教學工作計劃不僅是教師進行教學設計的依據,也是學生學習和提高的保障。對于制定教學工作計劃可能會遇到的困惑和疑問,以下是一些建議和解決方案。
人教版七年級數學整式的加減教案(優質18篇)篇一
1.使學生理解單項式及單項系數、次數的概念,并會找出單項式的系數、次數.
2.初步培養學生的觀察分析和歸納概括的能力,使學生初步認識特殊與一般的辯證關系.
重點。
掌握單項式及單項式系數、次數的概念,并會找出單項式的系數、次數.
難點。
識別單項式的系數和次數.
一、創設情境,導入新課。
師:出示圖片.
青藏鐵路線上,在格爾木到拉薩之間有段很長的凍土地段,列車在凍土地段的行駛速度是100千米/小時,在非凍土地段的行駛速度可以達到120千米/小時,請根據這些數據回答:
(2)t小時呢?
二、推進新課。
(一)用含字母的式子表示數量關系.
師:出示第54頁例1.
生:解答例1后,討論問題,用字母表示數有什么意義?
學生經過討論得出一定的答案,但可能不會太規范,教師總結.
師:用字母表示數,在具有某些共性的問題上具有更廣泛的意義,在形式上更簡單,使用上更方便(可考慮補充:像這樣的用運算符號把數或字母連接起來的式子叫做代數式.一個數或表示數的字母也是代數式).
師生共同完成例2,進一步體會用字母表示數的意義.
鞏固練習:第56頁練習.
(二)單項式的概念.
師:出示問題.
引言與例1中的式子100t,0.8p,mn,a2h,-n這些式子有什么特點?
生:通過觀察、對比、討論得出,各式都是數或字母的積.
師:指出單項式的概念,特別地,單獨的一個數或字母也是單項式.
鞏固練習:下列各式是單項式的式子是____________.
人教版七年級數學整式的加減教案(優質18篇)篇二
由于學習方式的改變,學生自主探究的時間多了,機械模仿的時間少了。因為自主探究需要一定的基礎,由于學生的知識層次不同,探索實際上給知識基礎好的學生創造了思維空間,但對于學困生原本就差的知識基礎卻成為他們參與課堂探索的障礙,探索只是一種形式上的參與,實際收效并不大。因此,在教學中我就采用逆問我答的游戲為他們創造了切實參與學習的機會。有意的讓他們與其他同學組對,先讓他們提問,然后傾聽他人的回答,從中讓他們能逐步學會識別同類項,然后再把回答的次序倒過來。在出現問題的時候多激勵,排除他們學習中的障礙,增強學習的信心,調動他們的學習內驅力,使他們能積極主動地參與學習。如果他們的學習每天都能得到及時的輔導,將減少學生的兩極分化。這種做法體現了人人獲得數學知識的思想。
當然,本節課也有一些不足之處,比如對活動時間的把控上,活動的時間過長,以致后面的教學實踐不足,進行的有些倉卒;評價的方式有些單一,不能全面的了解學生的學習歷程。
因此,今后應注意:
1.要不斷學習新的教學理念,更新教學觀念,使數學教學面向全體學生,實現――人人學有價值的數學,人人能獲得必需的數學,不同的人在數學上得到不同的發展。
2.注意評價的多元化,全面了解學生的數學學習經歷,對數學學習的評價不僅要關注學生學習的結果,更要關注他們學習的過程,幫助學生認識自我,建立信心。
人教版七年級數學整式的加減教案(優質18篇)篇三
【學習目標】:
1.理解單項式及單項式系數、次數的概念。
2.會準確迅速地確定一個單項式的系數和次數。
3.初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
【重點難點】重點:掌握單項式及單項式的系數、次數的概念。
難點:區別單項式的系數和次數。
【導學指導】:
一.知識鏈接:。
1.列代數式。
(1)若邊長為a的正方體的表面積為________,體積為_____;。
(3)一輛汽車的速度是v千米/小時,行駛t小時所走的路程是_______千米;。
(4)設n是一個數,則它的相反數是________.
2.請學生說出所列代數式的意義。
3.請學生觀察所列代數式包含哪些運算,有何共同運算特征。
人教版七年級數學整式的加減教案(優質18篇)篇四
2.會用上的點表示有理數,會利用比較有理數的大小;。
3.使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。
教學建議。
一、重點、難點分析。
本節的重點是初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與上點的對應關系。的概念包含兩個內容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎.
二、知識結構。
有了,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:
定義。
三要素。
應用。
數形結合。
規定了原點、正方向、單位長度的直線叫。
原點。
正方向。
單位長度。
幫助理解有理數的概念,每個有理數都可用上的點表示,但上的點并非都是有理數。
比較有理數大小,上右邊的數總比左邊的數要大。
在理解并掌握概念的基礎之上,要會畫出,能將已知數在上表示出來,能說出上已知點所表示的數,要知道所有的有理數都可以用上的點表示,會利用比較有理數的大小。
三、教法建議。
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據。與它所在的位置無關,但為了教學上需要,一般水平放置的,規定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與上的點的對應關系,應該明確的是有理數可以用上的點表示,但上的點與有理數并不存在一一對應的關系。根據幾個有理數在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、的相關知識點。
1.的概念。
(1)規定了原點、正方向和單位長度的直線叫做.
這里包含兩個內容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規定的.
(2)能形象地表示數,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數.
以是理解有理數概念與運算的重要工具.有了,數和形得到初步結合,數與表示數的圖形(如)相結合的思想是學習數學的重要思想.另外,能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小.因此,應重視對的學習.
2.的畫法。
(1)畫直線(一般畫成水平的)、定原點,標出原點“o”.
(2)取原點向右方向為正方向,并標出箭頭.
(3)選適當的長度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3.用比較有理數的大小。
(1)在上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“”的寫法,正確應寫成“”。
五、定義的理解。
1.規定了原點、正方向和單位長度的直線叫做,如圖1所示.
2.所有的有理數,都可以用上的點表示.例如:在上畫出表示下列各數的點(如圖2).
a點表示-4;b點表示-1.5;。
o點表示0;c點表示3.5;。
d點表示6.
從上面的例子不難看出,在上表示的兩個數,右邊的數總比左邊的數大,又從正數和負數在上的位置,可以知道:
正數都大于0,負數都小于0,正數大于一切負數.
因為正數都大于0,反過來,大于0的數都是正數,所以,我們可以用,表示是正數;反之,知道是正數也可以表示為。
同理,,表示是負數;反之是負數也可以表示為。
3.正常見幾種錯誤。
1)沒有方向。
2)沒有原點。
3)單位長度不統一。
人教版七年級數學整式的加減教案(優質18篇)篇五
1、讓學生生自主探索小數的加、減法的計算方法,理解計算的算理并能正確地進行加、減法。
2、使學生體會小數加減運算在生活、學習中的廣泛應用,體會數學的工具性作用。
3、激發學生學習小數加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。
教學重難點。
教學重點:用豎式計算小數加減法。
教學難點:理解小數點對齊的算理。
教學工具。
多媒體課件。
教學過程。
(一)情景引入。
師:同學們,你們還記得嗎?整數的加減法是怎樣計算的?讓我們用一道習題回顧一下。
(呈現多媒體,學生自主完成習題并總結計算算理)。
師:同學們你們可真棒,那么今天我們學習小數的加減法(引出課題并板書)。
(二)例題講解。
(1)小麗買了下面兩本書,一共花了多少錢?
(2)《數學家的故事》比《童話選》貴多少錢?
生:好的。
(展示小麗遇到的問題(1),并讓學生列出算式)。
師:根據咱們總結的整數加減法的算理,想一想這個式子怎么計算呢?
(讓學生大膽的去嘗試,小組討論,并列出豎式)。
師:你們發現小數加減法計算時需要注意什么?
生1:注意數位對齊。
生2:注意小數點要對齊。
生3:……。
老師小結:小數點要對齊,得數的小數點也要對齊。
師:小麗啊還有一個問題讓我們看一看(展示問題(2))。
(讓學生自主解決,并再回憶需要注意什么?)。
完成后學生給予總結,完成小數加減法的時候需要注意什么?
(三)習題鞏固。
課本72頁做一做。
課后小結。
學生談一談本節課你學到了什么?
給出總結:計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),再按照整數加、減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。
課后習題。
一、計算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、豎式計算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解決問題。
1、小紅買文具,買鋼筆用去6.7元,買文具盒用去9.8元,一共用去多少錢?
板書。
計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),再按照整數加、減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。
人教版七年級數學整式的加減教案(優質18篇)篇六
1知識與技能:
使學生理解和掌握整十數除整十數、幾百幾十數(商一位數)的口算方法,能正確地進行計算。
2過程與方法:
通過觀察、操作、討論的活動,使學生經歷探究口算方法的全過程。
3情感態度與價值觀:
讓學生感受數學與生活的聯系,培養學生用數學知識解決簡單實際問題的能力。
教學重難點。
1教學重點:
掌握用整十數除的口算方法。
2教學難點:
理解用整十數除的口算算理。
教學工具。
多媒體設備。
教學過程。
1復習引入。
口算。
20×3=7×50=6×3=。
20×5=4×9=8×60=。
24÷6=8÷2=12÷3=。
42÷6=90÷3=3000÷5=。
2新知探究。
1.教學例1。
有80面彩旗,每班分20面,可以分給幾個班?
(1)提出問題,尋找解決問題的方法。
師:從中你能獲取什么數學信息?
師:怎樣解決這個問題?
(2)列式80÷20。
(3)學生獨立探索口算的方法。
師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。
學生匯報:
預設學生可能會有以下兩種口算方法:
a.因為20×4=80,所以80÷20=4這是想乘算除。
b.因為8÷2=4,所以80÷20=4這是根據計數單位的組成。
為什么可以不看這個“0”?(80÷20可以想“8個十里面有幾個二十?”)。
這樣我們就把除數是整十數的轉化為我們已經學過的表內除法。
(4)師小結:
同學們有的用乘法算除法的,也有用表內除法來想的,都很好,那么你喜歡哪種方法呢?
把你喜歡的方法說給同桌聽。
(5)檢查正誤。
師:我們分的結果對不對?請同學們看屏幕(課件演示分的結果)。
(6)用剛學會的方法再次口算,并與同桌交流你的想法。
40÷2020÷1060÷3090÷30。
(7)探究估算的方法。
出示:83÷20≈80÷19≈。
師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。
生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。
師:誰想把你的方法跟大家說一說。
預設:83接近于80,80除以20等于4,所以83除以20約等于4。
19接近于20,80除以20等于4,所以80除以19約等于4。
2.教學例2。
(1)創設情境引出問題。
師:誰會解決這個問題?
150÷50。
(2)小組討論口算方法。
(3)你是怎么這樣快就算出的呢?
a.因為15÷5=3,所以150÷50=3。
b.因為3個50是150,所以150÷50=3。
這一題跟剛才分彩旗的口算方法有不同嗎?
都是運用想乘算除和表內除法這兩種方法來口算的。
師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。
口算練習:150÷30240÷80300÷50540÷90。
3.估算。
(1)探計估算的方法。
師:你能知道題目要求我們做什么嗎?
你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。
(2)誰想把你的方法跟大家說一說。
(3)總結方法:把被除數和除數都看作與原數比較接近的整十數再用口算方法算。
(4)判斷估算是否正確:122÷60=2349÷50≈8為什么不正確?
3鞏固提升。
1.獨立口算。
觀察每道題,怎樣很快說出下面除法算式的商?
如果估算的話把誰估成多少。
2.算一算、說一說。
(1)除數不變,被除數乘幾,商也乘幾。
(2)被除數不變,除數乘幾,商反而除以幾。
3.解決問題。
(1)一共要寄240本書,每包40本。要捆多少包?
你能找到什么條件、問題。你會解決嗎?
240÷40=6(包)。
答:要捆6包。
(2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。
出示條件:一共有120個小故事,每天看1個故事。
問題:看完這本書大約需要幾個月?
問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?
120÷30=4(個)。
答:看完這本書大約需要4個月。
課后小結。
這節課你有什么收獲?還有什么問題?
本節課學習了整十數除整十數、幾百幾十數(商一位數)的口算方法,能正確地進行計算。
板書。
口算除法。
有80面彩旗,每班分20面,可以分給幾個班?
80÷20=。
文檔為doc格式。
人教版七年級數學整式的加減教案(優質18篇)篇七
(1)能用代數式表示實際問題中的數量關系.
(2)理解單項式、單項式的次數,系數等概念,會指出單項式的次數和系數.
講授法、談話法、討論法。
【教學重點】。
單項式的有關概念。
【教學難點】。
負系數的確定以及準確確定一個單項式的次數。
【課前準備】。
教師準備教學用課件。
【教學過程】。
一、新課引入。
教師操作課件,展示章前圖案以及字幕,學生觀看并思考下列問題:
1.青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答下列問題:
(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
分析:(1)根據速度、時間和路程之間的關系:路程=速度×時間.列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米).
(2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米).
(3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米.
思路點撥:上述問題(1)可由學生自己完成,問題(2)、(3)先由學生思考、交流的基礎上教師引導學生分析怎樣列式.
上述的3個問題中的數量關系我們分別用含有字母的式子表示,通過本章學習,我們還可以將上述問題(2)、(3)進行加減運算,化簡.
kb2.下面,我們再來看幾個用含字母的式子表示數量關系的問題.
用含有字母的式子填空,看看列出的式子有什么特點.
(1)邊長為a的正方體的表面積為______,體積為_______.
(2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的單價是_______元.
(3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米.
(4)數n的相反數是_______.
教師課堂巡視,關注中下程度的學生,及時引導,學生探究交流.
上面各問題的代數式分別是:6a2,a3,2.5x,vt,-n.
觀察上面各式中運算有什么共同特點?
上面各式中,數字與字母之間,字母與字母之間都是乘法運算,它們都是數字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面這樣,只含有數與字母的積的式子叫做單項式.單獨的一個數或一個字母也是單項式.如:-2,a,,都是單項式,而,1+x都不是單項.
單項式中的數字因數叫做這個單項式的系數,例如:6a2的系數是6,a3的系數是1,-n的系數是-1,-的系數是-.
單項式表示數字與字母相乘時,通常把數字寫成前面,當一個單項式的系數是1或-1時通常省略不寫.
一個單項式中,所有字母的指數的和叫做這個單項式的次數.例如,2.5x中字母x的指數是1,2.5x是一次單項式;vt中字母v與t的指數和是2,vt是二次單項式,-ab2c中字母a、b、c的指數和是4,-ab2c是4次單項式.
人教版七年級數學整式的加減教案(優質18篇)篇八
1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2.掌握點到直線的距離的概念,并會度量點到直線的距離。
3.掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]。
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]。
一、復習提問:
1、敘述鄰補角及對頂角的定義。
2、對頂角有怎樣的.性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義。
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線ab、cd互相垂直,記作,垂足為o。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)。
反之,
(二)垂線的畫法。
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點a畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點b畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質。
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁。
探究:
如圖,連接直線l外一點p與直線l上各點o,
a,b,c,……,其中(我們稱po為點p到直線。
l的垂線段)。比較線段po、pa、pb、pc……的長短,這些線段中,哪一條最短?
性質2連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成:垂線段最短。
(四)點到直線的距離。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,po的長度叫做點p到直線l的距離。
人教版七年級數學整式的加減教案(優質18篇)篇九
(1)能用代數式表示實際問題中的數量關系.
(2)理解單項式、單項式的次數,系數等概念,會指出單項式的次數和系數.
講授法、談話法、討論法。
【教學重點】。
單項式的有關概念。
【教學難點】。
負系數的確定以及準確確定一個單項式的次數。
【課前準備】。
教師準備教學用課件。
【教學過程】。
一、新課引入。
教師操作課件,展示章前圖案以及字幕,學生觀看并思考下列問題:
1.青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答下列問題:
(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
分析:(1)根據速度、時間和路程之間的關系:路程=速度×時間.列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米).
(2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米).
(3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米.
思路點撥:上述問題(1)可由學生自己完成,問題(2)、(3)先由學生思考、交流的基礎上教師引導學生分析怎樣列式.
上述的3個問題中的數量關系我們分別用含有字母的式子表示,通過本章學習,我們還可以將上述問題(2)、(3)進行加減運算,化簡.
kb2.下面,我們再來看幾個用含字母的式子表示數量關系的問題.
用含有字母的式子填空,看看列出的式子有什么特點.
(1)邊長為a的正方體的表面積為______,體積為_______.
(2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的單價是_______元.
(3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米.
(4)數n的相反數是_______.
教師課堂巡視,關注中下程度的學生,及時引導,學生探究交流.
上面各問題的代數式分別是:6a2,a3,2.5x,vt,-n.
觀察上面各式中運算有什么共同特點?
上面各式中,數字與字母之間,字母與字母之間都是乘法運算,它們都是數字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面這樣,只含有數與字母的積的式子叫做單項式.單獨的一個數或一個字母也是單項式.如:-2,a,,都是單項式,而,1+x都不是單項.
單項式中的數字因數叫做這個單項式的系數,例如:6a2的系數是6,a3的系數是1,-n的系數是-1,-的系數是-.
單項式表示數字與字母相乘時,通常把數字寫成前面,當一個單項式的系數是1或-1時通常省略不寫.
一個單項式中,所有字母的指數的和叫做這個單項式的次數.例如,2.5x中字母x的指數是1,2.5x是一次單項式;vt中字母v與t的指數和是2,vt是二次單項式,-ab2c中字母a、b、c的指數和是4,-ab2c是4次單項式.
文檔為doc格式。
人教版七年級數學整式的加減教案(優質18篇)篇十
(1)能用代數式表示實際問題中的數量關系。
(2)理解單項式、單項式的次數,系數等概念,會指出單項式的次數和系數。
講授法、談話法、討論法。
【教學重點】。
單項式的有關概念。
【教學難點】。
負系數的確定以及準確確定一個單項式的次數。
【課前準備】。
教師準備教學用課件。
【教學過程】。
一、新課引入。
教師操作課件,展示章前圖案以及字幕,學生觀看并思考下列問題:
1、青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答下列問題:
(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
分析:(1)根據速度、時間和路程之間的關系:路程=速度×時間。列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米)。
(2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米)。
(3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米。
思路點撥:上述問題(1)可由學生自己完成,問題(2)、(3)先由學生思考、交流的基礎上教師引導學生分析怎樣列式。
上述的3個問題中的數量關系我們分別用含有字母的式子表示,通過本章學習,我們還可以將上述問題(2)、(3)進行加減運算,化簡。
kb2.下面,我們再來看幾個用含字母的式子表示數量關系的問題。
用含有字母的式子填空,看看列出的式子有什么特點。
(1)邊長為a的正方體的表面積為______,體積為_______.
(2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的單價是_______元。
(3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米。
(4)數n的相反數是_______.
教師課堂巡視,關注中下程度的學生,及時引導,學生探究交流。
上面各問題的代數式分別是:6a2,a3,2.5x,vt,-n.
觀察上面各式中運算有什么共同特點?
上面各式中,數字與字母之間,字母與字母之間都是乘法運算,它們都是數字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面這樣,只含有數與字母的積的式子叫做單項式。單獨的一個數或一個字母也是單項式。如:-2,a,,都是單項式,而,1+x都不是單項。
單項式中的數字因數叫做這個單項式的系數,例如:6a2的系數是6,a3的系數是1,-n的系數是-1,-的系數是-。
單項式表示數字與字母相乘時,通常把數字寫成前面,當一個單項式的系數是1或-1時通常省略不寫。
人教版七年級數學整式的加減教案(優質18篇)篇十一
本環節主要是創設情境,在實際問題中引出本節課題.
【設計意圖】。
引導學生發現:可以借助游戲創設情境,導入新課.
(二)探究新知。
1、利用丹鳳地圖的實際情境探索點的平移與坐標變化的規律.
2、如圖,已知a(c2,c3),根據下列條件,在相應的坐標系中分別畫出平移后的點,寫出它們的坐標,并觀察平移前后點的坐標變化.
(1)將點a向右平移5個單位長度,得到點a1;
(2)將點a向左平移2個單位長度,得到點a2;
(3)將點a向上平移6個單位長度,得到點a3;
(4)將點a向下平移4個單位長度,得到點a4;
教學過程中注重讓學生明確:將哪個點沿著什么方向,平移幾個單位后,得到的是哪個點.
3、在此基礎上可以歸納出:點的左右平移點的橫坐標變化,縱坐標不變。
點的上下平移點的橫坐標不變,縱坐標變化。
4、點的平移的應用.(見課件)。
5、比一比看誰反應快。
(1)點a(c4,2)先向右平移3個單位長度后得到點b,求點b的坐標.
(2)點a(c4,2)先向左平移2個單位長度后得到點b,求點b的坐標.
(3)點a(c4,2)先向下平移4個單位長度后得到點b,求點b的坐標.
(4)點a(c4,2)先向上平移3個單位長度后得到點b,求點b的坐標.
6、逆向思維:由點的變化探索點的方向和距離。
(1)如果a,b的坐標分別為a(-4,5),b(-4,2),將點a向___平移___個單位長度得到點b;將點b向___平移___個單位長度得到點a。
(2)如果p、q的坐標分別為p(-3,-5),q(2,-5),將點p向___平移___個單位長度得到點q;將點q向___平移___個單位長度得到點p。
(3)點a′(6,3)是由點a(-2,3)經過__________________得到的.點b(4,3)向______________得到b′(4,5)。
7、應用平移解決簡單問題在平面直角坐標系中,有一點(1,3),要使它平移到點(-2,-2),應怎樣平移?說出平移的路線。
人教版七年級數學整式的加減教案(優質18篇)篇十二
一、指導思想:
人教版七年級數學上冊教學計劃,本班學生剛剛完成小學六年的學習,升入初一,也就是我們現在所說的七年級。通過調閱小六畢業會考成績冊和試卷,發現本班學生的數學成績不甚理想。從學生作答來看,基礎知識不扎實,計算能力較差,思路不靈活,缺乏創新思維能力,尤其是解難題的能力低下。總體上來看,低分很多,兩極分化較為嚴重。
二、情況分析:
學生情況分析:
全面貫徹黨的十七大教育方針,以七年能數學教學大綱為標準,堅決完成《初中數學新課程標準》提出的各項基本教學目標。制定人教版七年級數學上冊教學計劃,根據學生的實際情況,從生活入手,結合教材內容,精心設計教學方案。通過本學期數學課堂教學,夯實學生的基礎,提高學生的基本技能,培養學生學習數學知識和運用數學知識的能力,幫助學生初步建立數學思維模式。最終圓滿完成七年級上冊數學教學任務。
三、教學目標。
人教版七年級數學上冊教學計劃知識與技能目標:認識有理數和代數式,掌握有理數的各種性質和運算法則,初步學會使用代數式探究數量之間的關系。認識基本幾何圖形,掌握基本基本作圖能力和的技巧。過程與方法目標:學會抽取實際問題中的數學信息,發展幾何思維模式。培養學生的觀察和思維能力,尤其是自主探索的能力。情感與態度目標:培養學生學習數學的興趣,認識數學源自生活實踐,最終回歸生活。班級教學目標:優秀率:15%,合格率80%。
四、教材分析。
第一章、有理數:本章主要學習有理數的基本性質及運算。本章重點內容是有理數的概念,性質和運算。本章的難點在于理解有理數的基本性質、運算法則,并將它們應用到解決實際問題和計算中。
第二章、整式的加減:本章主要是學習單項式和多項式的加減運算。本章重點內容是單項式、多項式、同類項的概念;合并同類項及去括號的法則及整式的加減運算。本章難點在于理解合并同類項和去括號的法則。
第三章、一元一次方程:本章主要學習一元一次方程的概念、等式的基本性質、一元一次方程的解法及應用。本章重點內容是理解等式的基本性質;掌握解一元一次方程的一般步驟;列方程解決實際問題的基本思路。本章難點在于解一元一次方程,并利用一元一次方程解決簡單的實際問題。
第四章、圖形認識初步:本章主要學習線段和角有關的性質。本章的重點是區別直線、射線、線段,角的有關性質和計算;理解互為余角、互為補角的性質及應用。本章的難點在于線段和角的有關計算。
五、教學措施。
1、人教版七年級數學上冊教學計劃,認真研讀新課程標準,潛心鉆研教材,根據新課程標準,結合學生實際情況,進行針對性的備課,精心設置課堂教學內容和模式。上好每一堂課,閱好每一份試卷,搞好每一節輔導,組織好每一次測驗。
2、開展豐富多彩的課外活動,課外調查,向學生介紹數學家、數學史、數學趣題,喻教于樂,激發學生的學習興趣,挖掘學生的潛能,培養數學特長生。
3、開展分層教學實驗,使不同的學生學到不同的知識,使人人能學到有用的知識,使不同的人得到不同的發展,獲得成功感,使優生更優,差生逐漸趕上。
人教版七年級數學整式的加減教案(優質18篇)篇十三
掌握多種數學解題方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
逐步形成“以我為主”的學習模式。
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
人教版七年級數學整式的加減教案(優質18篇)篇十四
1、通過豐富的實例,學生進一步認識點、線、面、體的幾何特征,感受它們之間的關系。
2、培養學生操作、觀察、分析、猜測和概括等能力,同時滲透轉化、化歸、變換的思想。
3、養成學生積極主動的學習態度和自主學習的方式。
重點:認識點、線、面、體的幾何特征,感受它們之間的關系。
難點:在實際背景中體會點的含義。
圓柱、圓錐、正方體、長方體、球、棱柱、棱錐模型。
觀察、討論.讓學生共同體會“點動成線、線動成面、面動成體。
讓學生舉出更多的“點動成線、線動成面、面動成體”的例子。
小組合作學習,學生利用學具完成教科書第114頁練習(動手轉一轉)。
設計意圖:教師利用多媒體動態演示,讓學生主動參與學習活動,觀察感受,經歷體驗圖形的變化過程,通過合作學習,感悟知識的生成、變化、發展,激發學生的聯想與再創造能力。學生自己動手實踐操作,加深學生印象,化解難度。
教師展示圖片(建筑或生活的實物等),讓學生找找生活中的平面、曲面、直線、點等。
讓學生找出生活中更多的包含平面、曲面、直線、曲線、點的例子。
1、課本112頁觀察,并回答它的問題。
引導學生觀察后得出結論:面與面相交得到線,線與線相交得到點。
2、113頁練習(提供實物,議一議,動手摸一摸),思考以下問題:
讓學生自己體會并小組討論得出點、線、面、體之間的關系。
2、閱讀教科書第119頁的實驗與探究,并思考有關問題。
人教版七年級數學整式的加減教案(優質18篇)篇十五
盡快地掌握科學知識,迅速提高學習能力,由為您提供的,希望給您帶來啟發!
1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。
2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;
單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
6.同類項:所含字母相同,并且相同字母的'指數也相同的單項式是同類項.
7.合并同類項法則:系數相加,字母與字母的指數不變.
8.去(添)括號法則:
去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.
9.整式的加減:一找:(劃線);二“+”(務必用+號開始合并)三合:(合并)
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).
人教版七年級數學整式的加減教案(優質18篇)篇十六
借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。
重點、難點。
1.重點:列一元一次方程解決有關行程問題。
2.難點:間接設未知數。
教學過程。
一、復習。
1.列一元一次方程解應用題的一般步驟和方法是什么?
2.行程問題中的基本數量關系是什么?
路程=速度×時間速度=路程/時間。
二、新授。
畫“線段圖”分析,若直接設元,設小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關系是什么?
如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設公共汽車從小張家到火車站要x小時。
設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。
三、鞏固練習。
教科書第17頁練習1、2。
四、小結。
有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。
四、作業。
教科書習題6.3.2,第1至5題。
人教版七年級數學整式的加減教案(優質18篇)篇十七
幾何圖形大?。洪L度、面積、體積等。
位置:相交、垂直、平行等。
2幾何體也簡稱體。包圍著體的是面。
3常見的立體圖形:柱體、椎體、球體等各部分不都在一個平面內。
4平面圖形:在一個平面內的圖形就是平面圖形。
5展開圖:識記一些常用的展開圖。圓柱/圓錐的側面展開圖;。
6點線面體:是組成幾何圖形的基本元素。
7直線、射線、線段。
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
經過兩點有一條直線,并且只有一條直線。兩點確定一條直線。
8角。
9角的比較與運算。
角的平分線:從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。
余角:如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角。
補角:如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
性質:等角(同角)的補角相等。等角(同角)的余角相等。
人教版七年級數學整式的加減教案(優質18篇)篇十八
2、了解什么是方程,什么是一元一次方程及什么是方程的解。
一、創設情境,展示問題:
問題1:世界最大的動物是藍鯨,一只藍鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸?問題2:章前圖中的汽車勻速行駛途經王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠?地名時間王家莊10:00青山13:00秀水15:00教師展示問題,要求用算術解法,讓學生充分發表意見。算術方法:(124+1)÷25=5(噸)方程方法:可設大象重為`噸,則124=25`-1學生獨立思考,小組交流,代表發言,解釋說明。問題1的算術解法:(50+70)÷2=60(千米/時)605-70=230(千米)問題1用算術法較容易解決,但問題2卻不容易解決,這樣產生矛盾沖突,使學生認識到進一步學習的必要性。示意圖有助于分析問題。
二、尋找關系,列出方程。
1、對于問題1,如果設王家莊到翠湖的路程是`千米,則:路程時間速度王家莊-青山王家莊-秀水根據汽車勻速前進,可知各路段汽車速度相等,列方程。
2、比一比:列算式與列方程有什么不同?哪一個更簡便?
3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據的是哪個相等關系?你認為列方程的關鍵是什么?結合圖形,引導學生分析各路段的路程、速度、時間之間的關系,填寫表格。學生思考回答:
1、王家莊-青山(`—50)千米,王家莊-秀水(`+70)千米。
2、汽車以每小時(`-50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。讓學生體會:用算術方法解題時,列出的算式只能用已知數,而列方程解題時,方程中既含有已知數,又含有用字母表示的未知數。
三、定義方程,建立模型。
1、定義:(板書)含有未知數的等式叫做方程。
練習一:判斷下列式子是不是方程,是的打“adic;”,不是的打“`”.
(1)1+2=3()(4)()(2)1+2`=4()(5)`+y=2()(3)`+1-3()(6)`2-1=0()。
練習二:根據下列問題,設未知數并列出方程。
(1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設正方形的邊長為`cm。那么依題意得到方程:_________.(2)一臺計算機已使用1700小時,預計每月再使用150小時,經過多少月這臺計算機的使用時間達到規定的修檢時間2450小時?解:經過`月這臺計算機的使用時間達到規定的修檢時間2450小時,那么依題意得到方程:_________.(3)某校女生占全體學生的52%,比男生多80人,這個學校有多少學生?解:設這個學校的學生為`,那么女生數為,男生數為.由此依題意得到方程:________________。[議一議]:上面的四個方程有什么共同點?2、定義:只含有一個未知數(元`),未知數的指數是1次,這樣的方程叫做一元一次方程。
練習三:判斷下列方程哪些是一元一次方程?(1)(2)(3)(4)(5)。
3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當`=?時,4`的值正好等于24嗎。學生回答后總結方程的解和解方程的概念。
4、歸納分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。(學生舉例并完成練習一)師生合作,根據數量關系列出方程。
教師結合練習給出方程、一元一次方程的定義。(我國古代稱未知數為元,只含有一個未知數的方程叫做一元方程,一元方程的解也叫做根)方程的解:使方程中左右兩邊相等的未知數的值就是這個方程的解.教師引導學生對上面的分析過程進行思考,將實際問題轉化為數學問題的一般過程。
學生舉出方程的例子。(學生獨立思考、互相討論,先分析出等量關系,再根據所設未知數列出方程)判斷哪些是一元一次方程。學生單獨計算,并填表。學生得出解決實際問題的模型。
四、訓練鞏固,課堂小結。
1、根據下列問題,設未數列方程,并指出是不是一元一次方程。(1)環形跑道一周長400m,沿跑道跑多少周,可以跑3000m?(2)甲種鉛筆每枝0.3元,乙種鉛筆每枝0.6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?(3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。
2、小結本節課你學到了哪些知識?哪些方法?
1、本節課的主要知識點是:
2、你對列方程這節課的感受是:
3、這節課我的困惑是:解:(1)設跑`周.列方程400`=3000。
4、(2)設甲種鉛筆買了`枝,乙種鉛筆買了(20-`)枝.列方程0.3`+0.6(20-`)=9(3)設上底為`cm,下底為(`+2)cm.列方程學生自己探索,獨立完成,集體訂正。學生課后完成,并寫學習心得。