以我必須要加倍努力學好語文迎頭趕上。
師問:這位同學的公式好不好?好在哪?
[生]評:這位同學聯系自己的'實際情況,為自己所列的公式賦予了很實在的內容,可謂恰如其分。
課件二:
13。
一個和尚有水吃,三個和尚沒水吃。啟示我們要團結和作,齊心協力。
師問[生]評:的確很不錯。聯想十分巧妙又有意義。
師:好,我們再來聽聽同學們的發言。
[生]:交流。
師:評。
(四)、歸納小結:
打出課件:
想象是作文的翅膀。
讀書是作文的向導。
生活是作文的源泉。
聽了同學們的發言,真令我感嘆不已。本來枯燥無味的公式卻能讓大家賦予豐富的內涵,同學們的想法很了不起啊!
作文就是表現生活的,要表現生活,就必須要認識生活,而認識生活,靠的是我們對生活的感悟。善于感悟的人,聯想、想象力一定是很強的,那么他寫作能力也就不言而喻了。
四、布置作業:
寫作:以本節課的內容或你所列的公式為題,寫一篇不少于500字的文章。
[教后記]:
*學生是課堂的真主人,留給學生充足的活動空間。
*重視學生思維能力的發展,尤其是要重視培養學生創造性思維。
*有序循進地開展教學,捕捉帶規律性的思維激發點,吸引學生主動參與的積極性。
*注重鍛煉學生口頭表達能力和歸納總結能力,提高學生深刻思想內涵的賦予,既教作文又育作人。
*重視培養學生良好的思維習性,自主聯想自主表述、思維訓練的科學性。
作者郵箱:zhangqin@。
二倍角公式教案大全(19篇)篇十四
1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。
2、掌握運用完全平方公式分解因式的`方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。
教學方法:對比發現法課型新授課教具投影儀。
教師活動:學生活動。
新課講解:
(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2。
a2-8a+16=a2-2×4a+42=(a-4)2。
(要強調注意符號)。
首先我們來試一試:(投影:牛刀小試)。
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1。
(3)(m+n)2-4(m+n)+4。
(教師強調步驟的重要性,注意發現學生易錯點,及時糾正)。
2.把81x4-72x2y2+16y4分解因式。
(本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創新)。
將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。
練習:第88頁練一練第1、2題。
二倍角公式教案大全(19篇)篇十五
(4)(1-5y)(l+5y)。
例3計算(-4a-1)(-4a+1)。
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數的和與這兩數的差相乘的形式,應用平方差公式,寫出結果。解法2把-4a看成一個數,把1看成另一個數,直接寫出(-4a)2-l2后得出結果。采用解法2的同學比較注意平方差公式的特征,能看到問題的本質,運算簡捷。因此,我們在計算中,先要分析題目的數字特征,然后正確應用平方差公式,就能比較簡捷地得到答案。
課堂練習。
1、口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教師巡視學生練習情況,請不同解法的學生,或發生錯誤的學生板演,教師和學生一起分析解法。
三、小結。
1、什么是平方差公式?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質能應用公式,要注意變形。
四、作業。
1、運用平方差公式計算:
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
二倍角公式教案大全(19篇)篇十六
引例講解:將下列各式分解因式。
1、x2+6x+92、4x2-20x+25。
問題:這兩題首先怎么分析?
生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學生回答,教師板書)。
生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5。
x2+6x+9=x2+2×x×3+32=(x+3)2。
4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。
(聯系字母表達式用箭頭對應表示,加深學生印象。)。
生16:由符號來決定。
師:能不能具體點。
生16:由中間一項的符號決定,就是兩個數乘積2倍這項的符號決定,是正,就是兩個數的和;是負,就是兩個數的差。
師:總之,在分解完全平方式時,要根據第二項的符號來選擇運用哪一個完全平方公式。
例題1:把25x4+10x2+1分解因式。
師:這道題目能否運用以前所學的方法分解?就題目本身有什么特點?可以怎么分解?
生17:題目符合完全平方式的特點,可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學生板演,過程略)。
例題2:把-x2-4y2+4xy分解因式。
師:按照常規我們首先怎么辦?
生齊答:提取負號。〔教師板書:-(x2+4y2-4xy)〕以下過程學生板演。
師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)。
提示:從項的特征進行考慮,怎樣轉化比較合理?四人小組討論。
生18:同樣還是將負號提取改變成完全平方式的形式。
師:從這里我們可以發現,只要三項式中能改寫成平方的兩項是同號,且另一項為兩底數積的2倍,我們都能利用這個公式分解,若這兩項同為正則可直接分解,若同為負則先提取負號再分解。
練習題:課本p21練習:第1題,學生板演,教師講解,學生板演的同時,教師提示注意點、多項式的特征;第2題,學生口答。
例題3:把3ax2+6axy+3ay2分解因式。
師:先觀察,再選擇適當的方法。(學生板演,教師點評)。
練習:課本p22第3題分兩組學生板演,教師評講、適當提示注意點。
師:這一堂課我們一起研究了完全平方式的有關知識,同學們先自查一下自己的收獲,然后請同學發表自己的見解。(學生小聲討論)。
生甲:我學到了如何將完全平方式分解因式,遇到三項式中有兩項符號相同且能化成平方的形式,另一項為這兩個數的積的2倍的形式,如果能化成平方項是負的,首先將負號提取再分解。第二項是正的就是兩數的和的平方,第二項是負的就是兩數差的平方。
生乙:有公因式可提取的先提取公因式,然后再分解,同時根據第二項的符號來選用合適的公式。
教師布置課堂作業:課本p23習題8.2a組4~5偶數題。
課外作業:課本p23習題8.2a組4~5奇數題。
下課!
二倍角公式教案大全(19篇)篇十七
理解兩個完全平方公式的結構,靈活運用完全平方公式進行運算。
在運用完全平方公式的過程中,進一步發展學生的符號演算的能力,提高運算能力。
培養學生在獨立思考的基礎上,積極參與對數學問題的討論,敢于發表自己的見解。
一、復習導入。
2.計算,除了直接用兩數差的完全平方公式外,還有別的方法嗎?
學生思考后回答:由于兩數差可以轉化成兩數和,所以還可以用兩數和的完全平方公式計算,把“”看成加數,按照兩數和的完全平方公式計算,結果是一樣的。
教師歸納:當我們對差與和加以區分時,兩個公式是有區別的,區別是其結果的中間項一個是“減”一個是“加”,注意到區別有助于計算的準確;另一方面,當我們對差與和不加區分,全部理解成“加項”時,那么兩個公式從結構上來看就是一致的了,其結構都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍。”注意到它們的統一性,有于我們更深刻地理解公式特點,提高運算的靈活性。
我們學習運算,除了要重視結果,還要重視過程,平時注意訓練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。
二、新課講解。
溫故知新。
與,與相等嗎?為什么?
學生討論交流,鼓勵學生從不同的。角度進行說理,共同歸納總結出兩條判斷的思路:
1.對原式進行運算,利用運算的結果來判斷;
2.不對原式進行運算,只做適當變形后利用整體的方法來判斷。
思考:與,與相等嗎?為什么?
利用整體的方法判斷,把看成一個數,則是它的相反數,相反數的奇次方是相反的,所以它們不相等。
總結歸納得到:;
三、典例剖析。
二倍角公式教案大全(19篇)篇十八
(2)切勿把“乘積項”2ab中的2丟掉.
今后在教學中?,要注意以下幾點:
1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征.
2.引入完全平方公式,讓學生用文字概括公式的內容,培養抽象的數字思維能力.
二倍角公式教案大全(19篇)篇十九
九九乘法表是小學生學習數學時一定要學習的內容,為小學生抄寫一份九九乘法表也是不少家長的功課之一。其實用excel作一份乘法表也是一個不錯的選擇。it168曾經發表過一篇利用vba編程實現“九九乘法表”的文章,它就為我們指引了一條很不錯的制作乘法表的道路,令我們很受啟發。
在excel中,除了用vba編程來制作乘法表以外,我們還可以直接利用公式來寫乘法表,效果也是不錯的。下面我們以excel2007為例來說明。
一、建立乘法表。
首先我們在excel中建立一份空的表格,在b1:j1單元格區域分別填寫數字1至9,在a2:a10單元格也分別填寫數字1至9,得到如圖1所示表格。
圖1excel2007填寫基本數字。
圖2excel2007填充單元格。
在此公式中其實只用到了一個if函數。所寫乘法表中被乘數是b1:j1中的數據,而乘數則是a2:a10單元格中的數據。我們所用公式的意思可以這樣理解:首先判斷被乘數是否小于或等于乘數,如果是,那么就輸出結果,如果不是,那么在此單元格中就輸出空值。
二、為乘法表格添加表格線。
感覺那乘法表有些簡陋?不要緊,我們為表格加上表格線就好了,
當然,只為那些有內容的單元格添加表格線。辦法嗎?首先隱藏不必要的輔助數據,然后再用條件格式的方法為乘法表添加表格線。
先點擊a列列標選中a列全部單元格,點擊右鍵,在彈出菜單中點擊“隱藏”命令,然后再點擊第一行的行號,選中全部第一行的單元格,再點擊右鍵,在彈出菜單中點擊“隱藏”命令,這樣,輔助數據就不見了。
現在,我們再選中b2單元格,然后點擊功能區“開始”選項卡“樣式”功能組“條件格式”按鈕,在彈出的菜單中點擊“新建規則”命令,打開“新建格式規則”對話框。然后在“選擇規則類型”列表中選擇“使用公式確定要設置格式的單元格”命令,然后在“為符合此公式的值設置格式”下方的輸入框中輸入公式“=b2“””,如圖3所示。
圖3excel2007編輯格式規則。
再點擊下方的“格式”按鈕,打開“設置單元格格式”對話框,在“邊框”選項卡中設置單元格的邊框格式,如圖4所示。當然,我們還可以做出其它的設置。確定后,b2單元格就會添加有邊框了。
圖4excel2007設置單元格格式。
再選中b2單元格,然后點擊功能區“開始”選項卡“剪貼板”功能組中“格式刷”按鈕,然后“刷取”b2:j10單元格區域復制格式,那么,在乘法表中非空的那些單元格就會自動添加邊框線,而沒有內容的那些單元格則不會有任何變化。如圖5所示。
圖5excel2007添加邊框線。
好了,不多說了,有興趣自己試試吧。
將本文的word文檔下載到電腦,方便收藏和打印。