為保證事情或工作高起點、高質量、高水平開展,常常需要提前準備一份具體、詳細、針對性強的方案,方案是書面計劃,是具體行動實施辦法細則,步驟等。方案能夠幫助到我們很多,所以方案到底該怎么寫才好呢?下面是小編為大家收集的方案策劃范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
高二數學教學計劃方案篇一
1、教材地位、作用。
本節課的內容選自《普通高中課程標準實驗教科書數學必修3(a)版》第三章中的第3.2.1節古典概型。它安排在隨機事件的概率之后,幾何概型之前,學生還未學習排列組合的情況下教學的。
古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位,是學習概率必不可少的內容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節課的教學重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、學情分析。
學生基礎一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節上不完備,反映在解題中就是思維不慎密,過程不完整。
1、知識與技能目標。
(1)理解等可能事件的概念及概率計算公式。
(2)能夠準確計算等可能事件的概率。
2、過程與方法。
根據本節課的知識特點和學生的認知水平,教學中采用探究式和啟發式教學法,通過生活中常見的實際問題引入課題,層層設問,經過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學生對問題的理解從感性認識上升到理性認識。
3、情感態度與價值觀。
概率問題與實際生活聯系緊密,學生通過概率知識的學習,可以更好的理解隨機現象的本質,掌握隨機現象的規律,科學地分析、解釋生活中的一些現象,初步形成實事求是的科學態度和鍥而不舍的求學精神。
1、重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。
1、創設情境,提出問題。
師:在考試中遇到不會做的選擇題同學們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?
通過這個同學們經常會遇到的問題,引導學生合作探索新知識,符合“學生為主體,老師為主導”的現代教育觀點,也符合學生的認知規律。隨著新問題的提出,激發了學生的求知欲望,使課堂的有效思維增加。
2、抽象思維。形成概念、
師:考察試驗一“拋擲一枚質地均勻的骰子”,有幾種不同的結果,結果分別有哪些?
生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。
師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。
師:考察試驗二“拋擲一枚質地均勻的硬幣”有哪些基本事件?
生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。
師:那基本事件有什么特點呢?
問題:
(1)在“拋擲一枚質地均勻的骰子”試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎?
(2)事件“出現偶數點”包含了哪幾個基本事件?
由如上問題,分別得到基本事件如下的兩個特點:
(1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
(讓學生交流討論,教師再加以總結、概括)
讓學生歸納與總結,鼓勵學生用自己的語言表述,從而提高學生的表達能力與數學語言的組織能力
例1:從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?
師:為了得到基本事件,我們可以按照某種順序,把所有可能的結果寫出來,本小題我們可以按照字母排序的順序,用列舉法列出所有基本事件的結果。
解:所求的基本事件共有6個:
____________________________________________________________________________________。
由于學生沒有學習排列組合知識,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數這一難點,同時滲透了數形結合及分類討論的數學思想。
師:你能發現前面兩個數學試驗和例1有哪些共同特點嗎?(先讓學生交流討論,然后教師抽學生回答,并在學生回答的基礎上再進行補充)
試驗一中所有可能出現的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現的可能性相等,都是;
試驗二中所有可能出現的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現的可能性相等,都是;
例1中所有可能出現的基本事件有“a”、“b”、“c”、“d”、“e”和“f”6個,并且每個基本事件出現的可能性相等,都是;
經概括總結后得到:
①試驗中所有可能出現的基本事件只有有限個;
②每個基本事件出現的可能性相等。
我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。
學生在合作交流的探究氛圍中思考、質疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納問題的能力。
3、概念深化,加深理解。
試驗“向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的”。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。
試驗“某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環……命中5環和不中環’。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環……命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。
這兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學難點,培養學生思維的深刻性與批判性。
4、觀察比較,推導公式。
師:在古典概型下,隨機事件出現的概率如何計算?(讓學生討論、思考交流)
生:試驗二中,出現各個點的概率相等,即
p(“1點”)=p(“2點”)=p(“3點”)=p(“4點”)=p(“5點”)=p(“6點”)
由概率的加法公式,得
p(“1點”)+p(“2點”)+p(“3點”)+p(“4點”)+p(“5點”)+p(“6點”)=p(必然事件)=1
因此p(“1點”)=p(“2點”)=p(“3點”)=p(“4點”)=p(“5點”)=p(“6點”)=
進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,
p(“出現偶數點”)=p(“2點”)+p(“4點”)+p(“6點”)=++==
p(“出現偶數點”)=?=
師:根據上述試驗,你能概括總結出,古典概型計算任何事件的概率計算公式嗎?
生:_________________________________________________________________。
學生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數學知識形成的發生與發展的過程,體現具體到抽象、從特殊到一般的數學思想,同時讓學生感受數學化歸思想的優越性和這一做法的合理性。
師:我們在使用古典概型的概率公式時,應該還要注意些什么呢?(先讓學生自由說,教師再加以歸納)在使用古典概型的概率公式時,應該注意:
①要判斷該概率模型是不是古典概型;
②要找出隨機事件a包含的基本事件的個數和試驗中基本事件的總數。
深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
5、應用與提高。
例2:單選題是標準化考試中常用的題型,一般是從a,b,c,d四個選項中選擇一個正確答案。如果考生掌握了考查的內容,他可以選擇惟一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
解:這是一個古典概型,因為試驗的可能結果只有4個:選擇a、選擇b、選擇c、選擇d,從而由古典概型的概率計算公式得:
探究:在標準化考試中既有單選題又有不定項選擇題,不定項選擇題是從a,b,c,d四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?
解:這是一個古典概型,因為試驗的可能結果只有15個:選擇a、選擇b、選擇c、選擇d,選擇ab、選擇ac、選擇ad、選擇bc、選擇bd、選擇cd、選擇abc、選擇abd、選擇acd、選擇bcd、選擇abcd,從而由古典概型的概率計算公式得:
p(“答對”)=1/15
解決了課前提出的思考題,讓學生明確解決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件a包含的基本事件的個數和試驗中基本事件的總數。
例3:同時擲兩個骰子,計算:
(1)一共有多少種不同的結果?
(2)其中向上的點數之和是5的結果有多少種?
(3)向上的點數之和是5的概率是多少?
(教師先讓學生獨立完成,再抽兩位不同答案的學生回答)
學生1:
①所有可能的結果是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種。
②向上的點數之和為5的結果有2個,它們是(1,4)(2,3)。
③向上點數之和為5的結果(記為事件a)有2種,因此,由古典概型的概率計算公式可得
學生2:
①擲一個骰子的結果有6種,我們把兩個骰子標上記號1,2以便區分,由于1號骰子的每一個結果都可與2號骰子的任意一個結果配對,組成同時擲兩個骰子的一個結果,我們可以用列表法得到(如圖),其中第一個數表示1號骰子的結果,第二個數表示2號骰子的結果。
由表中可知同時擲兩個骰子的結果共有36種。
②在上面的所有結果中,向上的點數之和為5的結果有4種:(1,4),(2,3),(3,2),(4,1)。
③由于所有36種結果是等可能的,其中向上點數之和為5的結果(記為事件a)有4種,因此,由古典概型的概率計算公式可得
師:上面同一個問題為什么會有兩種不同的答案呢?(先讓學生交流討論,教師再抽學生回答)
生:答案1是錯的,原因是其中構造的21個基本事件不是等可能發生的,因此就不能用古典概型的概率公式求解。
師:我們今后用古典概型的概率公式求解時,特別要驗證“每個基本事件出現是等可能的”這個條件,否則計算出的概率將是錯誤的。
本題通過學生的觀察比較,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸使學生養成自主探究能力。同時培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣。
6、知識梳理,課堂小結。
(1)本節課你學習到了哪些知識?
(2)本節課滲透了哪些數學思想方法?
7、作業布置。
(1)閱讀本節教材內容
(2)必做題課本130頁練習第1,2題,課本134頁習題3。2a組第4題
(3)選做題課本134頁習題b組第1題
8、教學反思。
本節課的教學設計以“問題串”的方式呈現為主,教學過程中師生共同合作,體驗古典概型的特點,公式的生成、發現,把“數學發現”的權力還給學生,讓學生感受知識形成的過程,獲得數學發現的體驗。將學習的主動權較完整地交還給學生。
本節課始終本著在教師的引導下,學生通過討論、歸納、探究等方式自主獲取知識,從而達到滿意的教學效果。構建利于學生學習的有效教學情境,較好地拓展師生的活動空間,符合新課程的理念。
高二數學教學計劃方案篇二
在學校教育工作意見指導下,嚴格執行學校各教育教育制度和要求,加強數學教育研究,提高全組教師教育、教育研究水平,明確任務,團結合作,圓滿完成教育教育研究任務。具體任務如下:
1.讓學生獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,理解概念、結論等產生的背景、應用,體驗其中包含的數學思想和方法,以及其在后續學習中的作用。通過不同形式的自主學習、探索活動,體驗數學發現和創造的歷史。
2.提高學生空間想象力、抽象摘要、推理論證、運算解決、數據處理等基本能力。
3.提高學生提出、分析和解決數學問題(包括簡單的實際問題)的能力,提高數學表現和交流的能力,發展獨立獲得數學知識的能力。
4.發展學生數學應用意識和創新意識,努力思考和判斷現實世界包含的數學模式。
5.提高學生學習數學的興趣,確立學習數學的自信,形成堅持不懈的鉆研精神和科學態度。
6.使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思考習慣,崇尚數學的理性精神,體驗數學的美學意義,進一步確立辯證唯物主義和歷史唯物主義世界觀。
1.選擇與內容密切相關、典型、豐富、學生熟悉的素材,用生動活潑的語言創造數學概念和結論、數學思想和方法、數學應用的學習情況,使學生產生對數學的親切感,引起學生看到最后的沖動,達到培養興趣的目的。
2.通過觀察、思考、探索等欄目,引起學生的思考和探索活動,切實改善學生的學習方式。
3.在教育中強調類比、普及、特殊化、歸化等數學思想方法,盡量養成邏輯思維的習慣。
1.全體老師誠實團結,相互關心,相互支持,努力使我們的高二數學組成為充滿活力的優秀集團?;ハ嗌险n,取長補短,完善自己,加強形式、時間、場所的交流。在日常工作中,保持和優化個人特色,實現資源共享,同類班級相關工作基本統一。
2.認真執行,做好集體準備課程。每周四上午三四節集體備課,認真分析教材內容,研討其中的重點、難點、教學方法等。
3.詳細規劃,保證練習質量。在教育中充分利用資料,要求學生根據教育進度完成相應的練習題,每周以內容滾動式制作周練試卷,老師必須整理,存在的普遍問題必須安排時間評價,成績在星期四之前自己輸入年級計算機。
4.抓住第二課,穩定數學優秀學生,培養數學能力興趣。各班培養好本班優生,注意激發學員學習興趣,隨時注意學員學習方法輔導。
5.加強指導工作。對于數學學習困難的學生來說,教師的下班指導非常重要。在教師教育中,要盡快把握班級學生的數學學習狀況,有目的地進行指導工作,注意班級優生層,不能忽視班級困難的學生。
高二數學教學計劃方案篇三
118班66人,115班48人。118班學習數學的氛圍很濃。但由于高一的函數部分基礎較差,對高二乃至整個高中的數學學習影響很大。數學成績或多或少都有尖子生,但如果能認真復習函數部分,學生努力,前途無量。如果我們能很好地引導他們,進一步培養他們的學習興趣,…
(a)情感目標
(1)通過問題分析方法、一個不等式問題的多解、一個不等式問題的多解、一個不等式問題的多重證明的教學,培養學生的學習興趣。
(2)提供生活背景,讓學生體驗不等式、直線、圓以及圍繞它們的圓錐曲線,培養運用數學學習數學的意識。
(3)探究不等式和二次曲線的本質,體驗獲得數學規律的艱辛和樂趣,學會小組合作學習中的交流和相互評價,提高學生的合作意識
(4)以情感目標為基礎,規范教學過程,增強學習信念和信心。
(5)給學生時間和空間、班級和探索發現的權利,給學生自主探索和合作的機會,在發展思維能力的同時,培養學生的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——個挫折3354個矛盾——個頓悟——個新發現”的科學發現過程的神奇
(2)能力要求
1.培養學生的記憶能力。
(1)在研究不等式的性質、平均不等式、思維方法和邏輯模式時,進一步培養記憶能力。讓記憶準確持久,快速正確的重現。
(2)通過對定義和命題的整體結構的教學,可以揭示它們的本質特征和相互關系,培養對數學本質問題的背景事實和具體數據的記憶。
(3)通過揭示解析幾何的概念、公式和視值之間的對應關系,培養記憶能力。
2.培養學生的計算能力。
(1)通過解不等式和不等式組的訓練,訓練學生的運算能力。
(2)加強概念、公式、規則的清晰性和靈活性的教學,培養學生的計算能力。(3)通過分析方法的教學,提高學生在操作過程中清晰、合理、簡單的能力。
(4)通過一題多解、一題多變,培養正確、快速、合理、靈活的計算能力,促進知識的滲透和傳遞。(5)利用數字和形狀的結合,尋找另一種提高學生計算能力的方法。
3.培養學生的思維能力。
(1)通過用參數求解不等式,培養學生的思維縝密和邏輯思維。
(2)通過多解、多解、多證分析幾何和不等式,培養思維的靈活性和敏捷性,發展發散思維能力。
(3)通過推廣和普及不等式培養學生的創造性思維。
(4)加強知識的橫向聯系,培養學生數形結合的能力。(5)通過解析幾何的概念教學,培養學生的正向思維和逆向思維能力。
(6)通過典型例題的不同思路分析,培養思維的靈活性是學生掌握思維轉化的途徑。
4.培養學生的觀察能力。
(1)在比較和鑒別中,提高觀察的準確性和完整性。(2)通過對人格特征的分析研究,提高觀察深度。(3)知識要求
1、掌握不等式的概念、性質和證明不等式的方法,不等式的解法;
2.通過直線和圓的教學,學生可以了解解析幾何的基本思想,掌握
(2)難點1。不等式的解包括絕對值和不等式的證明。2.角度公式、點到直線距離公式的推導及簡單線性規劃的求解。
3.用坐標法研究幾何問題,尋找曲線方程的一般方法。
五.教學措施
1.在教學中,要將傳授知識與培養能力相結合,充分調動學生的學習主動性,培養學生的概括能力,使學生掌握數學的基本方法和技能。
2.堅持與高三接觸,踏實面對高考,以數學五大思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生學習負擔。
3.加強教育教學研究,堅持學生主體性原則,循序漸進,啟發性。研究并采用基于“發現教學模式”的教學方法,全面提高教學質量。
4.積極參與和組織集體備課,共同學習,努力提高教學質量
5.堅持聽同齡人講課,取長補短?;ハ鄬W習,共同進步。
6.堅持學習方法,加強個別輔導(差生和優等生),提高全體學生的整體數學水平,培養尖子生。
7.加強數學研究性課程的教學和研究指導,培養知識的實踐能力。
第六,課表
這學期有81個課時。1.不等式18課時
2.直線圓方程25課時
3.圓錐曲線20課時
4.研究班18小時
高二數學教學計劃方案篇四
“解析幾何初步”研究的問題是直線和圓,及其之間的關系,還有空間直角坐標系的概念。高中階段解析幾何內容的分布,除了“解析幾何初步”外,在選修系列1,2中,都延續了解析幾何的內容,設計了“圓錐曲線與方程”。在選修系列4的《幾何證明選講》中,還將繼續研究圓錐曲線。研究圓錐曲線有兩種方法:綜合幾何的方法和解析幾何的方法。在選修系列4的《幾何證明選講》中,運用了綜合幾何的方法。
“解析幾何初步”是要依托直線的方程與圓的標準方程,讓學生把握用代數方法解決幾何問題的基本步驟,初步形成代數方法解決幾何問題的能力,幫助學生理解解析幾何的基本思想。
①在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素;
②理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;
③能根據斜率判定兩條直線平行或垂直;
④根據確定直線位置關系的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系;
⑤能用解方程組的方法求兩直線的交點坐標;
⑥探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
①回顧確定圓的幾何要素,在平面直角坐標系中,探索并掌握圓的標準方程與一般方程;
②能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系;
③能用直線和圓的方程解決一些簡單的問題。
①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會空間直角坐標系刻畫點的位置;
②通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索并得出空間兩點間的距離公式。
《標準》中對“解析幾何初步”的要求只是階段性要求,在選修系列1,2中,還將進一步學習圓錐曲線與方程的內容。因此,對本部分內容的教學要把握好“度”,特別是對于解析幾何思想的理解不能要求一步到位。
(
解析幾何初步的教學,要注重知識的發生與發展的過程,首先將幾何問題代數化,用代數的語言描述幾何元素及其關系,進而將幾何問題代數化;處理代數問題;分析代數結果的幾何含義,最終解決幾何問題。同時,應強調借助幾何直觀理解代數關系的意義,即對代數關系的幾何意義的解釋。讓學生在這樣的過程中,不斷地體會“數形結合”的思想方法。
數學課程應返璞歸真,努力揭示數學概念、法則、結論的發展過程和本質,要通過學生的自主探索活動,使學生理解數學概念、結論逐步形成的過程,體會蘊涵在其中的思想方法。在解析幾何初步的教學中,同樣要通過觀察、操作探索,確定直線與圓的幾何要素,并由此探索掌握直線與圓的幾種形式的方程,探索掌握一些距離公式。
比如如何在平面直角坐標系中描述直線,這是解析幾何教學中遇到的第一個問題。在坐標系中,一條直線或者與x軸平行,或者與x軸相交。與x軸平行的直線的代數特征很簡單,這條直線上的點的縱坐標是個常數,即y=a。除了x=a,還有什么方法可以刻畫與x軸相交的直線?也就是如何用代數的方法刻畫直線的斜率。
①用傾斜角的正切
這是傳統教材的方式,由于傾斜角是大于等于0°小于180°,傾斜角與其正切一一對應的(90°除外);當然,也可以用傾斜角的余弦值表示直線的斜率,傾斜角與其余弦值是一一對應的,但這種表示要復雜一些,一般都選擇使用傾斜角的正切。
這需要先引入0°到180°的正切函數的概念。
②用向量
高二數學教學計劃方案篇五
1。知識內容
2。 章節安排
本章教學時間約需18課時,具體分配如下:
1 直線與直線的方程 8課時
2 圓與圓的方程 5課時
3 空間直角坐標系 3課時
高二數學教學計劃方案篇六
以1215課堂教學模式為指引,以學校教導處、教研組、年級部工作計劃為指南,加強高二數學備課組教師的教育教學理論學習,更新教學觀念,落實教學常規,全面提高學生的數學能力,尤其是提高創新意識和實踐能力,為社會培養創造型人才。
今年高二重新分班后我接了高二(1)和高二(13)一理一文兩個班的數學教學,學生程度不是太好而且新來的學生需要適應過程,教學中要從學生的認知水平和實際能力出發,及時糾正不合理學習方法,研究學生的心理特征,做好高二與高一的銜接工作。注重培養學生良好的數學思維方法,良好的學習態度和學習習慣。具體措施如下:
(1)注意研究學生,做好高二與高一學習方法的銜接。
(2)集中精力打好基礎,分項突破難點.所列基礎知識依據課程標準設計,著眼于基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,講難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進。
(3)培養學生解答考題的能力,通過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。
(4)讓學生通過周月考和單元考試,檢測自己的實際應用能力,從而及時總結經驗,找出不足,做好充分的準備,用周周練及時的鞏固復習所學內容知識點,以及一些常見的題型和方法。
(5)合理利用晚自習的時間抓好尖子生與后進生的輔導工作,分析周周練的作業和課外輔導資料。適當安排時間將高一的重點內容帶著學生們復習回顧。
(6)注意運用現代化教學手段輔助數學教學;注意運用投影儀、電腦軟件等現代化教學手段輔助教學,提高課堂效率,激發學生學習興趣。
第1周 < < < < < < | 數學必修2:立體幾何 < < < < < < 1.1空間幾何體的結構 |
第2周 < < < < < <
|
|
第3周 < < < < < < |
|
第4周 < < < < < < |
|
第5周 < < < < < < | 2.2直線、平面平行的判定及其性質(1)(2)(3)(4) < < < < < < |
第6周 < < < < < < | 2.3直線、平面垂直的判定及其性質(1)(2)(3)(4) |
第7周 < < < < < < | 2.3直線、平面垂直的判定及其性質(4) < < < < < < 空間點、線、面復習 |
第8周 < < < < < < | 選修2-1:空間向量 < < < < < < 第三章3.1空間向量及其運算 |
第9周 < < < < < < | 空間向量及其運算 |
第10周 < < < < < < | 期中考試 < < < < < < |
第11周 < < < < < < | 空間向量 |
第12周 < < < < < < | 1.1命題及其關系 |
第13周 < < < < < < | 1.3簡單的邏輯連結詞 |
第14周 < < < < < < |
|
第15周 < < < < < < | 2.1橢圓(3課時) |
第16周 < < < < < < | 2.2雙曲線(2課時) |
第17周 < < < < < < | 2.3拋物線(1課時) |
第18周 < < < < < < | 曲線與方程(2課時) |
第19周 < < < < < < | 總復習 < < < < < < |
第20周 < < < < < < | 期末考試 < < < < < < |
高二數學教學計劃方案篇七
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,并在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善于使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列的通項公式an:
6、 數列的前n項和公式sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
9、一般數列的通項an與前n項和sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d0時,an是關于n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:sn= sn= sn=
當d0時,sn是關于n的二次式且常數項為0;當d=0時(a10),sn=na1是關于n的正比例式。
12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an0)
13、等比數列的前n項和公式:當q=1時,sn=n a1 (是關于n的正比例式);
當q1時,sn= sn=
14、等差數列的任意連續m項的和構成的數列sm、s2m-sm、s3m-s2m、s4m - s3m、仍為等差數列。
15、等差數列中,若m+n=p+q,則
16、等比數列中,若m+n=p+q,則
17、等比數列的任意連續m項的和構成的數列sm、s2m-sm、s3m-s2m、s4m - s3m、仍為等比數列。
18、兩個等差數列與的和差的數列、仍為等差數列。
19、兩個等比數列與的積、商、倒數組成的數列
、 、 仍為等比數列。
20、等差數列的任意等距離的項構成的數列仍為等差數列。
21、等比數列的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3
24、為等差數列,則 (c0)是等比數列。
25、(bn0)是等比數列,則 (c0且c 1) 是等差數列。
26、分組法求數列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求數列的最大、最小項的方法:
① an+1-an= 如an= -2n2+29n-3
② an=f(n) 研究函數f(n)的增減性
31、在等差數列 中,有關sn 的最值問題常用鄰項變號法求解:
(1)當 0時,滿足 的項數m使得 取最大值.
(2)當 0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
以上就是高二數學學習:高二數學數列的所有內容,希望對大家有所幫助!
高二數學教學計劃方案篇八
這學期按照教育局教研室的要求,教學任務比較重。選修1-1,第三章《導數》,根據教研室的計劃,應該安排在春節前。鑒于期末考試臨近,這一章沒有學習,所以這學期的教學內容有以下幾個部分:選修1-1 《導數》,選修1-2,共四章《統計案例》,《推理與證明》,《數系的擴充與復數的引入》。
根據年山東省高考數學(文科)大綱的要求,應及時調整教學計劃,切實重視學生學習的實施,讓學生的學習成為有效的勞動。精心備課,精心指導,針對目標學生不放松,努力使目標學生數學成績有效,積極交流,提高教學水平,同時認真學習《框圖》,學習新課程,應用新課程。
這學期我主要從以下幾個方面做好教學工作:
1、注重學習計劃指導學習,善用好學案例。注重研究老師如何說話,就是注重研究學生如何學習。
2.盡量分層次做作業,尤其是加餐,提高尖子生的學習成績。
3.特別注意學生作業的落實,不定時查看學生的集錦和作業本。
4.組織單位通過,做好試卷講評工作。
5.積極溝通目標學生的想法和感受
高二數學教學計劃方案篇九
(一)知識與技能
1.通過探究學習使學生掌握幾何概型的基本特征,明確幾何概型與古典概型的區別.
2.理解并掌握幾何概型的概念.
3.掌握幾何概型的概率公式,會進行簡單的幾何概率計算.
(二)過程與方法
1.讓學生通過對隨機試驗的觀察分析,提煉它們共同的本質的東西,從而親歷幾何概型的建構過程,培養學生觀察、類比、聯想等邏輯推理能力.
2.通過實際應用,培養學生把實際問題抽象成數學問題的'能力,感知用圖形解決概率問題的方法.
(三)情感、態度、價值觀
1.讓學生了解幾何概型的意義,加強與現實生活的聯系,以科學的態度評價一些隨機現象.
2.通過對幾何概型的教學,幫助學生樹立科學的世界觀和辯證的思想,養成合作交流的習慣,初步形成建立數學模型的能力.
教學重點:了解幾何概型的基本特點及進行簡單的幾何概率計算.
教學難點:如何在實際背景中找出幾何區域及如何確定該區域的“測度”.
教學方法:“自主、合作、探究”教學法
教學手段: 電子白板、實物投影、多媒體課件輔助
幾何概型的概念:設d是一個可度量的區域(例如線段、平面圖形、立體圖形等).每個基本事件可以視為從區域d內隨機地取一點,區域d內的每一點被取到的機會都一樣;隨機事件a的發生可以視為恰好取到區域d內的某個指定區域d中的點。
這時,事件a發生的概率與d的測度(長度、面積、體積等)成正比。
我們把滿足這樣條件的概率模型稱幾何概型.
板書:幾何概型的概率計算公式:
高二數學教學計劃方案篇十
主動而不是被動的進行高中新課程標準改革,認真解讀新課程標準的理念;研究高中新課程標準的實驗與高考銜接的問題;把學生的接受性、被動學習轉變成主動性、研究性學習;使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
3.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考
和作出判斷。
4.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
5.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
備課組長在教研組長的領導下,負責年級備課和教學研究工作,努力提高本年級學科的教學質量。
1.全組成員精誠團結,互相關心,互相支持,弘揚一種同志加兄弟的同仁關系,力爭使我們高一數學組成為一個充滿活力的優秀集體。
2.不拘形式不拘時間地點的加強交流,互相之間取長補短,與時俱進,教學相長。
3.在日常工作當中,既保持和優化個人特色,又實現資源共享,同類班級的相關工作做到基本統一。
4.抓好本年級活動課和研究性學習課的教學,有針對性培養學有余力,學有特長的學生,并做好后進生的轉化工作,真正做到大面積提高教育質量。
1.以老師的精心備課與充滿激情的教學,換取學生學習高效率。
2.將學校和教研組安排的有關工作落到實處。
3.落實培輔工作,為高三鋪路!教育要從娃娃抓起,那么對難于上青天的教學我們應當從今天抓起。
1.按時完成學校(教導處,教研組)相關工作。
2.共同研究,共同探討,備課組為新教材每章節配套單元測試卷兩套。
3.每周集體備課一次,每次有中心發言人,組織進行教學研討以便分章節搞好集體備課。
4.互相聽課,以人之長,補己之短,完善自我。
5.認真組織好培優輔差工作。
6.做好學科段考、模塊的復習、出題、考試、評卷、成績統計和質量分析評價工作.
7.積極組織全組成員探索教材特點、積極思考教法分析、認真分析學情以便根據不同的情況實施有效的教學策略.
1.導數及其應用(約24課時)
(1)導數概念及其幾何意義
①通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵(參見選修1-1案例中的例2、例3)。
②通過函數圖像直觀地理解導數的幾何意義。
(2)導數的運算
①能根據導數定義求函數y=c,y=x,y=x2,y=x3,y=1/x,y=x的導數。
②能利用給出的基本初等函數的導數公式和導數的四則運算法則求簡單函數的導數,能求簡單的復合函數(僅限于形如f(ax b))的導數。
③會使用導數公式表。
(3)導數在研究函數中的應用
①結合實例,借助幾何直觀探索并了解函數的單調性與導數的關系(參見選修
案例中的例4);能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區間。
②結合函數的圖像,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及閉區間上不超過三次的多項式函數最大值、最小值;體會導數方法在研究函數性質中的一般性和有效性。
(4)生活中的優化問題舉例。
例如,使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用。(參見選修1-1案例中的例5)
(5)定積分與微積分基本定理
①通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實際背景;借助幾何直觀體會定積分的基本思想,初步了解定積分的概念。
②通過實例(如變速運動物體在某段時間內的速度與路程的關系),直觀了解微積分基本定理的含義。(參見例1)
(6)數學文化
收集有關微積分創立的時代背景和有關人物的資料,并進行交流;體會微積分的建立在人類文化發展中的意義和價值。具體要求見本《標準》中"數學文化"的要求。(參見第91頁)
2.推理與證明(約8課時)
(1)合情推理與演繹推理
①結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會并認識合情推理在數學發現中
的作用(參見選修2-2中的例2、例3)。
②結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
③通過具體實例,了解合情推理和演繹推理之間的聯系和差異。
(2)直接證明與間接證明
①結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
②結合已經學過的數學實例,了解間接證明的一種基本方法--反證法;了解反證法的思考過程、特點。
(3)數學歸納法
了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。
(4)數學文化
①通過對實例的介紹(如歐幾里德《幾何原本》、馬克思《資本論》、杰弗遜《獨立宣言》、牛頓三定律),體會公理化思想。
②介紹計算機在自動推理領域和數學證明中的作用。
高二數學教學計劃方案篇十一
高二文科第一學期包括了必修三和選修1-1兩本教材,通過這一學期的教學,重點要培養學生利用數學各部分內容間的聯系,特別是蘊含在數學知識中的數學思想方法,啟發和引導學生學習類比、推廣、特殊化、化歸等數學思考的常用邏輯方法,使學生學會數學思考與推理,不斷提高數學思維能力。
本學期我擔任高二(1、3)班的數學教學工作,在經歷了文理科分科之后,我對兩個班上所有學生的數學學習情況有了更進一步的了解。兩個班中,女生占了將近70%,兩個班的數學成績可以說都很不理想,大部分的學生基礎都很薄弱。一班的學生數學基礎相對三班而言較好一點,但仍然缺乏自主學習的能力;三班中有很多的學生甚至有厭學、甚至棄學的現象。為了改變這種不良局面,使兩班的學生成績趕上來,針對學生的特點及班級的實際情況,特制訂如下教學計劃。
本學期共有六章內容
必修三
1.算法初步
2.統計
3.概率
選修1-1
1.常用邏輯用語
2.圓錐曲線方程
3.導數及其應用
本學期的重點章節為必修三中的概率和選修1-1中的圓錐曲線方程和導數及其應用,其它章節相對來說高考的要求較低一些。
1.深入鉆研教材,以教材為核心,以綱為綱,以本為本深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系和網絡結構,細致領會教材改革的精髓,把握通性通法,逐步明確教材對教學形式、內容和教學目標的影響。做到對知識全面掌握,從而在教學中能有的放矢。
2.堅持向課堂45分鐘要效益,立足課堂,加強課堂中的教學引導,激發和培養學生的學習興趣和學習能力。
3.堅持每章一測的原則,讓學生通過不斷地考試練習,從而能夠熟練地掌握和應用所學的知識,并且為后續的學習做好鋪墊。
4.對學習能力較強、成績較好的學生要加強其能力培養,為兩年后的高考夯實基礎。
5.對學習成績處在中等水平的學生要狠抓基礎落實,使他們將知識掌握并且能夠進行基本初等應用。
6.對學習已經出現困難的學生則首先要求其掌握基礎,能夠對基礎知識進行熟練掌握,并在此基礎上進行提高。
7.對于厭學、甚至棄學的學生則要從培養他們的興趣入手,興趣是最好的老師,讓這些學生首先對數學產生興趣才能夠進行更進一步的學習。
高一整個學年中每學期都有兩本必修教材,時間緊,能夠做到的就是保質保量地上好每一節課,課后的作業進行認真布置和批改,并且能夠及時的對固學案上的較難題目進行詳細的講解。
不足之處在于時間上的不足,導致不能夠及時的對章節內容進行檢測導致月考和期末成績的不盡人意,部分學生也會產生懈怠的情緒。
高二數學教學計劃方案篇十二
本學期我任教05財會(3)班數學,所選的教材是人民教育出版社職業教育中心編著的《數學(基礎版)》。該教材是在原有職業高中數學教材的基礎上,依據國家教育部新制定的《中等職業學校數學教學大綱(試行)》重新編寫的,具有以下特點:
1.注重基礎:
“大綱”對傳統的初等數學教育內容進行了精選,把理論上、方法上以及代生產與生活中得到廣泛應用的知識作為各專業必學的基本內容。根據“大綱”要求,把函數與幾何,以及研究函數與幾何的方法作為教材的核心內容。
2.降低知識起點
多數中職學生對學過的數學知識需要復習與提高,才能順利進入中職階段的數學學習。這套數學教材編寫從學生的實際出發,提高中職學生的數學素質,使多數學生能完成“大綱”中規定的教學要求,以保證中職學生能達到高中階段的基本數學水準。
3.增加較大的使用彈性
考慮中等職業學校專業的多樣性,各對數學能力的要求也不相同,教學要求給出了較大的選擇范圍,增加了教學的彈性。教材中給出了三個層次:一是必學的內容分兩種教學要求(在教參中指出);二是教材中配備一些難度較大的習題,供學有余力的學生去做,培養這些學生的解題能力;三是編寫了選學內容,選學內容主要是深化基本內容所學知識和應用基本內容解決實際問題的能力。
4.注重數學應用意識的培養
每章專設應用一節,列舉數學在生活實際、現代科學和生產中應用的例子,培養學生用數學解決實際問題的意識和能力。
5.注重培養學生使用計算機工具的能力
在“大綱”中,要求培養學生使用基本計算工具的恩能夠里。這就要求學生掌握使用計數器的技能,所以在新教材中增加了用計數器做的練習題。有條件的學生還可以培養學生使用計算機技術。
本學期使用的是第二冊的教材,內容包括:平面解析幾何,立體幾何,排列、組合與二項式定理,概率與統計初步。
每章編寫結構:引言,正文(大節、小節、聯系、習題),復習問題和復習參考題,閱讀材料(數學文化)等。除個別標注星號的選學內容外,都是必學內容。
學生情況分析及教學對策:
05財會(3)班是我剛接手的班級,因而對學生的情況并不是非常熟悉。從總體上看,該班的學習中堅力量主要在一小部分的女生,其他學生學習積極性較差。在要學習的學生當中,普遍表現出底子薄、基礎差的特點,對以往知識的缺漏非常多。因而在教學過程當中,及時補遺、查漏補缺尤為重要。知識引入環節我設置舊知識補遺,先回顧新課所涉及到的舊知識點;對學生的要求以能處理簡單的操作題為主。另外,舒適的環境對學生的情緒也有挺大的影響,因而在教學過程中應滲入環境教育,培養學生的環境保護意識。
周次
起訖月日
教學內容
教時
執行情況
1
8月28日至9月3日
學期準備工作
2
9月4日至9月10日
8.1(1);8.2(2);8.3(2)
5
3
9月11日至9月17日
8.4(2);8.5(2);8.6(1)
5
4
9月18日至9月24日
8.7(1);8.8(1);習題(1);8.9(2)
5
5
9月25日至10月1日
8.10(1);8.11(1);8.12(1);習題(2)
5
6
10月2日至10月8日
國慶放假
7
10月9日至10月15日
8.13(3);8.14.1(2)
5
8
10月16日至10月22日
8.14.2(1);8.15(3);習題(1)
5
9
10月23日至10月29日
習題(1);第一章復習(2);9.1(2)
5
10
10月30日至11月5日
9.2(1);9.3(2);9.4(1);9.5(1)
5
11
11月6日至11月12日
期中考復習
5
12
11月13日至11月19日
期中考試
13
11月20日至11月26日
9.6(1);復習(2);9.7(1);9.8(1)
5
14
11月27日至12月3日
9.9(1);9.10(2);9.11(2)
5
15
12月4日至12月10日
習題(2);9.12(1);9.13(2)
5
16
12月11日至12月17日
9.14(1);9.15(1);9.16(2);9.17(1)
5
17
12月18日至12月24日
9.17(1);習題(2);9.18(1)
5
18
12月25日至12月31日
9.19(2);9.20(1);9.21(2)
5
19
1月1日至1月7日
9.22(1);9.23(3);9.24(1)
5
20
1月8日至1月14日
9.25(3);習題(2)
5
21
1月15日至1月21日
期末復習
5
22
1月22日至1月28日
期末考試
23
1月29日至2月4日
期末結束工作
24
2月5日至2月11日
期末結束工作
高二數學教學計劃方案篇十三
堅持以“學生發展為本,基于學生發展,關注學生發展,為了學生的發展”為教育課程改革的核心理念。不斷研究課程標準。在教學中,要突出培養學生的創新和實踐能力,收集處理信息的能力、獲取新知識的能力、分析解決問題的能力,以及交流協作的能力,發展學生對自然和社會的責任感。從而實現全體學生的發展,以及學生個體的全面發展。為此,教師要發揮自己課程建設中的能動作用,要變“教教材”為“用教材教”,要變“經師”為“人師”,通過創造性地實施新課程,在知識、技能的傳授過程中實現學生情感態度價值觀的目標,實現育人的功效。
本學期授課時間約為17周,約102課時,本學期的教學任務第一學段:數學必修5約42課時;第二學段:必修3約46課時,保證完成教學任務。
備課做到既備教材又備學生,認真學習新課標,鉆研教材,掌握教材知識結構,重點,難點,并與學生原有知識加以聯系,做到有的放矢。
為提高學生學習的主動性、積極性,培養學生的創新意識。在教學中既要照顧中、下層學生,也要注意培養優生,因此,例題和課外作業的選取一定要有梯度,結合教材,可適度增減例題。課外作業分層要求:a組題要求學生都要完成;b組題要求學生有選擇地完成;練習冊上的題目經教師精選的必做,其他選做。
為加快對試驗課的理解和掌握,積極探索教改進程,建立備課組資料庫,要積極借助網絡信息收集和篩選資料存庫,發揮集體智慧,及時應用到具體教學中。
認真做好學困生的工作,對他們的學習加以督促,對他們的不良習慣加以糾正,爭取 不讓一個學生掉隊,大面積提高教學質量,為使提高高二學生的數學成績而努力奮斗。
1,培養良好的學習興趣。<
兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中?!昂谩焙汀皹贰本褪窃敢鈱W,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
高二數學教學計劃方案篇十四
根據湖北省的新課改教學實施指導意見,結合我們學校的實際教學情況,發揮備課組的集體力量,全力以赴的完成本學期的教學任務。同時加強對新課改理念的學習,相互協作,積極面對新課改的要求。
認真落實組里每位老師的課堂常規教學任務,努力加強老師的課外教學科研工作;積極學習新課改的理論知識,認真研究新教材的教法,做一個教學科研全方位的教師;同時發揮備課組全體成員的集體力量,積極研討新教材的教學內容,全力提升高二年級的數學水平,縮小和其它學校的差距。
(1)落實好組里每位老師的兩節公開課的任務,按照先議教案,再聽課堂,最后評價的程序嚴格落實到位。
(2)充分利用每個星期二下午的集體備課時間,商討教學中存在的問題,探究新教材的教法。同時爭取機會出去學習教改名校的數學學科課改教學的經驗。
(3)做好每一次階段性的考試工作,考前認真準備,閱卷客觀公正,客觀評價教學質量。
(4)分班落實數學學科的培優補差工作,尤其是文科班數學的提升。
(5)準備參加5月份的全國高中數學聯賽的活動,積極安排年輕老師參加數學教學競賽工作。
(1)2,3月份,文科完成選修1-1和選修3-1,理科完成選修2-1和3-1的教學任務,建議把選修3-1的《數學史選講》參插講。
(2)4月份,理科完成選修2-2,文科完成選修4-5
(3)5月份,理科完成選修4-1,文科完成選修4-5。
(4)6月份,理科完成選修4-4,文科開始期末考試的復習。
說明:根據xx省新課程教學實施指導意見,本學期理科完成選修2-1和2-2的內容,文科完成選修1-2和1-1的教學內容,但是我們還是打算把選修3-1,4-5的內容都上完,為高三復習做好準備,從時間上看,文科的教學時間是充足的,但是理科的教學時間比較緊,希望各位老師合理安排好教學時間,確實落實好每章每節的教學任務。