在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。那么我們該如何寫一篇較為完美的范文呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。
倍數(shù)和因數(shù)教學設計及反思篇一
由于這節(jié)的概念較多,因此有不少是由老師直接告知的,但這并不意味著學生完全被動的接受。如讓學生思考:你覺得4和24、6和24之間有什么關系呢?(對乘除法學生有著相當豐富的經(jīng)驗,因此不少學生能說出倍數(shù)關系,可能說得不很到位,但那是學生自己的東西)。當學生認識了倍數(shù)之后,我進行了設問:24是4的倍數(shù),那反過來4和24是什么關系呢?盡管學生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學生體會到24是4的倍數(shù),反過來4就是24的因數(shù),接下來就是6和24的關系,同學們都爭者要回答。
如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下三分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:
①用什么方法找36的因數(shù)。
②如何找不重復也不遺漏。
通過在小組交流的過程中,學生與學生之間對自己剛才的方法進行反思,吸收同伴中好的方法,這比老師給予有效得多。學生就這樣輕松、愉快的學習了因數(shù)、倍數(shù)的有關知識。
倍數(shù)和因數(shù)教學設計及反思篇二
我在教學時做到了以下幾點:
(1)密切聯(lián)系生活中的數(shù)學,幫助學生理解概念間的關系。
今天在教學前,我讓學生學說話,就是培養(yǎng)學生對語言的概括能力和對事物間關系的理解能力。于是我利用課前談話讓學生在找找生活中的相互依存關系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關系,從而使學生更深一步的認識倍數(shù)與因數(shù)的關系,
(2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關系,列出乘法算式,初步感知倍數(shù)關系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎。這樣不僅溝通了乘法和除法的關系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
(3)根據(jù)學生的實際情況,教學找一個數(shù)的因數(shù)的方法,雖然學生不能有序地找出來,但是基本能全部找到,再此基礎上讓體會有序找一個數(shù)因數(shù)的辦法學生容易接受,這樣的設計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
(4)設計有趣游戲活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養(yǎng)了學生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學生判斷自己的學號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學生的學號數(shù)是老師出示卡片的'倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學生都站起來。出示地卡片應該是幾,找的朋友應該是倍數(shù)還是因數(shù)?學生面對問題積極思考,享受了數(shù)學思維的快樂。
倍數(shù)和因數(shù)教學設計及反思篇三
《倍數(shù)和因數(shù)》,由于之前沒上過這冊內(nèi)容,在看完教材后就和同組的老師說,這個內(nèi)容好像挺簡單的。不過上完這節(jié)課后這個想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預設中沒有想到的問題,下面對自己的課堂做一些反思:
1、在第一個環(huán)節(jié)認識倍數(shù)和因數(shù)的意義中,首先讓學生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學生動手操作實踐,體現(xiàn)了以學生為本,而且能喚醒學生已有的知識經(jīng)驗,抽象為具體討論的數(shù)學問題。在抽象出三個不同的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應該是很簡單的兩句話,學生應該會說,可是當請學生來自己選擇一個乘法算式來說一說時,好幾個學生卻被卡住了,還有的說成了4是12的倍數(shù)。
針對學生出現(xiàn)的問題,我覺得可能是自己在介紹時運用的不到位,一個是比較小,后面的同學都沒能看清楚;另一方面我預想的比較簡單,所以說了一遍后也沒請學生再復述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時應該在中相繼出示這兩句話,這樣的話讓學生看著說印象會更深刻,相信學生說的也會比較好。
2、第二個環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的方法,從上一個環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過疑問來激發(fā)學生找出3的倍數(shù)有哪些?學生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢?學生自然想到去乘1,乘2,乘3……也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學生:觀察上面這幾個例子,你有什么發(fā)現(xiàn)?請了好幾個學生都沒能找到,最后還是老師告訴了學生倍數(shù)最小是?最大呢?
針對最后請學生找一找發(fā)現(xiàn)倍數(shù)的共同特點這一問題,我覺得我在設計時問題提得太大,太籠統(tǒng)。學生聽到問題后可能無從下手,不知道該找什么。可以問:剛才找了2,3,5的倍數(shù),觀察這幾個數(shù)的倍數(shù),他們有什么共同特點?這樣學生就會比較有針對性地去尋找結(jié)果。
3、第三個環(huán)節(jié)是探求找一個數(shù)因數(shù)的方法,找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復又不遺漏地找一個數(shù)的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有是一定困難的,而這個環(huán)節(jié)我處理的也不到位,學生對找一個數(shù)因數(shù)的方法掌握的不夠好。
我一開始設計請學生自主找36的因數(shù),在巡視時發(fā)現(xiàn)有一部分學生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否可以先從12下手,因為前面一開始已經(jīng)找過12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時就會好一些。
在學生自主探索完36的因數(shù)有哪些后,交流不同學生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對于學生來說在找得時候還更簡單一點。更重要的是我覺得一對對的找對于找全一個數(shù)的因數(shù)是一個很重要的方法,而我卻把這個方法忽略了,所以學生對于找一個數(shù)的因數(shù)的方法不夠深刻,在練習中也發(fā)現(xiàn)做的不理想。
4、第四個環(huán)節(jié)是鞏固練習,我設計了2個小游戲。一個是看誰反應快,符合要求的請學生起立,這個游戲?qū)W生參與面廣,學生也感興趣,還從中發(fā)現(xiàn)了找誰的學號是幾的因數(shù),1每次都會起立,就更好的鞏固了一個數(shù)的因數(shù)最小是1。但是也有個別學生反應比較慢。第二個小游戲是猜一猜老師的手機號碼是多少?但是由于前面時間用的比較多,所以沒來得及做。
原本認為簡單的課卻一點都不簡單,每個細小環(huán)節(jié)的把握都要求我去仔細的鉆研教材,設計好每一步,這樣才能上好一節(jié)課。