教學計劃在一定程度上可以指導學生的學習,使學習過程變得更加科學和有效。教學計劃范文的參考價值可以促使教師深入思考自己的教學目標和教學內容的設計。
最新小學數學因數和倍數教學設計(精選14篇)篇一
人教版小學數學五年級下冊第13~16頁。
1、學生掌握找一個數的因數,倍數的方法;
2、學生能了解一個數的因數是有限的,倍數是無限的;
3、能熟練地找一個數的因數和倍數;
4、培養學生的觀察能力。
理解因數和倍數的含義;自主探索并總結找一個數的因數和倍數的方法。
自主探索并總結找一個數的因數和倍數的方法;歸納一個數的因數的特點。
學號牌數字卡片(也可讓學生按要求自己準備)。
談話法、比較法、歸納法。
復習。
3、8÷2=4,所以8是倍數,4是因數。這句話對嗎?
今天,我和大家一道來繼續共同探討“因數與倍數”
合作交流、共探新知。
探究找一個數的因數的方法(談話法、比較法、歸納法)。
請認為自己是18的因數的同學帶著號碼牌上臺來。
b、學生再次依照1x18,2x9,3x6的順序一個個講出乘法算式。
學生預設:有的學生可能會說還有6x3,9x2,18x1等,出現這種情況時可以冷一下,讓學生想一想這樣寫的話會出現什么情況,最后讓學生明白一個數的因數是不能重復的。
d、介紹寫一個數因數的方法。
可以用一串數字表示;也可以用集合圈的方法表示。
說一說:
18的因數共有幾個?
它最小的因數是幾?
最大的因數是幾?
做一做(在做這些練習時應放手讓學生去做,相信學生的知識遷移與消化新知的能力)。
a、30的因數有哪些,你是怎么想的?
b、36的因數有幾個?你是怎么想的?為什么6x6=36,這里只寫一個因數?
d、讓學生討論:你從中發現了“一個數的因數”有什么相同的地方嗎?
最新小學數學因數和倍數教學設計(精選14篇)篇二
教學目標:
1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數和因數的意義;探索求個數的倍數和因數的方法,發現一個數倍數和因數的某些特征。
2、在探索一個數的倍數和因數的過程中培養學生觀察、分析、概括能力,培養有序思考能力。
3、通過倍數和因數之間的互相依存關系使學生感受數學知識的內在聯系,體會到數學內容的奇妙、有趣。
教學重點:理解倍數和因數的意義。
教學難點:探索求一個數的倍數和因數的方法。
教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。
設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發學生持續的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數學思考的方法。
教學過程:
1、讓學生進行智力競猜春暖花香的季節,公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)
2、孫子、爸爸、爺爺的名字分別是韓韓,韓有才、韓廣發。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。
3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向學生說明自然數中某兩個數之間也有這種類似的依存關系倍數和因數。
設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發學生的學習興趣,二是以此引出相互依存的關系,為理解倍數和因數的相互依存關系作鋪墊。
1、師:智慧從手指問流出,通過操作我們能發現許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向學生說明:如果一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)
設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質。
3、讓學生一起看乘法算式43=12,向學生指出:12是4的倍數,12也是3的倍數,4是12的因數,3也是12的因數。
4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。
5、讓學生仿照說出62=12和121=12中哪個數是哪個數的倍數,哪個數是哪個數的因數。
6、學生相互出一道乘法算式,并說一說誰是誰的倍數,誰是誰的因數。學生可能會出現0( )=0的情況,借此向學生說明我們研究因敷和倍數一般指不是0的自然數。
設計說明:倍數和因數是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數和因數的認識,同時使學生明確倍數和因數的研究范圍。
7、以43=12與123=4為例,向學生說明后面的除法算式是由前面的乘法算式得到的,根據這個除法算式可以說誰是誰的倍數,誰是誰的因數,說好后再讓學生試一試其他幾個除法算式中的關系。
8、練習:根據下面的算式,說說哪個數是哪個數的因數,哪個數是哪個數的倍數
54=20 357=5 3+4=7
(1)學生回答后引發學生思考:能不能說20是倍數,4是因數。使學生進一步理解倍數是兩個數之間的一種相互依存的關系,必須說哪個是哪個的倍數,因數也同樣如此。
(2)通過3+4=7使學生進一步理解倍數和因數都是建立在乘法或除法的基礎之上的。
設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯系;通過三道練習可以鞏固剛剛獲得的對倍數和因數的認識,將融會貫通落到實處。
1、找一個數的因數。
(1)聯系板書的乘除法算式觀察思考12的因數有哪些,井想辦法找出15的所有因數。
(2)學生獨立思考,明白根據一個乘法(除法)算式可以找出15的兩個因數,在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數。
(3)用一對一對的方法找出36的所有因數。可能有的學生根據乘法算式找的,也有的學生是根據除法算式找的,都應該給予肯定。
(4)引導學生觀察12、15、36的因數,說一說有什么發現。一個數的因數個數是有限的,其中最小的因數都是1,最大的都是它本身。
設計說明:先安排學生找一個數的因數可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數的因數指明了方向。學生交流時突出了方法的多樣性,既可以根據乘法算式想,也可以根據除法算式想,交流后引導學生一對一對的找是必要的,它可以培養學生的有序思考。最后引導學生觀察。使學生自主發現、歸納出一個數的因數的某些特征。
2、找一個數的倍數。
(1)讓學生找3的倍數,比一比誰找得多。
(2)學生匯報后,引導學生有序思考,并得出3的倍數可以用3乘連續的自然數1、2、3,3的倍數的個數是無限的,所以寫3的`倍數時要借助省略號表示結果。
(3)找出2的倍數和5的倍數,并引導學生觀察3、2、5的倍數情況,說一說有什么發現。一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
設計說明:讓學生比一比誰找的倍數多,可以使學生產生認知沖突,認識到一個數的倍數個數是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發現、歸納一個數倍數的特征。
1、想想做做的第l題。學生表述后強調哪個是哪個的倍數(或因數)。
設計說明:第l題是基礎練習.可以鞏固對倍數和因數的認識,2、3兩題聯系實際,使學生感悟到其中蘊藏著求一個數倍數和因數的方法,以及倍數和因數的某些特征。第4題通過游戲活動進一步激發學生持續的學習熱情,而且可以綜合應用求倍數和因數的方法,再次認識到倍數和因數的某些特征。
1、通過這節課的學習你有什么收獲?向你的同伴介紹一下。
2、生活中許多現象與我們學習的倍數和因數的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數是兩位數中最多的,可以方便計算。
設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數和因數的相關知識,溝通知識間的聯系,拓展學生的知識面,使學生認識到數學知識的應用價值。
最新小學數學因數和倍數教學設計(精選14篇)篇三
本節課基本能實現預期的教學目標,讓學生準確的理解“公倍數”與“最小公倍數”的概念和意義,也能夠在學習方法上進行恰當的指導。在鉆研教材、把握目標的基礎上,充分利用材料組織教學,讓學生深入淺出的進行學習課本的知識,教學過程也充分注意到了讓學生獨立思考、動手操作、自主探究知識,體現了“以生為主”的教學理念。
從作業的情況來看,學生對于用集合圈表示的方法學生錯誤很多,書寫的要求要更規范一些。
二
本節課我發現對特殊方法求幾個數的最小公倍數,倍數關系的學生掌握得快,但用乘積找最小公倍數的規律(特點),給學生思考交流的時間有些少,學生找到的`特點有局限性,老師也沒有及時給予提示。比如:當是奇數和偶數時,最小公倍數不一定就是這兩數的乘積。如6和9的最小公倍數是18而不是54。這一特點是偶然現象不是普遍規律。可引導學生對四組數字再比較,引導發現他們因數的特征(公因數只有1)使學生形成準確的認識。造成這一失誤的原因一方面是由于時間的緊,另一方面擔心復習公因數會影響新知識的學習。其三是對教材的鉆研不夠,自己對這一部分知識把握也不準。其次,由于在時間的控制上不恰當,后面部分任務還沒有完成。
最新小學數學因數和倍數教學設計(精選14篇)篇四
知識與技能:使學生結合具體情境初步理解因數和倍數的含義,初步理解因數和倍數相互依存的關系。
過程與方法:使學生依據因數和倍數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數的因數和倍數的方法。
情感與態度:使學生在認識因數和倍數以及找一個數的因數和倍數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。
理解因數和倍數的含義。
探索并掌握找一個數的因數和倍數的方法。
1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習本上寫出乘法算式。
匯報:你是怎么擺?算式是什么?
指名說,師板書:1×12=12、2×6=12、3×4=12。
師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數學奧秘。今天我們就來研究數學的新奧秘。
師指3×4=12說:因為3×4=12,所以我們就說3是12的因數(板書:因數),4是12的因數;12是3的倍數(板書:倍數);12是4的倍數。
小結:是呀,我們不能直接說誰是因數,誰是倍數,而要清楚的表達出來誰是誰的因數,誰是誰的倍數。看來,因數和倍數是相互依存的(板書:和)。為了方便,在研究因數和倍數時,一般不討論0。
二、探索找一個數的因數的方法。
1、師:看黑板上的3個算式,你能找到12的所有的因數嗎?(學生齊說。)。
問:如果沒有算式,你能找出24所有的因數嗎?先想想怎樣找?然后寫在練習本上。
學生寫一寫,師巡視。
匯報展示:(2人)。
問:你是怎么找的?(學生說方法)。
評價:他找的怎么樣?(學生評一評)。
小結:其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復又不遺漏了。看來,有序的思考問題對我們的幫助確實很大。
2、練習。
師:用這種方法寫出18的因數。
匯報:你找的18的因數都有哪些?(指名說,師板書)。
3、發現規律。
問:仔細觀察這幾個數的因數,你能發現什么規律?
小結:一個數的因數最小的是1,最大的是它本身。
三、探索找一個數的倍數的方法。
1、方法。
學生找3的倍數,寫在練習本上。
匯報:指名說,師寫在黑板上。(3的倍數有:3,6,9,12,15……)。
問:你能說的完嗎?寫不完怎么辦?(用省略號)。
你是怎么找的?
評一評:他的方法怎么樣?
問:還有別的方法嗎?
問:怎么找一個數的倍數?
指名說。
師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數。
2、練習。
找出5的倍數,寫在練習本上。
指名說,師板書,問:你是用什么方法找的5的倍數?
3、發現規律。
問:觀察一下,你發現一個數的倍數有什么特點?
師小結:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的。
問:一個數的倍數個數是無限的,一個數的因數的個數呢?(有限)。
(課件出示)。
四、鞏固練習。
1、寫一寫:6的因數、9的因數、50以內7的倍數。
集體訂正。
2、選一選。
8的倍數有哪些?48的因數又有哪些?
3、數學小知識:完美數。
師:6的因數有(1,2,3,6),把前三個因數相加,你會發現什么?(1+2+3=6)。
最新小學數學因數和倍數教學設計(精選14篇)篇五
教學目標:
1、理解質數和合數的概念,并能判斷一個數是質數還是合數,會把自然數按約數的個數進行分類。
2、培養學生自主探索、獨立思考、合作交流的能力。
3、培養學生敢于探索科學之謎的精神,充分展示數學自身的魅力。
教學重點:
1、理解掌握質數、合數的概念。
2、初步學會準確判斷一個數是質數還是合數。教學難點:區分奇數、質數、偶數、合數。
教學過程:
一、探究發現,總結概念:
1、師:(出示三個同樣的小正方形)每個正方形的邊長為1,用這樣的三個正方形拼成一個長方形,你能拼出幾個不同的長方形?學生獨立思考,然后全班交流。
2、師:這樣的四個小正方形能拼出幾個不同的長方形?學生各自獨立思考,想像后舉手回答。
3、師:同學們再想一下,如果有12個這樣的小正方形,你能拼出幾個不同的長方形?師:我看到許多同學不用畫就已經知道了。(指名說一說)。
學生幾乎是異口同聲地說:會越多。
師:確定嗎?(引導學生展開討論。)。
5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的個數是什么數的時候,只能拼一種?什么情況下拼得的長方形不止一種?并舉例說明。
先讓學生小組討論,然后全班交流,師根據學生的回答板書。
師:同學們,像上面這些數(板書的3、13、7、5、11等數),在數學上我們把它們叫做質數,下面的這些數(4、6、8、9、10、12、14、15等數)我們把它們叫做合數。那究竟什么樣的數叫質數,什么樣的數叫合數呢?學生獨立思考后,在小組內進行交流,然后再全班交流。
引導學生總結質數和合數的概念,結合學生回答,教師板書:(略)。
6、讓學生舉例說說哪些數是質數,哪些數是合數,并說出理由。
7、師:那你們認為“1”是什么數?讓學生獨立思考,后展開討論。
二、動手操作,制質數表。
1、師出示:73。讓學生思考著它是不是質數。
師:要想馬上知道73是什么數還真不容易。如果有質數表可查就方便了。(同學們都說“是呀”。)師:這表從哪來呢?(教師出示百以內數表)這上面是1到100這100個數,它不是質數表,你們能不能想辦法找出100以內的質數,制成質數表?誰來說說自己的想法?(讓學生充分發表自己的想法。)。
2、讓學生動手制作質數表。
3、集體交流方法。
三、練習鞏固:完成練習四第。
1、2題。
四、課題小結:
這節課你在激烈的討論中有什么收獲?
將本文的word文檔下載到電腦,方便收藏和打印。
最新小學數學因數和倍數教學設計(精選14篇)篇六
理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法,發現一個數的倍數、因數中最大的數、最小的數,及因數和倍數個數方面的特征。
(二)過程與方法。
通過整數的乘除運算認識因數和倍數的意義,自主探索和總結出求一個數的因數和倍數的方法。
(三)情感態度和價值觀。
在探索的過程中體會數學知識之間的內在聯系,在解決問題的過程中培養學生思維的有序性和條理性。
教學重點:理解因數和倍數的含義。
教學難點:自主探索有序地找一個數的因數和倍數的方法。
教學課件。
(一)理解因數和倍數的意義。
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)。
第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。
2.明確因數和倍數的意義。
(1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?
(3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。
【設計意圖】引導學生從“整數的除法算式”中認識因數和倍數的意義,簡潔明了,同時為學習因數和倍數的依存關系進行有效鋪墊。
3.理解因數和倍數的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?
【設計意圖】引導學生在理解的基礎上進行正確表述:因數和倍數是相互依存的,不是單獨存在的。我們不能說4是因數,24是倍數,而應該說4是24的因數,24是4的倍數。
4.理解一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。
(1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區別呢?
課件出示:
乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。
(2)今天學的“倍數”與以前的“倍”又有什么不同呢?
“倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。
(3)交流匯報。
【設計意圖】“一個數的因數和倍數”與學生已學過的乘法算式中的“因數”以及“倍”的概念既有聯系又有區別,學生比較容易混淆,這也是學習一個數的“因數”和“倍數”意義的難點。通過觀察、對比、交流,引導學生發現一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。
(二)找一個數的因數。
教學例2:
1.探究找18的因數的方法。
(1)18的因數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。
因為18÷1=18,所以1和18是18的因數。
因為18÷2=9,所以2和9是18的因數。
因為18÷3=6,所以3和6是18的因數。
方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。
因為1×18=18,所以1和18是18的因數。
因為2×9=18,所以2和9是18的因數。
因為3×6=18,所以3和6是18的因數。
2.明確18的因數的表示方法。
(1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數有:1,2,3,6,9,18。
3.練習找一個數的因數。
(1)你能找出30的因數有哪些嗎?36的因數呢?
(2)怎樣找才能不遺漏、不重復地找出一個數的所有因數?
【設計意圖】讓學生通過自主探索、交流,獲得找一個數的因數的不同方法,在練習中體會“一對一對”有序地找一個數的因數,避免遺漏或重復。初步感受一個數的因數的個數是有限的,以及“最大因數、最小因數”的特征。
(三)找一個數的倍數。
教學例3:
1.探究找2的倍數的方法。
(1)2的倍數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:利用除法算式找2的倍數。
因為2÷2=1,所以2是2的倍數。
因為4÷2=2,所以4是2的倍數。
因為6÷2=3,所以6是2的倍數。
方法二:利用乘法算式找2的倍數。
因為2×1=2,所以2是2的倍數。
因為2×2=4,所以4是2的倍數。
因為2×3=6,所以6是2的倍數。……。
(3)2的倍數能寫完嗎?你能繼續找嗎?寫不完怎么辦?
(4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、圖示法)。
2.練習找一個數的倍數。
你能找出3的倍數有哪些嗎?5的倍數呢?
【設計意圖】在理解“倍數”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數的倍數的個數是無限的,以及“最小倍數”的特征。
1.從前面找因數和倍數的過程中,你有什么發現?
2.討論交流。
3.歸納總結。
預設:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。
(五)鞏固練習。
1.課件出示教材第7頁練習二第1題。
(1)想一想,怎樣找不會遺漏、不會重復?
(2)哪些數既是36的因數,也是60的因數?
【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數的因數”“一個數最大的因數是它本身”和“一個數的因數的個數是有限的”。同時,滲透兩個數的“公因數”的意義。
2.課件出示教材第7頁練習二第3題。
(1)學生獨立完成,交流答案。
(2)思考:5的倍數有什么特征?
【設計意圖】滲透5的倍數的特征。
3.課件出示教材第7頁練習二第5題。
(1)學生獨立完成,交流答案。
(2)你能改正錯誤的說法嗎?
(六)全課總結,交流收獲。
這節課我們學了哪些知識?你有什么收獲?
最新小學數學因數和倍數教學設計(精選14篇)篇七
《倍數和因數》是小學人教版課程標準實驗教材五年級下冊第2單元的內容,也是小學階段“數與代數”部分最重要的知識之一。《因數和倍數》的學習,是在初步認識自然數的基礎上,探究其性質,其中涉及到的內容屬于初等數論的基本內容,相當抽象。在這一內容的編排上與以往的教材有所不同,沒有數學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模型na=b直接給出因數與倍數的概念。在地位上,這節課是因數、倍數的概念引入,為本單元后面的內容、以及第四單元的最大公因數、最小公倍數提供了必需且重要鋪墊。(注:教學目標、教學重、難點略)。
本節課內容是五年級下冊的內容,但采取借班上課的形式,選取了四年級的學生。在此之前,學生已經已經分段認識了億以內的整數,基本完成了整數四則運算的學習(本學期剛學完)。但學生由于年齡的關系和個人思維發展的不同,在抽象能力和語言表達和思考的全面性方面需要老師的進一步引導。但由于本課是由乘法引入,且減少了以前老教材“整除”等繁雜概念,大大簡化了敘述和記憶的過程,預期學生是可以理解并掌握的。
本節課的在設計理念上,本人總結四點特點,而這四個特點也剛好在我教學的四個環節中生成:
數論的內容,如果從數字本身出發進行研究,對小學生來說就抽象了些。本節課,教師以解決問題“12個小正方形拼成一個長方形,有哪幾種拼法?”為引子,讓學生在解決這個問題的過程中,學習數學概念,避開了抽象,有利于幫助學生完成有意義的建構。同時,在解決問題時,學生思考“哪幾種拼法”時,教師給出了不同的建議,可以想象,也可以在本子上畫一畫,這樣既符合不同的學生思維發展有不同,老師有針對的引導,其次,使數與形有機地結合,這樣,學生對概念的理解不僅是數字上的認識,而且能與操作活動與圖形描述聯系起來。學生經歷了“先形后數”的過程,也就是知識抽象的過程。
能列舉一個數的因數,是本節課技能目標中很重要的一部分。教學活動中,教師牢牢的抓住了學生思維的“最近發展區”,讓學生在已有經驗的基礎上,獨立的列舉一個數的因數,在集體交流的過程中,教師適時的追問“用什么方法找的?”,讓學生充分暴露個性化的思考方法,教師點撥出學生思維中各自的優勢:一對一對的找;從“1”開始有序的找,再通過有效分析,取得學生整體的認同。這樣的設計,讓學生在獨立思考——集體交流——互相討論過程中,學習有序思考,從而形成基本技能與方法,做到即關注了過程,又關注了結果。
一個數的因數的特征,單憑記憶也不難接受,為防止學生進行“機械學習”,教師提出問題“任意一個自然數的因數有什么特點?”,讓學生觀察6、11、16和24的因數,思考:一個數的因數的個數是有限的還是無限的?其中最小的是幾?最大的是幾?教師在研究方法方面給學生提供了引導,學生的思維有了明確的指向,便于通過探索發現規律。
數學教學,要樹立為學生的繼續學習、終身發展服務的意識,不能關注短效、急功近利。本節課的設計,教師就注意到了學生的學習后勁。如在備課之初,在是否需要完美數的介紹這一抉擇上,教師反復考慮:由于一節課的時間有限,為表達因數與倍數的整體關系,很多老師在設計內容時,都在一個課時就將求因數和求倍數的方法全部包含。但最終本人選擇舍去求倍數,把它放在了后面的課時學習,將完美數的介紹以及小故事納入本節課的教學,雖然此內容和現行學習任務之間的關系都不大,但卻是學生繼續學習數學所需要的,因為只有有了文化的氣息,數學才變得有了靈魂,讓學生感覺數學的厚重、數學的魅力,才能讓學生透過枯燥,產生對數學的積極情感,增強學習數學的持久動力。
上完課后,一些老師認為有部分學生并掌握到教學目標里的知識技能目標,未掌握到有效的方法,學生思維水平與表達方式有限,把這個內容拿來在四年級上并不合適。首先,本人認為,教師這節課的引導是有不足的,教學目標并未很好的實施。本人也曾經看過有大量名師找了四年級甚至三年級的學生上過這節課。從理論上說,只要基本能完成整數乘除法的學習的學生都可以進行這部分的學習。當然,放在每個年級來上出現的效果理應都會有不同。同樣,這節課四年級的學生有著他們自己的思維水平,由于學生的思維發展水平有限,出現一些思維的無序是非常合理的,作為老師不能太關注短效,不能太急功近利。然而,究竟是否該放在四年級來上,如果可以上,究竟怎樣把握教法與學法的度,各家之談,本人僅是做了一次不成熟的嘗試,只希望拋磚引玉,老師們可以給出更多的意見,作為一次有意義的談論。
最新小學數學因數和倍數教學設計(精選14篇)篇八
一、說教材。
《倍數和因數》是小學人教版課程標準實驗教材五年級下冊第2單元的內容,也是小學階段“數與代數”部分最重要的知識之一。《因數和倍數》的學習,是在初步認識自然數的基礎上,探究其性質,其中涉及到的內容屬于初等數論的基本內容,相當抽象。在這一內容的編排上與以往的教材有所不同,沒有數學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模型na=b直接給出因數與倍數的概念。在地位上,這節課是因數、倍數的概念引入,為本單元后面的內容、以及第四單元的最大公因數、最小公倍數提供了必需且重要鋪墊。(注:教學目標、教學重、難點略)。
二、說學情分析。
本節課內容是五年級下冊的內容,但采取借班上課的形式,選取了四年級的學生。在此之前,學生已經已經分段認識了億以內的整數,基本完成了整數四則運算的學習(本學期剛學完)。但學生由于年齡的關系和個人思維發展的不同,在抽象能力和語言表達和思考的全面性方面需要老師的進一步引導。但由于本課是由乘法引入,且減少了以前老教材關于“整除”等繁雜概念,大大簡化了敘述和記憶的過程,預期學生是可以理解并掌握的。
三、說設計理念。
本節課的在設計理念上,本人總結四點特點,而這四個特點也。
剛好在我教學的四個環節中生成:
第一,從生活切入,實現數形結合,完成概念的有意義建構。
數論的內容,如果從數字本身出發進行研究,對小學生來說就抽象了些。本節課,教師以解決問題“12個小正方形拼成一個長方形,有哪幾種拼法?”為引子,讓學生在解決這個問題的過程中,學習數學概念,避開了抽象,有利于幫助學生完成有意義的建構。同時,在解決問題時,學生思考“哪幾種拼法”時,教師給出了不同的建議,可以想象,也可以在本子上畫一畫,這樣既符合不同的學生思維發展有不同,老師有針對的引導,其次,使數與形有機地結合,這樣,學生對概念的理解不僅是數字上的認識,而且能與操作活動與圖形描述聯系起來。學生經歷了“先形后數”的過程,也就是知識抽象的過程。
第二,抓住學生思維的“最近發展區”,促使學生學會有序思考,從而形成基本的技能與方法。
第三,充分借助生成的素材,實現有效的合作探索,引導學生在比較中歸納尋找共性。
一個數的因數的特征,單憑記憶也不難接受,為防止學生進行“機械學習”,教師提出問題“任意一個自然數的因數有什么特點?”,讓學生觀察6、11、16和24的因數,思考:一個數的因數的個數是有限的還是無限的?其中最小的是幾?最大的是幾?教師在研究方法方面給學生提供了引導,學生的思維有了明確的指向,便于通過探索發現規律。
第四,重視數學意義的滲透與拓展,力求用數學的本質吸引學生,促進學生學習數學的持續發展。
數學教學,要樹立為學生的繼續學習、終身發展服務的意識,不能關注短效、急功近利。本節課的設計,教師就注意到了學生的學習后勁。如在備課之初,在是否需要完美數的介紹這一抉擇上,教師反復考慮:由于一節課的時間有限,為表達因數與倍數的整體關系,很多老師在設計內容時,都在一個課時就將求因數和求倍數的方法全部包含。但最終本人選擇舍去求倍數,把它放在了后面的課時學習,將完美數的介紹以及小故事納入本節課的教學,雖然此內容和現行學習任務之間的關系都不大,但卻是學生繼續學習數學所需要的,因為只有有了文化的氣息,數學才變得有了靈魂,讓學生感覺數學的厚重、數學的魅力,才能讓學生透過枯燥,產生對數學的積極情感,增強學習數學的持久動力。
四、說教學效果。
談,本人僅是做了一次不成熟的嘗試,只希望拋磚引玉,老師們可以給出更多的意見,作為一次有意義的談論。
最新小學數學因數和倍數教學設計(精選14篇)篇九
不管多大的數相加其最基本的原則都是20以內的加法原則,20以內進位加法的速算口訣為:幾加九進十減一、幾加八進十減二、幾加七進十減三、幾加六進十減四。由于加法具有交換律,所以我們只需要記住這幾句就可以了,在100以內的加法中,先觀察兩個各位數字,找出他們中間較大的數,按口訣進行計算可以很快的算出答案。
“湊整”先算法。
例題1.24+44+56。
=24+(44+56)。
=24+100=124。
解題思路:因為44+56=100是個整百的數,所以先把它們的和計算出來,這樣再加別的數會比較簡單。
例題2.53+36+47。
=(53+47)+36。
=100+36=136。
解題思路:因為53+47=100是個整百數,所以先把+47帶著符號搬家,搬到+36前面,然后再把53+47的和算出來。
養成良好的計算習慣。
養成良好的計算習慣,是提高孩子計算能力切實有效的辦法。幫助孩子養成以下良好計算習,應該做到“一看、二想、三計算”的認真計算習慣。
計算是一件非常嚴肅認真的事情,來不得半點馬虎,但恰恰有孩子沒有良好學習習慣,拿到計算題后,沒有看清數字,沒有弄清運算順序,就盲目的算起來。
最新小學數學因數和倍數教學設計(精選14篇)篇十
1、分數的意義:把單位“1”平均分成若干份,表示這樣的一份或者幾份的數,叫做分數。在分數里,表示把單位“1”平均分成多少份的數,叫做分數的分母;表示取了多少份的數,叫做分數的分子;其中的一份,叫做分數單位。
2、百分數的意義:表示一個數是另一個數的百分之幾的數,叫做百分數。也叫百分率或百分比。百分數通常不寫成分數的形式,而用特定的“%”來表示。百分數一般只表示兩個數量關系之間的倍數關系,后面不能帶單位名稱。
3、百分數表示兩個數量之間的倍比關系,它的后面不能寫計量單位。
4、成數:幾成就是十分之幾。
分數的種類。
按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數。
分數和除法的關系及分數的基本性質。
1、除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當于分子,而不能說成被除數就是分子。
2、由于分數和除法有密切的關系,根據除法中“商不變”的性質可得出分數的基本性質。
3、分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。
最新小學數學因數和倍數教學設計(精選14篇)篇十一
教學內容:
教材分析:
本節教學是在學生學習掌握了因數和倍數兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數的因數”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數的因數。另外,通過引導學生用集合的形式表示一個數的因數,一方面給學生滲透集合思想,更重要的是為后面教學求兩個數的公因數做準備。
教學目標:
2、逐步培養學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數的因數的方法及規律特點。
教學難點:
用求一個數的因數的方法熟練找全一個數的因數。
教具準備:
投影儀、小黑板、卡片。
教學課時:一課時。
教學設想:
運用嘗試教學法,從學生已有的知識經驗出發,通過教師引導、學生自學例1,自主嘗試、探究求一個數的因數的方法方法,并能運用所獲得的方法、經驗找全一個數的因數。
教學過程:
一、復習舊知。
師:同學們,前面學習了因數和倍數的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數和倍數的相互依存關系說一說下面各組數的相互關系。
21和72×7=1430÷6=5。
2、判斷。
(1)12是倍數,2是因數。()。
(2)1是14的因數,14是1的倍數。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數,3是6和0.5的倍數。()。
教師根據學生完成練習的情況對學生進行恰當的表揚激勵,同時進入新課教學:……。
二、新課教學。
過程一:嘗試訓練。
(一)出示問題。
師:同學們,老師有一個新問題,想請大家幫助解決,行嗎?
生:行!(預設)。
嘗試題:14的因數有哪幾個?
(二)學生解決問題,教師巡視并根據實際適時輔導學困生。
(三)信息反饋。
板書:
1×14。
14 2×7。
14÷2。
14的因數有:1,2,7,14。
過程二:自學課本(p13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數?
2、文中的小朋友是怎樣找出18的因數的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數。
(二)信息反饋。
1、反饋自學要求情況;
板書:
1×18。
182×9。
3×6。
18的因數有1,2,3,6,9,18。
還可以這樣表示:18的因數。
2、知識對比,探索發現規律。
(1)師:同學們,根據求14和18的因數時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動。總結方法、點出課題。
求一個數的因數的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習。
(一)用小黑板出示練習題。
1、找出30的因數有哪些?36的因數有哪些?
(二)信息反饋:師生互動總結特點。
板書:
一個數的因數的個數是有限的。它的最小因數是1,的因數是它本身。
三、課堂作業。
練習二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數的數是誰?
五、課堂小結。
師:今天你學會了求一個數的因數的方法嗎?你知道一個數的因數特點嗎?
生:……。
板書設計:
求一個數的因數的方法。
1×14。
142×7 方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數有:1,2,3,6,9,18特點:一個數的因數的個數是有限的。
還可以表示為:
它的最小因數是1,的因數是它本身。
最新小學數學因數和倍數教學設計(精選14篇)篇十二
《因數和倍數》是一節數學概念課,通過這個乘法算式直接給出因數和倍數的概念。這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。
數學課程標準“以人為本”的理念決定著數學教學目標的指向:適應并促進學生的發展。根據本節課知識的特點和學生的認知規律,我采用了角色轉換、數形結合、合作學習等發展性教學手段進行教學,在教學中我注重體現以學生為主體的新理念,努力為學生的探究發現提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學:
(1)捕捉生活與數學之間的聯系,幫助學生理解因數倍數相互依存的關系。
因數和倍數是揭示兩個整數之間的一種相互依存關系,在課前談話中我利用一個腦筋急轉彎,滲透相互依存的關系。?通過生活中人與人之間的關系,遷移到數學中的數和數之間的關系,這樣設計自然又貼切,既讓學生感受到了數學與生活的聯系,初步學會從數學的角度去觀察事物、思考問題,激發了對數學的興趣,又潛移默化地幫助學生理解了因數倍數之間的相互依存關系。在教學中,也達到了預期的效果,學生對因數和倍數相互依存的關系理解的比較深刻。
(2)角色轉換,讓學生親身體驗數和數之間的聯系。
因數和倍數這節課研究的是數和數之間的關系,知識內容比較抽象。因而,我采用了“擬人化”的教學手段,每人一張數字卡片,學生和老師都變成了數學王國里的一名成員。當學生想回答問題時都會高高地舉起自己的號碼,整節課學生都沉浸在自己的角色體驗中,學生都把自己當成了一個數。通過對自己一個數的認識,舉一反三,從而理解了數與數之間的因數和倍數關系,既充分激發了學生的學習興趣,又十分有效地突破了教學難點。
(3)數形結合,讓學生帶著已有知識走進數學課堂。
“數形結合”是一種重要的數學思想。對教師來說則是一種教學策略,是一種發展性課堂教學手段;對學生來說又是一種學習方法。如果長期滲透,運用恰當,則使學生形成良好的數學意識和思想,長期穩固地作用于學生的數學學習生涯中。開課教師引導學生進行空間想象。
(4)重組教材,根據學生的實際情況,多種形式探究找因數倍數的方法。
教材上,探究因數這部分的例題比較少,只有一個:找18的因數。根據學生的實際情況,我進行了重組教材,先讓學生根據乘法算式“一對對”地找出15的因數,在此基礎上再讓學生探究18的因數。通過“質疑”:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發現:按照一定的順序一對對的找因數,能既找全又不遺漏。進而又借助體態語言——打手勢,讓學生說出20和24的因數,達到了鞏固練習的目的。這樣設計由易到難,由淺入深,符合了學生的認知規律。而在探究倍數時,我則大膽的放手,讓學生自主探索找一個數倍數的方法,給學生提供了廣闊的思維空間。這樣通過多種形式的教學,既激發了學生的學習興趣,又極大地提高了課堂教學的實效性。
(5)趣味活動,擴大學生思維的空間,培養學生發散思維的能力。
只有讓學生親身感受到數學知識內在的智取因素,數學學習的無窮魅力才能深深地打動學生。這節課的練習設計緊緊把握概念的內涵與外延,設計有效練習,拓展知識空間。譬如:讓學生用所學知識介紹自己,通過數字卡片找自己的因數和倍數朋友等等。學生拿著自己的數字卡片上臺找自己的朋友,讓臺下學生判斷自己的學號是不是這個數的因數或倍數,如果臺下學生的學號是這個數的因數或倍數就站到前面。由于答案不唯一,學生思考問題的空間很大,這樣既培養了學生的發散思維能力,又使學生享受到了數學思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習,學生沒有盡興,也沒有達到充分地練習效果。
因數和倍數教學反思。
《倍數和因數》這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數倍數,而現在是在未認識整除的情況下直接認識倍數和因數的。數學中的“起始概念”一般比較難教,這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。首先是名稱比較抽象,在現實生活中又不經常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節課我在教學中充分體現以學生為主體,為學生的探究發現提供足夠的時空和適當的指導,同時,也為提高課堂教學的有效性,我在本課的教學中體現了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一)?操作實踐,舉例內化,認識倍數和因數。
(二)自主探究,意義建構,找倍數和因數。
整個教學過程中力求體現學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節課中,教師始終為學生創造寬松的學習氛圍,讓學生自主探索,學習理解倍數和因數的意義,探索并掌握找一個數的倍數和因數的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學習的學習方式,教學中的多次合作不僅能讓學生在合作中發表意見,參與討論,獲得知識,發現特征,而且還很好地培養了學生的合作學習能力,初步形成合作與競爭的意識。
(三)變式拓展,實踐應用---—促進智能內化。
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養,并及時讓學生感受到學習成功的喜悅,享受數學,感悟文化魅力。
由于這節是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在第一部分認識因數和倍數這一環節里縮短出示時間,直接出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數呈現出來,引導學生歸納總結自己的發現:最小的因數是1,最大的因數是它本身。教師應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。
最新小學數學因數和倍數教學設計(精選14篇)篇十三
一、說教材。
《因數和倍數》是小學人教版課程標準實驗教材五年級下冊第二單元的內容,也是小學階段“數與代數”部分最重要的知識之一。《因數和倍數》的學習,是在初步認識自然數的基礎上,探究其性質。其中涉及到的內容屬于初等數論的基本內容,相當抽象。在這一內容的編排上與以往教材不同,沒有數學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數與位數的概念。這節課是因數與倍數的概念的引入,為本單元最后的內容,以及第四單元的最大公因數,最小公倍數提供了必須且重要的鋪墊。
二、說教學目標。
1、通過整理復習,讓學生進一步掌握整除、因數、倍數、質數、合數、偶數、奇數、分解質因數、公因數、最大公因數、互質數、公倍數、最小公倍數等概念及其概念之間的聯系和區別。
2、讓學生經歷數的整除的有關知識的整理復習過程,培養學生整理復習的能力,進一步完成認知結構。
3、進一步培養學生整理的意識,形成良好的學習習慣。
三、說教學重點:質數、合數、分解質因數、求最大公因數和最小公倍數,求三個數的最小公倍數的算理。難點:掌握找一個數的倍數和因數的方法。
四、說教法學法:
1、遵循學生主體,老師主導,自主探究,合作交流為主線的理念,利用學生對乘法的運算理解概念。
2、小組合作討論法。以學生討論,交流,互相評價,促成學生對找一個數的因數和倍數的方法進行優化處理,提升。鞏固學生方法表達的完整性,有效性,避免學生只掌握方法的理解,而不能全面的正確的表達。
五、說教學過程:
(一)知識點梳理:
讓學生經歷數的整除的有關知識的整理復習過程,培養學生整理復習的能力,進一步完成認知結構。
(二)鞏固練習:
通過整理復習,讓學生進一步掌握整除、因數、倍數、質數、合數、偶數、奇數、分解質因數、公因數、最大公因數、互質數、公倍數、最小公倍數等概念及其概念之間的聯系和區別。
六、課后反思。
1、教學方法單一。
2、課堂氣氛不活躍。
3、應該多給學生思考的時間。
最新小學數學因數和倍數教學設計(精選14篇)篇十四
本課內容是學生四年級學習的延續,在四年級(下冊)教材里,學生已經建立了倍數和因數的概念,會找10以內自然數的倍數,100以內自然數的因數。這課教學公倍數和最小公倍數,要學生理解公倍數和最小公倍數的意義,學會找兩個數的公倍數和最小公倍數的方法,為后面學習公因數、最大公因數的意義,會求公因數、最大公因數的方法,進行通分、約分和分數四則計算作充分全面的準備。作為全新的課改內容,本課教材編排與舊教材相比,改革的力度較大,體現了濃郁的課改氣息,具體體現在以下幾方面:
1、潤物細無聲:
在解決實際問題中理解概念。用長3厘米寬2厘米的小長方形去鋪邊長分別是6厘米、8厘米的正方形,哪個能正好鋪滿?教材以學生喜歡的操作情景入手,激發學生探索的欲望,在探索中生成問題:怎樣的正方形肯定能正好鋪滿?怎樣的不行?像這樣能正好鋪滿的正方形還能找到嗎?引發學生深入探索,在充分探索觀察的基礎上發現:能正好鋪滿的正方形的邊長正好既是小長方形長的倍數,又是寬的倍數。這時引入公倍數的概念自然是水到渠成,學生覺得很自然、親切,覺得解決的問題是有價值的,公倍數的概念也是現實的、有意義的鮮活概念。
2、多樣呈精彩:
在找兩個數的公倍數和最小公倍數的時候,采用全開放的方式,放大學生思維空間讓學生自由探索,以小組交流形成思維碰撞,呈現多彩的智慧。以評價促方法的對比,以評價促思維的深入,以評價促探索精神的提升,學生自然自得其樂,收獲多多。
3、適度顯睿智:
在練習部分,教材能尊重學生的思維差異,能尊重學生的心理需求,讓學生選用喜歡的方法去解決問題,這是適度體現的其一。其二對求兩個數的公倍數、最小公倍數,教材拋棄了短除法的方法,而只要學生找10以內數的公倍數、最小公倍數,降低了學習要求,更符合學生實際。