無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。相信許多人會覺得范文很難寫?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
數(shù)學二次函數(shù)教學視頻篇一
這節(jié)課明顯是要讓學生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。通過學生的討論,解決了自己不能解決的問題,拓展應用題通過學生的展示講解讓大部分學生基本掌握,使學生在原有知識的儲備基礎上很容易遷移和接受了這些知識.這節(jié)課的重點內(nèi)容放在“經(jīng)歷探索和表示二次函數(shù)關系的過程,使學生獲得了用二次函數(shù)表示變量之間關系的體驗。
在教學中我采用了體驗探究的教學方式,在教師的配合引導下,讓學生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導引探"的教學理念。整個教學過程主要分為三部分:第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。我的設計目的就上讓學生在復習這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)的。應該說這樣設計既讓初四同學復習了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學生的探究能力。第二部分是學習探究,探求活動前先讓一名同學讀了學習目標,讓大家?guī)е繕巳ヌ骄俊?/p>
整節(jié)課的流程可以這樣概括:學生討論問題——學生展示重點內(nèi)容——完善訓練題討論實際問題對自變量的限制——課堂的小結,最關鍵的是我認為這符合學生的基本認知規(guī)律,是容易讓學生理解和接受的。
對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設計既能引起學生興趣,也盡量減少學生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
對于練習的設計,仍然采取了不重復的原則性,盡量做到每題針對一個問題,并進行及時的小結,也遵循了從開放到封閉的原則,達到了良好的效果。
數(shù)學二次函數(shù)教學視頻篇二
根據(jù)市骨干教師交流學習的安排,我在九年四班上了《2.1二次函數(shù)所描述的關系》這節(jié)課。這節(jié)課我首先讓學生思考了列兩個函數(shù)關系式的生活實際問題,然后又對函數(shù)的定義和分類進行了鞏固。接著在學生探究兩個實際問題的基礎上,思考、歸納出二次函數(shù)的定義以及探討對二次函數(shù)的判斷,最后針對二次函數(shù)的定義和能用二次函數(shù)表示變量之間關系進行了鞏固應用。
課后,組內(nèi)的老師認真地評析了本節(jié)課。結合組內(nèi)老師的評課,我自己也進行了認真反思。
成功之處:
2、設計大量的可以表示為二次函數(shù)、利用所學的二次函數(shù)知識可以解決的實際問題,發(fā)展學生的數(shù)學應用能力;利用“想一想”,提出進一步的最大產(chǎn)量的問題;用統(tǒng)計的方法得到關于最大產(chǎn)量的一種猜想,問題的最后讓學生初步感受二次函數(shù)能解決最優(yōu)化的實際問題。在“做一做”的活動中,把兩年后的本息和y與年利率x的關系表示為二次函數(shù);在以上兩例的基礎上,給出二次函數(shù)的定義,并舉出以前所見到的一些二次函數(shù)關系式,為新知的理解做好了鋪墊。
3、在新知的鞏固應用環(huán)節(jié),我精心設計了不同題型的問題,很好鞏固應用了本節(jié)的新知,課堂達到了較好的教學效果。
4、本節(jié)課我注重訓練學生書寫的規(guī)范性,讓學生養(yǎng)成良好的答題規(guī)范習慣。
不足之處:
1、在分組教學時,對用統(tǒng)計的方法得到關于最大產(chǎn)量的一種猜想,課堂上有一部分學生沒有充分參加計算,此處給學生的時間少一些。
總之,通過本節(jié)課,讓我真正意識到:對于每節(jié)課的教學不能僅僅憑經(jīng)驗設計。在每節(jié)課的課前,一定要進行精心的預設。在課堂中,同時要結合課堂的實際效果和學生的情況注意靈活處理課堂生成。課堂上在進行分組教學時,提前預設好教學時間,在每節(jié)課上,既要放的開,同時又要注意在適當?shù)臅r機收回,以保證每節(jié)教學基本任務完成。
數(shù)學二次函數(shù)教學視頻篇三
前天,教學了《二次函數(shù)》的第一課時。課堂上學生活躍的思維、積極的發(fā)言、大家爭搶著回答問題說明學生的學習是有效的。從中,我感到了教學的魅力,更感到這樣的魅力是需要教師盡心準備、創(chuàng)造的。
這節(jié)課是在學生學習了一次函數(shù)、一元二次方程之后的二次函數(shù)的第一節(jié)課。從課本的體系來看,這節(jié)課的知識目標,學生在原有知識的儲備基礎上是很容易遷移和接受的。那么這節(jié)課還有什么好設計的呢?……重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實際問題,由此引出了二次函數(shù),我意識到這節(jié)課的教學重點是“讓學生經(jīng)歷探索和表示二次函數(shù)關系的過程,獲得用二次函數(shù)表示變量之間關系的體驗,從而形成定義”,有了這個認識,一切就變得簡單了!
整節(jié)課的教學流程概括如下:學生感興趣的簡單實際問題——引出學過的一次函數(shù)——復習學過的所有函數(shù)形式——設問:有沒有新的函數(shù)形式呢?——探索新的問題——形成關系式——是函數(shù)嗎?——是學過的函數(shù)嗎?——探索出新的函數(shù)形式——概括新函數(shù)形式的特點——將特點公式化——形成二次函數(shù)定義——練習鞏固定義特點——返回實際問題討論實際問題對自變量的限制——提出新的問題,深入討論——課堂的小結。
這樣一氣呵成的設計,感覺上無拖沓生硬之處,最關鍵的是我認為這符合學生的基本認知規(guī)律,讓學生親自經(jīng)歷探索和概括的過程,從而形成新知識。
1、對于實際問題的選擇,我將4個問題整合于同一個實際背景下,這樣設計既能引起學生興趣,也盡量減少學生審題的時間,顯得很有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
2、對于練習的設計,盡量做到每題針對一個問題,并進行及時小結,也遵循了從開放到封閉的原則,達到了良好的效果。
3、最后討論題的設計和提出,我設計了一個探索性的問題:假如你是果園的主人,你準備多種幾棵?這里我并沒有提出最大最小值的問題,但是所有的學生都能理解到,這是數(shù)學的魅力。這個問題是整節(jié)課的一個高潮和精華,對學生的解答,不論對錯,不論全面還是有所偏頗,我都給予肯定。事實證明:只要教師給了足夠的空間,學生總能從各方面進行思考和解釋。
數(shù)學二次函數(shù)教學視頻篇四
課后查看了數(shù)學課程標準中對二次函數(shù)的要求:
1、通過對實際問題情境的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。
2、會用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì)。
3、會根據(jù)公式確定圖象的頂點、開口方向和對稱軸(公式不要求記憶和推導),并能解決簡單的實際問題。
4、會利用二次函數(shù)的圖象求一元二次方程的近似解。
發(fā)現(xiàn)并沒有提到用頂點式來求二次函數(shù)的解析式,而且在后面的幾節(jié)課的教學中也沒有要求用頂點式來求二次函數(shù)的解析式。但是我認為新課標所提出的要求應該是對學生的最低要求,它并不反對教師結合學生的實際對教材的重新處理。并且從教學的反饋來看,加上了這3個練習學生能較好的理解本課的教學目標,同時也能對前面所學的二次函數(shù)頂點的知識加深印象。適應學生的最近發(fā)展區(qū)。何樂而不為。
數(shù)學二次函數(shù)教學視頻篇五
這節(jié)課在學習了二次函數(shù)的基本形式和二次函數(shù)的圖象、頂點坐標、對稱軸等性質(zhì)的基礎上來學習用二次函數(shù)解決實際問題。學生對前面所學的知識已經(jīng)掌握,但綜合應用能力較差。因此在教學設計時將本節(jié)知識分兩課時進行,這節(jié)是第一課時,從課堂上學生的反應和課堂練習可知本節(jié)課教學效果較好,大部分學生能準確分析題意并能寫出函數(shù)關系式,培養(yǎng)了學生理論聯(lián)系實際的能力和分析問題的能力;但在確定自變量的取值范圍和函數(shù)的最值時只有少數(shù)學習較好的學生能準確解答,這說明稍復雜的數(shù)量關系分析是學生的難點,單一的知識應用能準確找到解決途徑,而綜合起來應用學生就有些茫然,無法確定切入點。
本節(jié)課在兩個地方學生出現(xiàn)疑難:一是分析題意時理不清價格和數(shù)量之間的對應關系;二是不能準確判斷自變量的取值范圍和函數(shù)的最值。對于這些難點我是這樣處理的:
首先在回顧了前面的知識點后提出實際問題:某商品現(xiàn)在的售價為每件60元,每星期可賣出300件。市場調(diào)查反映:如調(diào)整價格,每漲價1元,每星期要少賣出10件;每降價1元,每星期可多賣出20件。已知商品的進價為每件40元,如何定價才能使利潤最大?在分析題意時學生能分清漲價、降價所對應的商品銷量,但一小部分學生依教材上的解題思路不能理解售價和銷量之間的對應關系。對于這個難點我是這樣處理的:設每漲x個1元,則每件售價為(60+x)元,少賣出10x件,共賣出(300—10x)件;每降價x個1元,則每件售價為(60-x)元,多賣出20x件,共賣出(300+x)件。重點強調(diào)“x個”!雖然在分析中只多了個“每(漲或降)…個1元”,但就這幾個字卻能幫一部分學生理清關系和思路,如漲3元8元的問題,則售價為(60+3x)元或(60+8x)元,這樣學生從最小單元開始分析,逐層遞進,很容易理清思路找準關系。這個關系弄清了,函數(shù)關系自然水到渠成就寫出來了。
其次是由函數(shù)解析式確定最大值,而確定最值時必須考慮實際問題中自變量的取值范圍。在這個問題中x首先是非負數(shù),同時(300—10x)也是非負數(shù),所以x大于等于0且小于等于30。結合函數(shù)解析式y(tǒng)=-10x2+100x+6000可知該函數(shù)圖象開口向下,有最大值。由頂點坐標公式可以計算出當x=5時(在自變量的取值范圍內(nèi)),y有最大值,且此時y=6250。強調(diào)此時不僅要考慮頂點坐標公式,還要結合題意看這個x值是否在其取值范圍內(nèi)。x值確定后將其代入就可求出最值y的大小。
從學生課堂練習來看,大部分學生會用這個分析方法解決相應問題。雖然這節(jié)課沒能按課時安排學習探究二的問題,但學生能掌握商品漲(降)價與售價、利潤間這類問題的分析并會列函數(shù)關系也算是一點點收獲了。