教案可以起到規范教學行為、提高教學效果的作用,是教師備課的重要部分。看看以下這些精心編寫的初中教案范文,或許能夠給你們帶來一些新的教學思路和方法。
初中二元一次方程數學教案大全(24篇)篇一
教學目標:
知識與技能目標:
通過對實際問題的分析,使學生進一步體會方程組是刻畫現實世界的有效數學模型,初步掌握列二元一次方程組解應用題.初步體會解二元一次方程組的基本思想“消元”。
培養學生列方程組解決實際問題的意識,增強學生的數學應用能力。
過程與方法目標:
經歷和體驗列方程組解決實際問題的過程,進一步體會方程(組)是刻畫現實世界的有效數學模型。
情感態度與價值觀目標:
1.進一步豐富學生數學學習的成功體驗,激發學生對數學學習的好奇心,進一步形成積極參與數學活動、主動與他人合作交流的意識.
2.通過"雞兔同籠",把同學們帶入古代的數學問題情景,學生體會到數學中的"趣";進一步強調課堂與生活的聯系,突出顯示數學教學的實際價值,培養學生的人文精神。重點:
經歷和體驗列方程組解決實際問題的過程;增強學生的數學應用能力。
難點:
教學流程:
課前回顧。
情境引入。
探究1:今有雞兔同籠,
上有三十五頭,
下有九十四足,
問雞兔各幾何?
“雉兔同籠”題:今有雉(雞)兔同籠,上有35頭,下有94足,問雉兔各幾何?
(1)畫圖法。
用表示頭,先畫35個頭。
將所有頭都看作雞的,用表示腿,畫出了70只腿。
還剩24只腿,在每個頭上在加兩只腿,共12個頭加了兩只腿。
四條腿的是兔子(12只),兩條腿的是雞(23只)。
雞頭+兔頭=35。
雞腳+兔腳=94。
設雞有x只,則兔有(35-x)只,據題意得:
2x+4(35-x)=94。
比算術法容易理解。
想一想:那我們能不能用更簡單的方法來解決這些問題呢?
今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?
(1)上有三十五頭的意思是雞、兔共有頭35個,
下有九十四足的意思是雞、兔共有腳94只.
(2)如設雞有x只,兔有y只,那么雞兔共有(x+y)只;
雞足有2x只;兔足有4y只.
解:設籠中有雞x只,有兔y只,由題意可得:
雞兔合計頭xy35足2x4y94。
解此方程組得:
練習1:
2.小剛有5角硬幣和1元硬幣各若干枚,幣值共有六元五角,設5角有x枚,1元有y枚,列出方程為05x+y=65.
合作探究。
找出等量關系:
解:設繩長x尺,井深y尺,則由題意得。
x=48。
將x=48y=11。
所以繩長4811尺。
想一想:找出一種更簡單的創新解法嗎?
引導學生逐步得出更簡單的方法:
找出等量關系:
(井深+5)×3=繩長。
(井深+1。
解:設繩長x尺,井深y尺,則由題意得。
3(y+5)=x。
4(y+1)=x。
x=48。
y=11。
所以繩長48尺,井深11尺。
練習2:甲、乙兩人賽跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,則甲跑4秒就可追上乙.設甲速為x米/秒,乙速為y米/秒,則可列方程組為(b).
歸納:
審:審清題目中的等量關系.
設:設未知數.
列:根據等量關系,列出方程組.
解:解方程組,求出未知數.
答:檢驗所求出未知數是否符合題意,寫出答案。
初中二元一次方程數學教案大全(24篇)篇二
一、精心選一選!一定能選對!(每小題3分,共30分)。
(a)(b)(c)(d)。
2.方程組解的個數有().
(a)一個(b)2個(c)3個(d)4個。
3.若方程組的解是,那么、的值是().
(a)(b)(c)(d)。
4.若、滿足,則的值等于().
(a)-1(b)1(c)-2(d)2。
(a)(b)(c)(d)。
6.下列說法中正確的是().
(b)方程的解、為自然數的有無數對。
7.在等式中,當時,,當時,,則這個等式是().
(a)(b)(c)(d)。
(a)(b)(c)(d)。
9.(20寧夏)買甲、乙兩種純凈水共用250元,其中甲種水每桶8元,乙種水每桶6元,乙種水的`桶數是甲種水的桶數的75%,設買甲種水x桶,乙種水y桶,則所列方程組中正確的是()。
(a)(b)(c)(d)。
10.(年福建福州)如圖,射線oc的端點o在直線ab上,1的度數比2的度數的2倍多10,則可列正確的方程組為().
(a)(b)(c)(d)。
二、耐心填一填!一定能填對!(每小題3分,共30分)。
11.已知方程,用含的式子表示的式子是____,用含的式子表示的式子是___________.
12.已知是方程的一個解,那么__________.
13.已知,,則________.
14.若同時滿足方程和方程,則_________.
16.(2005年江蘇鹽城)若一個二元一次方程的一個解為,則這個方程可以是_______________(只要求寫出一個)。
17.已知方程組與的解相同,那么_______.
18.若,都是方程的解,則______,________.
19.(山東濰坊)蔬菜種植專業戶王先生要辦一個小型蔬菜加工廠,分別向銀行申請甲、乙兩種貸款,共13萬元,王先生每年須付利息6075元,已知甲種貸款的年利率為6%,乙種貸款的年利率為3.5%,則甲、乙兩種貸款分別是________________.
20.(2005年南寧)根據下圖提供的信息,求出每支網球拍的單價為。
元,每支乒乓球拍的單價為元.
200元160元。
三、用心想一想!一定能做對!(共60分)。
21.(本小題8分)(2005年江蘇蘇州)解方程組:
26.(本小題12分)(,黃岡)已知某電腦公司有a型、b型、c型三種型號的電腦,其價格分別為a型每臺6000元,b型每臺4000元,c型每臺2500元.我市東坡中學計劃將100500元錢全部用于從該公司購進其中兩種不同型號的電腦共36臺,請你設計出幾種不同的購買方案供該校選擇,并說明理由.
參考答案:
一、1~10daaacdbcbb。
二、11.,;12.0;13.-42;14.4;15.加減消元,;16.等;17.1.5;18.2,1;19.6.1萬元,6.9萬元;20.80,20.
三、
21.;22.;23.;24.54人挖土,18人運土;。
25.解:設這種礦泉水在甲、乙兩處每桶的價格分別為元,根據題意,得。
解這個方程組,得。
因為.
所以到甲供水點購買便宜一些.
26.解:設從該電腦公司購進a型電腦x臺,購進b型電腦y臺,購進c型電腦z臺.則可分以下三種情況考慮:
(1)只購進a型電腦和b型電腦,依題意可列方程組解得不合題意,應該舍去;。
(2)只購進a型電腦和c型電腦,依題意可列方程組解得。
(3)只購進b型電腦和c型電腦,依題意可列方程組。
解得。
初中二元一次方程數學教案大全(24篇)篇三
含有兩個未知數,并且所含未知數的項的次數都是1的.整式方程叫做二元一次方程。
含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。
(1)代入(消元)法(2)加減(消元)法。
直線y=kx+b上任意一點的坐標都是它所對應的二元一次方程kx-y+b=0的解。
當函數圖象有交點時,說明相應的二元一次方程組有解;當函數圖象(直線)平行即無交點時,說明相應的二元一次方程組無解。
初中數學平行線知識點。
平行線及其判定。
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
平行線的性質。
性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
1要重視計算。
做數學題就是要注重計算,很多孩子成績丟分在計算上,解題步驟沒有錯,但是計算的過程中出現失誤,導致丟分,影響整體成績,所以要重視計算的作用,初一階段剛開學就會學到有理數,絕對值,倒數,相反數,一元一次方程,單項式和多項式等基本的計算問題,每一個知識點都脫離不了計算的考察。整式,方程,不等式等后續重要知識點都基于有理數的計算。后續的分式計算更凸顯了孩子的計算問題。所以要想提高數學成績,一定要重視計算。
2細節決定成敗。
我們在考試以后會發現有很多不應該做錯的題,因為大意失了分數,所以要想提高數學成績,一定要注意細節,在考試的過程中不該丟的不能丟,分分計較,做到顆粒歸倉。解題時即使思路正確,不注意細節也能丟分。考試分分比較,每一分都代表了一個人的素質和水平。這就是細節決定成敗。
3善于發現數學規律。
要想提高數學成績,在做數學題的過程中要善于發現規律。不要總是硬套公式,可以嘗試一下思維的轉換,這樣可能給自己帶了不一樣的轉機,其實數學和其他的科目是一樣,就比如語文一樣的話,可以用其他的話代替,但是意思并沒有轉變,數學的公式也是一樣,最終的答案是一個,不過你可以用其他的方法進行解答,所以善于發現數學的解題規律,轉變思路也是提高數學成績的一條有效途徑。
4高水平復習很重要。
要想提高數學成績,在考試前一定要有高水平高效率的復習。一道題,剛開始你不熟悉,那么,你需要做十遍甚至更多遍,把整個題目做到滾瓜爛熟。這個時候,如果你還在不斷地重復做這道題,那么就是低水平重復,高手們會當這道題熟悉了,他就開始放棄了,把大把時間拿來,去攻克自己不熟悉的題目,不斷地把陌生轉化為熟悉。他們也在重復,但是,是高水平重復。
初中二元一次方程數學教案大全(24篇)篇四
一、填空題(每題4分,共20分)。
2.若與是同類項,則。
3.已知則。
4.已知則.
5.若則.
二、解下列方程組(每題8分,共32分)。
三、解答題(每題8分,共24分)。
10.滿足方程組的x,y的值的和等于2,求m的值.
11.甲、乙二人同解方程組,甲正確解得,乙因抄錯了c,解得,求a、b、c的`值.
12.已知關于x、y的方程組和的解相同,求的值.
四、列方程組解應用題(每題8分,共24分)。
13.據電力部門統計,每天8:00至21:00是用電高峰期,簡稱“峰時”,21:00至次日8:00是用電低谷期,簡稱“谷時”.為了緩解供電緊張的矛盾,我市電力部門擬逐步統一換裝“峰谷分時”電表,對用電實行“峰谷分時電價”新政策,具體見下表:
時間換表前換表后。
峰時(8:00~21:00)谷時(21:00~次日8:00)。
電價0.52元/千瓦時x元/千瓦時y元/千瓦時。
已知每千瓦時的峰時價比谷時價高0.25元.小衛家對換表后最初使用的100千瓦時的用電情況進行統計分析得知:峰時用電量占80%,谷時用電量占20%,與換表前相比,電費共下降2元.請你求出表格中的x和y的值.
15.牛奶加工廠現有鮮奶9噸,若在市場上直接銷售鮮奶,每噸可獲利潤500元,制成酸奶銷售,每噸可獲利潤1200元;制成奶片銷售,每噸可獲利潤元.該工廠的生產能力是:如制成酸奶,每天可加工3噸;制成奶片,每天可加工1噸,受人員限制,兩種加工方式不可同時進行,受氣溫條件限制,這批牛奶必須在4天內全部銷售或加工完畢.為此,該廠設計了兩種可行方案:
方案一:盡可能多的制成奶片,其余直接銷售鮮奶;。
方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成.
你認為選擇哪種方案獲利最多,為什么?
答案:
1.(不惟一)2.2,-1。3.-1.4.1∶2∶3.5.14.
6.7.8.9.10.m=4.
11.12.1.13.0.55,0.30.14.24臺,16臺.
15.方案一:4天生產奶片4噸,其余直接銷售1×4×2000+(9-4)×500=10500(元);方案二:設x天生產奶片y天生產酸奶.從而(元).所以選擇方案二獲利最多.
初中二元一次方程數學教案大全(24篇)篇五
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型2017年-2017學年七年級數學下冊全冊教案(人教版)2017年-2017學年七年級數學下冊全冊教案(人教版)。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
2.徹底理解題意。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求x、y的方程,
2.p38練習第1題。
p42。習題2.3a組第1題。
后記:
初中二元一次方程數學教案大全(24篇)篇六
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型20xx年-20xx學年七年級數學下冊全冊教案(人教版)20xx年-20xx學年七年級數學下冊全冊教案(人教版)。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
2.徹底理解題意。
一、情境引入。
二、建立模型。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
三、練習。
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求x、y的方程,
2.p38練習第1題。
四、小結。
五、作業。
初中二元一次方程數學教案大全(24篇)篇七
知識與技能。
過程與方法。
能根據方程組的特點選擇合適的方法解方程組;并能把相應問題轉化為解方程組。
情感、態度與價值觀。
培養學生分析問題,解決問題的能力,體驗學習數學的快樂。
重點:
難點:
選擇合適的方法解方程組;并能把相應問題轉化為解方程組。
教學手段。
多媒體,小組評比。
教學過程。
一、知識梳理。
設計意圖:知識回顧,掌握知識要點,為順利完成練習打下基礎。
二、基礎訓練。
教學手段與方法:每小組必答題,答對為小組的一分,調動學習的積極性。
設計意圖:
基礎知識達標訓練。
教學手段與方法:
毎小組選代表講解為小組加分,充分調動學生的積極性。學生講解不到位的老師補充。
初中二元一次方程數學教案大全(24篇)篇八
知識與技能。
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(2)通過“做一做”引入例1,進一步發展學生數形結合的意識和能力。
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神。
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力。
數形結合和數學轉化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環節:設置問題情境,啟發引導(5分鐘,學生回答問題回顧知識)。
內容:
1、方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3、在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
第二環節自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內容:
1、解方程組。
2、上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環節典型例題(10分鐘,學生獨立解決)。
探究方程與函數的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環節反饋練習(10分鐘,學生解決全班交流)。
內容:
1、已知一次函數與的圖像的交點為,則。
2、已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環節課堂小結(5分鐘,師生共同總結)。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1、二元一次方程和一次函數的圖像的'關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
2、方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法,要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環節作業布置。
習題7.7a組(優等生)1、2、3b組(中等生)1、2c組1、2。
附:板書設計。
初中二元一次方程數學教案大全(24篇)篇九
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
1.列二元一次方程組解簡單問題。
2.徹底理解題意
找等量關系列二元一次方程組。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
1.根據問題建立二元一次方程組。
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38練習第1題。
小組討論:列二元一次方程組解應用題有哪些基本步驟?
p42。習題2.3a組第1題。
后記:
2.3二元一次方程組的應用(2)
初中二元一次方程數學教案大全(24篇)篇十
(2)填空(每空2分,共26分)。
1、在方程中。如果,則。
2、已知:,用含的代數式表示,得。
4、如果方程的兩組解為,則=,=。
5、若:=3:2,且,則,=。
6、方程的正整數解有組,分別為。
7、如果關于的方程和的解相同,則=。
8、一個兩位數的十位數字與個位數字之和等于5,十位數字與個位數字之差為1,設十位數字為,個位數字為,則用方程組表示上述語言為。
9、已知梯形的面積為25平方厘米,高為5厘米,它的下底比上底的2倍多1厘米,則梯形的上底和下底長分別為。
10、寫出一個二元一次方程,使其滿足的系數是大于2的自然數,的系數是小于-3的整數,且是它的一個解。。
(3)選擇(每題3分,共30分)。
a、2個b、3個c、4個d、5個。
12、如果是同類項,則、的值是()。
a、=-3,=2b、=2,=-3。
c、=-2,=3d、=3,=-2。
13、已知是方程組的解,則、間的關系是()。
a、b、c、d、
a、3b、-3c、-4d、4。
16、若方程組的解滿足=0,則的取值是()。
a、=-1b、=1c、=0d、不能確定。
a、0b、-1c、1d、2。
18、解方程組時,一學生把看錯而得,而正確的解是那么、、的值是()。
a、不能確定b、=4,=5,=-2。
c、、不能確定,=-2d、=4,=7,=2。
19、當時,代數式的值為6,那么當時這個式子的值為()。
a、6b、-4c、5d、1。
20、9、甲、乙兩人練習跑步,如果乙先跑10米,則甲跑5秒就可追上乙;如果乙先跑2秒,則甲跑4秒就可追上乙,若設甲的速度為米/秒,乙的速度為米/秒,則下列方程組中正確的是()。
a、b、c、d、
三、解方程組(每題5分,共20分)。
1、2、
3、4、
四、列方程組解決實際問題:(每題6分,共24分)。
2、小明用8個一樣大的矩形(長acm,寬bcm)拼圖,拼出了如圖甲、乙的兩種圖案:圖案甲是一個正方形,圖案乙是一個大的矩形;圖案甲的中間留下了邊長是2cm的正方形小洞.求(a+2b)2-8ab的值.
4、在社會實踐活動中,某校甲、乙、丙三位同學一同調查了高峰時段北京的二環路、三環路、四環路的車流量(每小時通過觀測點的汽車車輛數),三位同學匯報高峰時段的車流量情況如下:
甲同學說:二環路車流量為每小時10000輛。
乙同學說:四環路比三環路車流量每小時多2000輛。
丙同學說:三環路車流量的3倍與四環路車流量的差是二環路車流量的2倍。
請你根據他們所提供的信息,求出高峰時段三環路、四環路的車流量各是多少?
文檔為doc格式。
初中二元一次方程數學教案大全(24篇)篇十一
1.會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。
2.提高分析問題、解決問題的.能力。
3.體會數學的應用價值。
1.找實際問題中的相等關系。
2.徹底理解題意。
探究:1.你能畫線段表示本題的數量關系嗎?
2.填空:(用含s、v的代數式表示)。
設小琴速度是v千米/時,她家與外祖母家相距s千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米2017年-2017學年七年級數學下冊全冊教案(人教版)教案。
3.列方程組。
4.解方程組。
5.檢驗寫出答案。
討論:本題是否還有其它解法?
1.建立方程模型。
2.p38練習第2題。
3.小組合作編應用題:兩個寫一方程組,另兩人根據方程組編應用題。
本節課你有何收獲?
初中二元一次方程數學教案大全(24篇)篇十二
本課內容是在學生掌握了二元一次方程組有關概念之后的學習內容,用代入消元法解二元一次方程組是學生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現了“化未知為已知”的重要思想,它是學習本章的重點和難點。學完以后可以幫助我們解決一些實際的問題,也是為了今后學習函數、線性方程組及高次方程組奠定了基礎。
2、理解代入消元法的基本思想;了解化“未知為已知”的轉化過程,體會化歸思想。
2、難點:在“消元”的過程中能夠判斷消去哪個未知數,使得解方程組的運算轉為較簡便的過程。
(1)復習引入。
設計意圖:讓學生復習鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個拋磚引玉的效果,激起學生的學習興趣,引出課題。
(2)探究新知。
此過程通過播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點擊暫停,先讓學生考慮想清楚兩個問題。
一個問題是為什么能用一元一次方程解決的實際問題我們要用二元一次方程組來解決?第二個問題觀察二元一次方程組和一元一次方程組之間有何異同?學生想清楚這兩個問題后,滲透消元的思想,然后繼續播放視頻讓學生知道二元一次方程組完整的解題過程,并在每一步做出相應的`解釋,怎么變化而來。
播放視頻完后先讓學生自主總結歸納解二元一次方程組的基本步驟,教師引導總結。接著完成配套的3個習題,強化訓練。
(3)例題講解。
讓學生嘗試解答。
設計意圖:讓學生通過例1和例2的對比,引出如何選擇變化有利于計算的問題。
預想大部分學生例2會存在這樣的問題到底選擇哪個方程變形,當學生做出例1,猶豫例2時,提出這樣兩個問題:
(1)在解二元一次方程組的步驟中變形的過程我們應當如何變形?把一個方程變形為用含x的式子表示y(或含y的式子表示x)。
(2)選擇哪個方程變形比較簡便呢?
再一次激起學生的學習興趣,接著播放洋蔥視頻繼續代入消元法片段視頻,讓學生清楚的知道在不同的二元一次方程組中在變形的過程選擇那一個方程,選擇那一個未知數變形能簡便的進行運算。
1、這節課你學到了哪些知識和方法?
2、你還有什么問題或想法需要和大家交流分享?
xxx。
通過洋蔥視頻輔助教學,使得學生容易體會到“消元”思想的滲透,學生能夠學會規范解題。通過視頻的講解能夠準確的選擇要變形的方程,如果是傳統的教學方式可能會出現很多學生不理解的地方,但通過洋蔥數學短小精辟的視頻講解一下子讓學生理解透!
初中二元一次方程數學教案大全(24篇)篇十三
3、學會開放性地尋求設計方案,培養分析。
教學難點用方程組刻畫和解決實際問題的過程。
知識重點經歷和體驗用方程組解決實際問題的過程。
教學過程(師生活動)設計理念。
(出示問題)據以往的統計資料,甲、乙兩種作物的單位面積產量的比是1:1:5,現要在一塊長200m,寬100m的長方形土地上種植這兩種作物,怎樣把這塊地分為兩個長方形,使甲、乙兩種作物的總產量的比是3:4(結果取整數)?以學生身邊的實際問題展開學習,突出數學與現實的聯系,培養學生用數學的意識。
探索分析。
研究策略以上問題有哪些解法?
學生自主探索,合作交流,整理思路:
(2)先求兩個小長方形的面積比,再計算分割線的位置.。
(3)設未知數,列方程組求解.。
……。
學生經討論后發現列方程組求解較為方便.多角度分析問題,多策略解決問題,提高思維的發散性。
合作交流。
解決問題引導學生回顧列方程解決實際問題的基本思路。
(1)設未知數。
(2)找相等關系。
(3)列方程組。
(4)檢驗并作答。
解這個方程組得。
過長方形土地的長邊上離一端約106m處,把這塊地分。
為兩個長方形.較大一塊地種甲作物,較小一塊地種乙作物.。
你還能設計別的種植方案嗎?
用類似的方法,可沿平行于線段ab的方向分割長。
方形.。
教師巡視、指導,師生共同講評.。
比較分析,加深對方程組的認識。
畫圖,數形結合,輔助學生分析。
進一步滲透模型化的思想。
引發學生思考,尋求解決途徑。
拓展探究。
按以下步驟展開問題的討論:
(l)學生獨立思考,構建數學模型.。
(2)小組討論達成共識.。
(3)學生板書講解.。
(4)對方程組的解進行探究和討論,從而得到實際問題的結果.。
(5)針對以上結論,你能再提出幾個探索性問題嗎?以學生學習生活中遇到的。
問題展開討論,鞏固用二元一次。
小結與作業。
小結提高提問:通過本節課的討論,你對用方程解決實際的方法又有何新的`認識?
學生思考后回答、整理.。
布置作業12、必做題:教科書116頁習題8.3第1(2)、4題。
13、選做題:教科書117頁習題8.3第7題。
14、備15、選題:
(3)解方程組。
小彬看見了,說:“我來試一試.”結果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個洞,恰好是邊長2mm的小正方形!
你能幫他們解開其中的奧秘嗎?
提示學生先動手實踐,再分析討論.。
分層次布1作業.其中“必。
做題”面向全體學生,鞏固知識、
方法,加深理解廠選做題”面向。
部分學有余力的學生,給他們一。
定的時間和空間,相互合作,自主探究,增強實踐能力.備選通供教師參考.。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
本課所提供的例題、練習題、作業題突出體現以下特點:
2、探索性.問題解決的策略不易獲得,問題中的數量關系不易發現,問題中的未知數不。
易設定,這為學生開展探究活動提供了機會.。
初中二元一次方程數學教案大全(24篇)篇十四
(學生活動)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
(學生活動)請同學們口答下面各題。
(老師提問)(1)上面兩個方程中有沒有常數項?
(2)等式左邊的各項有沒有共同因式?
(學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解。
因此,上面兩個方程都可以寫成:
(1)x(2x+1)=0(2)3x(x+2)=0。
(2)3x=0或x+2=0,所以x1=0,x2=-2(以上解法是如何實現降次的?)。
因此,我們可以發現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法。
例1解方程:
思考:使用因式分解法解一元二次方程的條件是什么?
解:略(方程一邊為0,另一邊可分解為兩個一次因式乘積)。
練習:下面一元二次方程解法中,正確的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,兩邊同除以x,得x=1。
教材第14頁練習1,2。
本節課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用。
教材第17頁習題6,8,10,11。
初中二元一次方程數學教案大全(24篇)篇十五
本節內容共安排2個課時完成。該節內容是二元一次方程(組)與一次函數及其圖像的綜合應用。通過探索方程與函數圖像的關系,培養學生數學轉化的思想,通過二元一次方程方程組的圖像解法,使學生初步建立了數(二元一次方程)與形(一次函數的圖像(直線))之間的對應關系,進一步培養了學生數形結合的意識和能力。本節要注意的是由兩條直線求交點,其交點的橫縱坐標為二元一次方程組的近似解,要得到準確的結果,應從圖像中獲取信息,確立直線對應的函數表達式即方程,再聯立方程應用代數方法求解,其結果才是準確的.
學生已有了解方程(組)的基本能力和一次函數及其圖像的基本知識,學習本節知識困難不大,關鍵是讓學生理解二元一次方程和一次函數之間的內在聯系,體會數和形間的相互轉化,從中使學生進一步感受到數的問題可以通過形來解決,形的問題也可以通過數來解決.
1.教學目標
知識與技能目標
(1) 初步理解二元一次方程和一次函數的關系;
(2) 掌握二元一次方程組和對應的兩條直線之間的關系;
(3) 掌握二元一次方程組的圖像解法.
過程與方法目標
(2) 通過做一做引入例1,進一步發展學生數形結合的意識和能力.
(3) 情感與態度目標
(1) 在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神.
(2) 在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力.
2.教學重點
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系.
3.教學難點
數形結合和數學轉化的思想意識.
1.教法學法
啟發引導與自主探索相結合.
2.課前準備
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
本節課設計了六個教學環節:第一環節 設置問題情境,啟發引導;第二環節 自主探索,建立方程與函數圖像的模型;第三環節 典型例題,探究方程與函數的相互轉化;第四環節 反饋練習;第五環節 課堂小結;第六環節 作業布置.
第一環節: 設置問題情境,啟發引導
內容:1.方程x+y=5的解有多少個? 是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y= 的圖像上嗎?
3.在一次函數y= 的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y= 的圖像相同嗎?
由此得到本節課的第一個知識點:
二元一次方程和一次函數的圖像有如下關系:
(1) 以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2) 一次函數圖像上的點的坐標都適合相應的二元一次方程.
意圖:通過設置問題情景,讓學生感受方程x+y=5和一次函數y= 相互轉化,啟發引導學生總結二元一次方程與一次函數的對應關系.
效果:以問題串的形式,啟發引導學生探索知識的形成過程,培養了學生數學轉化的思想意識.
前面研究了一個二元一次方程和相應的一個一次函數的關系,現在來研究兩個二元一次方程組成的方程組和相應的兩個一次函數的關系.順其自然進入下一環節.
第二環節 自主探索方程組的解與圖像之間的關系
內容:1.解方程組
2.上述方程移項變形轉化為兩個一次函數y= 和y=2x ,在同一直角坐標系內分別作出這兩個函數的`圖像.
(1) 求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2) 求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解.
(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
意圖:通過自主探索,使學生初步體會數(二元一次方程)與形(兩條直線)之間的對應關系,為求兩條直線的交點坐標打下基礎.
效果:由學生自主學習,十分自然地建立了數形結合的意識,學生初步感受到了數的問題可以轉化為形來處理,反之形的問題可以轉化成數來處理,培養了學生的創新意識和變式能力.
第三環節 典型例題
探究方程與函數的相互轉化
內容:例1 用作圖像的方法解方程組
例2 如圖,直線 與 的交點坐標是 .
意圖:設計例1進一步揭示數的問題可以轉化成形來處理,但所求解為近似解.通過例2,讓學生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應的函數表達式,把形的問題轉化成數來處理.這兩例充分展示了數形結合的思想方法,為下一課時解決實際問題作了很好的鋪墊.
效果:進一步培養了學生數形結合的意識和能力,充分展示了方程與函數的相互轉化.
第四環節 反饋練習
內容:1.已知一次函數 與 的圖像的交點為 ,則 .
2.已知一次函數 與 的圖像都經過點a(2,0),且與 軸分別交于b,c兩點,則 的面積為( ).
(a)4 (b)5 (c)6 (d)7
3.求兩條直線 與 和 軸所圍成的三角形面積.
4.如圖,兩條直線 與 的交點坐標可以看作哪個方程組的解?
意圖:4個練習,意在及時檢測學生對本節知識的掌握情況.
效果:加深了兩條直線交點的坐標就是對應的函數表達式所組成的方程組的解的印象,培養了學生的計算能力和數學轉化的能力,使學生進一步領悟到應用數形結合的思想方法解題的重要性.
第五環節 課堂小結
內容:以問題串的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數的圖像的關系;
(1) 以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2) 一次函數圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1) 方程組的解是對應的兩條直線的交點坐標;
(2) 兩條直線的交點坐標是對應的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法. 要強調的是由于作圖的不準確性,由圖像法求得的解是近似解.
意圖:旨在使本節課的知識點系統化、結構化,只有結構化的知識才能形成能力;使學生進一步明確學什么,學了有什么用.
第六環節 作業布置
習題7.7
附: 板書設計
本節課在學生已有了解方程(組)的基本能力和一次函數及其圖像的基本知識的基礎上,通過教師啟發引導和學生自主學習探索相結合的方法,進一步揭示了二元一次方程和函數圖像之間的對應關系,從而引出了二元一次方程組的圖像解法,以及應用代數方法解決有關圖像問題,培養了學生數形結合的意識和能力,充分展示了方程與函數的相互轉化.教學過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準確性,所求的解往往是近似解.因此為了準確地解決有關圖像問題常常把它轉化為代數問題來處理,如例2及反饋練習中的4個問題.
初中二元一次方程數學教案大全(24篇)篇十六
一。教學目標:
1.認知目標:
2.能力目標:
1)滲透把實際問題抽象成數學模型的思想。
2)通過嘗試求解,培養學生的探索能力。
3.情感目標:
1)培養學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二。教學重難點。
難點:用列表嘗試的方法求出方程組的解。
三。教學過程。
(一)創設情景,引入課題。
1.本班共有40人,請問能確定男_各幾人嗎?為什么?
(1)如果設本班男生x人,_y人,用方程如何表示?(x+y=40)。
(2)這是什么方程?根據什么?
2.男生比_多了2人。設男生x人,_y人。方程如何表示?x,y的值是多少?
3.本班男生比_多2人且男_共40人。設該班男生x人,_y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
象這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
[設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學]。
(二)探究新知,練習鞏固。
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解。]。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
學生作出判斷并要說明理由。
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數的題序填入圖中適當的位置:
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,嘗試求解。
現在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試。
2.據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
(四)課堂小結,布置作業。
1.這節課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)。
2.你還有什么問題或想法需要和大家交流?
3.作業本。
教學設計說明:
1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環環相扣,層層遞進;第二是能力培養線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數_時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
初中二元一次方程數學教案大全(24篇)篇十七
學習目標:
學習重點:
學習難點:
1.做圖像時要標準、精確,近似值才接近。
學習方法:
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內容。課上展示,針對自己不明白問題多聽多問。
自主學習部分:
問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數y=5-x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
(5)由以上的探究過程,你發現了什么?
(3)由以上探究過程,我們發現解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發現可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點。
初中二元一次方程數學教案大全(24篇)篇十八
問題:(投影)。
一個農民有若干只雞和兔子,它們共有50個頭和140只腳,問雞和兔子各多少只?
先讓學生思考一下,自己做出解答,教師巡視.最后,在學生動手動腦的基礎上,教師引導給出各種解法.
解法一:在分析時,可提出如下問題:
1.50只動物都是雞,對嗎?
(不對,因為50只雞有100只腳,腳數少了.)。
2.50只動物都是兔子對嗎?
(不對,因為50只兔子共有200只腳,腳數多了.)。
3.一半是雞,一半是兔子對嗎?
(不對,因為25只雞,25只兔共有150只腳,多10只腳.)。
怎么辦?(在學生思考后,教師指出:我們可采取逐步調整,驗算的方法來加以解決.)。
4.若增加一只雞,減少一只兔,那么動物總只數,腳數分別怎樣變化?
(當增加一只雞,減少一只兔時,動物的總只數不變,腳數比原來少兩只.)。
5.現在你是否知道有幾只雞、幾只兔?
(若學生回答還是感到困難,教師應引導學生根據一半是雞,一半是兔時多10只腳,做出5次如問題4所述的方法進行調整,即增加5只雞,減少5只兔,則多出的10只腳就沒有了,故答案是30只雞、20只兔.)。
此時,教師指出:這個問題是解決了,但它在很大程度上依賴于數字50和140比較小,比較簡單,若它們相當大且又很復雜,那么像上述方法這樣一次次的試算就很麻煩了.然后提出問題:是否有其他方法來解決這個問題呢?(若學生在思考后,還很茫然,則教師引導學生嘗試可否用一元一次方程來解.由一名學生板演,其余學生自行完成)。
解法二:設有x只雞,則有(50-x)只兔.根據題意,得2x+4(50-x)=140.
(解方程略)。
追問:對于上面的問題用一元一次方程可解,是否還有其他方法可解?(若學生想不到,教師可引導學生注意,要求的是兩個未知數,能否設兩個未知數列方程求解呢?讓學生自己設未知數,列方程.然后請一名學生板演解所列的方程.)。
初中二元一次方程數學教案大全(24篇)篇十九
學生的知識技能基礎:在學習本節之前,學生已經掌握了有理數、合并同類項、去括號等法則,能熟練的進行簡單的整式的加、減法運算整式的運算,知道方程的解的意義,能熟練的求解一元一次方程,了解了二元一次方程以及解的意義、二元一次方程組及其解的意義,能通過代人消元法求解二元一次方程組.
學生活動經驗基礎:在相關知識的學習過程中,學生已經經歷了列整式、列一元一次方程并求解,列二元一次方程組解決了一些簡單的現實問題,感受到了方程是刻畫現實世界數量關系的有效模型,通過解一元一次方程和用代入消元法解二元一次方程組獲得了解二元一次方程的基本經驗和基本技能;同時在以前的數學學習中學生已經經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定的合作與交流的能力.
二、教學任務分析。
教科書基于學生對前面解一元一次方程和用代入消元法解二元一次方程組基礎之上,提出了本課的具體學習任務:會用加減消元法解二元一次方程組,了解解二元一次方程組的“消元”思想,初步體現數學研究中“化未知為已知”的化歸思想.
《課程標準(2011年版)》把方程與方程組的重點放在解法和應用上,特別強調體會方程是刻畫現實世界數量關系的有效模型,如何解方程與方程組時方程與方程組教學的主體和重點.對于二元一次方程組來講,強調“消元”的思想和方法,應是貫穿于始終的一條主線,通過“消元”,將二元一次方程轉化為一元一次方程實現求解的目的,體現了化繁為簡,以簡馭繁的基本策略,對促進了學生理性思維的發展具有重要意義.通過第一課時是學習,學生已經能夠解一般的二元一次方程組,但對于有些方程用代人消元法解可能比較繁雜,用加減消元法要簡單一些,同時加減消元法在學生將來的矩陣運算中有廣泛的應用。因此這個課時就進一步學習二元一次方程組的加減消元法.
加減消元法是解二元一次方程組的基本方法之一,它要求兩個方程中必須有某一個未知數的系數的絕對值相等(或利用等式的基本性質在方程兩邊同時乘以一個適當的不為0的數或式,使兩個方程中某一個未知數的系數的絕對值相等),然后利用等式的基本性質在方程兩邊同時相加或相減消元.
為此,本節課的教學目標是:
本節課的教學重點是:
本節課的教學難點是:
在解題過程中進一步體會“消元”思想和“化未知為已知”的化歸思想.
三、教學過程設計。
本節課設計了五個教學環節:第一環節:情境引入;第二環節:講授新知;第三環節:鞏固新知;第四環節:課堂小結;第五環節:布置作業.
第一環節:情境引入。
內容:鞏固練習,在練習中發現新的解決方法。
怎樣解下面的二元一次方程組呢?(學生在練習本上做,教師巡視、引導、解疑,注意發現學生在解答過程中出現的新的想法,可以讓用不同方法解題的學生將他們的方法板演在黑板上,完后進行評析,并為加減消元法的出現鋪路.)。
初中二元一次方程數學教案大全(24篇)篇二十
過程與方法。
了解解二元一次方程組的消元思想,初步體現數學研究中“化未知為已知”的化歸思想,從而“變陌生為熟悉”
情感態度與價值觀。
利用小組合作探討學習,使學生領會樸素的辯證唯物主義思想。
教學重點。
教學難點。
初中二元一次方程數學教案大全(24篇)篇二十一
1.知識與能力目標。
(3)通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組的圖象解法。同時培養學生初步的數形結合的意識和能力。
2.情感態度價值觀目標。
通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯系,培養學生的創新意識,激發了學生學習數學的興趣,使學生體驗數學活動充滿探索與創造。
教材分析。
前面已經分別學習了一次函數和二元一次方程組,這節課研究二元一次方程組(數)和一次函數(形)的關系,是這兩章知識的綜合運用。強化了部分與整體的內在聯系,知識與知識的內在聯系,并為今后解析幾何的學習奠定基礎。
教學重點。
教學難點。
方程和函數之間的對應關系即數形結合的意識和能力。
教學方法。
學生操作------自主探索的方法。
學生通過自己操作和思考,結合新舊知識的聯系,自主探索出方程與圖象之間的對應關系,以引入二元一次方程組的圖象解法,同時也建立了“數”----二元一次方程組和“形”----函數的圖象(直線)之間的對應關系,培養了學生數形結合的意識和能力。
教學過程。
一、故事引入。
迪卡兒的故事------蜘蛛給予的啟示。
在蜘蛛爬行的啟示下,迪卡兒創建了直角坐標系,在坐標系下幾何圖形(形)和方程(數)建立聯系。迪卡兒坐標系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。
二、嘗試探疑。
1、y=x+1。
你們把我叫一次函數,我也是二元一次方程啊!這是怎么回事,你知道嗎?
學生先是疑惑:方程就是方程,函數就是函數,它們能有什么聯系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數與二元一次方程的內在聯系。
2、函數y=x+1上的任意一點的坐標是否滿足方程x-y=-1?
學生會迫不及待地拿起筆來計算。從函數y=x+1圖象上找幾個點看它們的坐標是否滿足方程x-y=-1。結果都滿足。然后學生就會自主和同伴交流,問一問同伴函數y=x+1圖象上的點滿足不滿足方程x-y=-1。結果也都滿足。這樣他們就會搭成共識:函數y=x+1上的任意一點的坐標都滿足方程x-y=-1。
然后學生會用同樣的方法得出另一個結論:以方程x-y=-1的解為坐標的點一定在函數y=x+1的圖象上。然后開始思索函數y=x+1和方程x-y=-1到底有何關系呢?通過交流自動得出結論:以方程x-y=-1的解為坐標的點組成的圖象與一次函數y=x+1的圖象相同。
3.在同一坐標系下,化出y=x+1與y=4x-2的圖象,他們的交點坐標是什么?
方程組y=x+1的解是什么?二者有何關系?
y=4x-2。
y=x+1的解。
y=4x-2。
教師作最后總結:因為函數和方程有以上關系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。
解方程組x-2y=-2。
2x-y=2。
學生會很快的用消元法解出來。
老師發問:誰還有其他的方法?如果有,鼓勵學生大膽提出。并給予口頭表揚。如果沒有人用其他的`方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學生就會去探索新的思路、方法。
一回憶方程與函數的關系,有了!方程組的解不就是兩個方程變形得到的兩個函數圖象的交點坐標嗎?學生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學生總結一下做題步驟:
1.把兩個方程都化成函數表達式的形式。
2.畫出兩個函數的圖象。
3.畫出交點坐標,交點坐標即為方程組的解。
問題又出來了,有的同學的解是x=2有的同學的解是x=2.1y=2.1。
y=1.9有的同學的解是……雖然都和消元法得到的結果相近,但各不相同。
老師提問:你能說一下用圖象法解方程組的不足嗎?
學生爭先恐后的回答:用這種方法求的解是近似值。不準確。學生提出疑問:既然不準確,那學習它有什么用呢?用消元法就足夠了!
教師解釋一下:在現實生活和生產中,我們會遇到特別復雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數圖象,很容易找出交點坐標。教師可以用z+z智能教育平臺演示一下。
用作圖象的方法解方程組,這體現了兩個知識點的內在聯系。學數學知識,探索知識點之間的聯系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學生學會這種學習新知識的技巧。
四、引申。
方程組x+y=2。
x+y=5解的情況如何?你能從函數的角度解釋一下嗎?
學生用消元法開始解方程組,結果無解,怎么回事呢?學生會嘗試運用方程組的圖象解法。畫出兩個函數圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。
因為有了上面的用作圖象法解方程組,在這里,學生就會自覺地從函數的角度探究方程的問題,初步具有了數形結合的意識和能力。
五、課后小結。
本節課我們通過操作和思考,揭示了二元一次方程和函數圖象之間的對應關系,從而引入二元一次方程組的圖象解法,同時也建立了“數”----二元一次方程與“形”------函數圖象之間的對應關系,培養了學生初步的數形結合的意識和能力。
六、作業。
1.用作圖象法解方程組2x+y=4。
2x-3y=12。
2.如圖,直線l、l相交于點a,試求出a點坐標。
教學反思。
這節課由故事引入,激發了學生極大的學習興趣。然后提出了三個尖銳的問題,讓學生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應用和引申過程中,盡量讓學生自主的發現問題,自主的解決問題。學生在緊張、愉快中完成了這節課的學習。
初中二元一次方程數學教案大全(24篇)篇二十二
(2)通過“做一做”引入例1,進一步發展學生數形結合的意識和能力。
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神。
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力。
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系。
數形結合和數學轉化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環節:設置問題情境,啟發引導(5分鐘,學生回答問題回顧知識)。
內容:
1、方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3、在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
第二環節自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內容:
1、解方程組。
2、上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環節典型例題(10分鐘,學生獨立解決)。
探究方程與函數的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環節反饋練習(10分鐘,學生解決全班交流)。
內容:
1、已知一次函數與的圖像的交點為,則。
2、已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環節課堂小結(5分鐘,師生共同總結)。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1、二元一次方程和一次函數的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
2、方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法,要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環節作業布置。
習題7.7a組(優等生)1、2、3b組(中等生)1、2c組1、2。
附:板書設計。
六、教學反思。
初中二元一次方程數學教案大全(24篇)篇二十三
二元一次方程組是新人教版七年級數學(下)第八章第一節的內容。在此之前,學生已學習了一元一次方程,這為過渡到本節的學習起著鋪墊作用。本節內容主要學習和二元一次方程組有關的四個概念。本節內容既是前面知識的深化和應用,又是今后用二元一次方程組解決生活中的實際問題的預備知識,占據重要的地位,是學生新的方程建模的基礎課,為今后學習一次函數以及其他學科(如:物理)的學習奠定基礎,同時建模的思想方法對學生今后的發展有引導作用,因此本節課具有承上啟下的作用。
2.教學目標。
[知識技能]。
掌握二元一次方程、二元一次方程組及它們的解的概念,通過實例認識二元一次方程和二元一次方程組也是反映數量關系的重要數學模型。
[數學思考]。
體會實際問題中二元一次方程組是反映現實世界多個量之間相等關系的一種有效的數學模型,能感受二元一次方程(組)的重要作用。
[解決問題]。
通過對本節知識點的學習,提高分析問題、解決問題和邏輯思維能力。
[情感態度]。
引導學生對情境問題的觀察、思考,激發學生的好奇心和求知欲,并在運用數學知識解答問題的活動中獲取成功的體驗,建立學習的自信心。
3.教學重點與難點。
按照《課程標準》的要求,根據上述地位與作用的分析及教學目標,本節課中相關概念的掌握是教學重點。
七年級學生思維活躍,好奇心強,希望平等交流研討,厭煩空洞的說教。因此,在教學過程中,積極采用形象生動、形式多樣的教學方法和學生廣泛的、積極主動參與的學習方式,激發他們的興趣。一方面通過學案與課件,使他們的注意力始終集中在課堂上;另一方面創造條件和機會,讓學生自主練習,合作交流,培養學生學習的主動性、與人合作的精神,激發學生的興趣和求知欲,感受成功的樂趣。
1.教法。
數學課程標準明確指出:有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學生學習數學的重要方式。所以我在教學中不只傳授知識,更要激發學生的創造思維,引導學生探究,發現結論的方法。正所謂“教是為了不教”。所以我采用引導發現法為主,情景問答法、討論法、活動競賽法、利用多媒體課件輔助教學等完成本節的教學,真正做到教師的主導地位。
2.學法。
學生是學習的主體,所以本節教學中,引導學生自主探究、歸納總結,運用自主探索與合作交流開拓自己的創造思維。這樣調動學生的積極性,激發學生興趣,使學生由被動學習變為積極主動的探究,這也符合數學的直觀性和形象性。
為了達到本節課的教學目標,突出重點,突破難點,我把教學過程設計為五個環節:
1、創設情境,引入概念。
nba籃球聯賽情景再現,利用世界男籃亞裔球星林書豪激勵學生相信自已能夠創造奇跡的勵志教育,感受數學來源于生活,調動學生順利引入新課。
2、觀察歸納,形成概念。
概念的教學,不糾纏于其語言本身,而是通過類比整合形成新的概念。由于學生對一元一次方程概念已經很了解,我主要采用了類比的方法,弱化概念的教學,強化對概念的正確理解,通過學案與課件相結合的方式,以題組形式分層漸進式訓練,讓學生明晰概念,鞏固概念,強化概念,提升能力。
3、拓展延伸,深入概念。
知識的掌握,能力的提升是一個不斷循序上升的過程,而教學過程更是一個生動活沷,主動和富有個性的過程,讓學生認真聽講、積極思考,動腦動口,自主探索,合作交流。
4、當堂檢測,強化概念。
通過課堂隨機選題的形式答題,通過合作小組交流,全班展示交流,使學生互相學習、互相促進、互相競爭,將小組的認知成果轉化為全班同學的共同認知成果,從而營造寬松、民主、競爭、快樂的學習氛圍,讓學生體驗到學習的快樂,成功的喜悅,從而充分體現數學教學主要是學生數學活動教學的基本理念。
5、反思小結,回歸概念。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,培養學生形成完整的知識體系,養成及時反思的習慣。
美國國家研究委員會在《人人關心數學教育的未來》的報告中指出“沒有一個人能教好數學,好的教師不是在教數學,而是在激發學生自已去學數學”。只有學生通過自已的思考建立對數學的理解力,才能真正的學好數學。本節課,我致力于讓學生自已去發現數學,研究數學,加強數學思想、方法及科學研究方法的指導,引導學生不斷從“學會數學”到“會學數學”,但教無止境,課堂仍然留有遺憾,在今后的教學中,我將從這樣的三個方面加強對課堂的研究:一是加強對學法研究、學情研究,讓教學方式與內容更符合學生認知規律,更貼近學生實際;二是重視學生課堂的學習感受,營造民主、開放、合作、競爭的學習氛圍;;三是提高教學機智、不斷創新優化教學方法,科學、合理、靈活地處理課堂上生成的問題。
初中二元一次方程數學教案大全(24篇)篇二十四
知識技能:理解一次函數與二元一次方程(組)的關系,會用圖象法解二元一次方程組。
情感態度:在探究活動中培養學生嚴謹的科學態度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。
教學重難點。
難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。
教學過程。
(一)引入新課。
學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數與二元一次方程組之間是否也有聯系呢?,從而揭示課題。
(二)進行新課。
(3)是否直線上任意一點的坐標都是它所對應的二元一次方程的解?
此時教師留給學生充分探索交流的時間與空間,對學生可能出現的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當于確定兩條直線交點的坐標。
進一步歸納出:從數的角度看,解方程組相當于考慮自變量為何值時兩個函數的值相等,以及這個函數值是何值。
3、列一元二次不等式。
解法1:設上網時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標系中分別畫出這兩個函數的圖象,計算出交點坐標,結合圖象,利用直線上點位置的高低直觀地比較函數值的大小,得到當一個月內上網時間少于400分時,選擇方式a省錢;當上網時間等于400分時,選擇方式a、b沒有區別;當上網時間多于400分時,選擇方式b省錢。
解法2:設上網時間為分,方式b與方式a兩種計費的差額為元,得到一次函數:,即,然后畫出函數的圖象,計算出直線與軸的交點坐標,類似地用點位置的高低直觀地找到答案。
注意:所畫的函數圖象都是射線。
4、習題。
(1)、以方程的解為坐標的所有點都在一次函數_____的圖象上。
(2)、方程組的解是________,由此可知,一次函數與的圖象必有一個交點,且交點坐標是________。
5、旅游問題。
古城荊州歷史悠久,文化燦爛。