無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們該如何寫一篇較為完美的范文呢?接下來小編就給大家介紹一下優秀的范文該怎么寫,我們一起來看一看吧。
方程的意義篇一
1、知識目標:在自主探究的過程中,理解與掌握方程的意義,弄清方程和等式兩個概念的`關系。
2、能力目標:培養學生認真觀察、思考分析問題的能力。滲透數學來源于實際生活的辯證唯物主義思想。
3、情感目標:通過自主探究,合作交流等教學活動,激發學生興趣,培養合作意識。
教學重點
理解和掌握方程的意義。
教學難點
弄清方程和等式的異同
教具準備
多媒體課件、作業紙
教學設計
師生談話:同學們,你們玩過蹺蹺板嗎?
(課件出示:在美麗的大森林中,山羊、小猴、小狗、小兔在做游戲)
讓學生猜測如果讓山羊和小猴玩蹺蹺板,會出現什么結果。
(課件演示驗證學生的回答,出現蹺蹺板不平衡的畫面)
提問:怎樣才能讓小動物開心地玩起來呢?
學生:讓小狗、小兔加入到小猴那邊。
(課件演示:蹺蹺板逐漸平衡。并能一上一下動起來。)
教師小結:當兩邊重量差不多時,蹺蹺板基本保持平衡,就能很好地玩游戲了。
[評析]:動物是學生們喜歡的形象,以故事情境導入,創設生動有趣的情景,借助多媒體課件演示的優勢,使學生初步感受平衡與不平衡的現象。從而緊緊抓住學生的“心”。
師:在我們的數學學習中,還有一種更為科學的平衡工具,猜猜是什么?
1、直觀演示,激發興趣
課件出示一架天平,教師向學生介紹它的工作原理。
讓學生仔細觀察,現在天平處于什么狀態。
提問:能用一個式子表示這種平衡狀態嗎?
根據學生的回答,教師板書:50+50=100
2、繼續實驗,自主發現
1)分小組實驗,讓學生自己動手做一做(每個小組發一些有重量的砝碼和學生自己手中的書本等)
要求:三組設計平衡狀態,三組設計不平衡狀態。并據此列式。
2)學生實驗,教師巡回作指導。
3)學生交流匯報,教師板書:
平衡狀態的:
50+10=60
50=20+書……
不平衡狀態的:
50+30兩本書
50三本書……
4)學生動手把不平衡狀態的天平調平衡并列式
50+30=四本書
50+10=三本書
5)師生一起把書用字母代替:
50+10=60,
50=20+x,
50+302x,
503x
50+30=4x
50+10=3x
3、整理分類,認識方程。
1)學生把上沒面的式子進行分類
2)讓學生明確:像這些含有等號的式子都是等式。(板書:等式,標出大集合圈)
觀察右邊三個等式與左邊一個等式有什么區別?
學生很快明確:右邊的等式里都含有未知數。(在等式前面板書:含有未知數)
教師總結:我們把右邊這三個含有未知數的等式稱為方程。
3)學生齊讀方程的意義,同桌互相說出一個方程。
[評析]:這部分教學設計為學生提供了充分的從事數學活動的機會,讓學生動手去操作,去合作。讓學生通過觀察、思考、嘗試分類、交流,積極主動的參與到數學活動中來,并初步滲透了數學中的集合思想。
課件出示兩個小動物爭吵的畫面
小狗:我知道了,所有的方程一定是等式。
小兔:不對不對,應該說所有的等式一定都是方程。
判斷誰說的對,并敘述理由。
學生閱讀數學小知識“你知道嗎?”
練習十一的1題
教學反思
1、利用興趣調動學生的積極性,讓學生主動參與。
生活是興趣的源泉,體驗是主動參與的動力。通過直觀演示、學生實驗,調動了學生的積極性和參與的熱情,每一個學生都積極的加入了學習的熱流中來。教學當中始終注意激發學生的學習興趣,增強學生學習的信心。給學生提供了充分的歸納、類比、猜測、交流、反思的時間和空間,使學生的思維能力得到了進一步的提高。
2、關注情景教學
在本節課中,將枯燥的方程概念融于淺顯生動的情景中。導入利用小動物創設了生動有趣的教學背景,整個教學過程中,學生始終對天平的所有情景保持著濃厚的興趣。通過天平稱重的實驗,讓學生嘗試用數學知識來描述實驗現象,使學生獲得了等式和不等式的知識。
方程的意義篇二
在新課程背景下,學生概念的形成應具有更大的涵蓋面、影響力和遷移性,由此通過自我理解、生成、連接,形成自己的知識系統。本課《方程的意義》的教學設計,基于對數學概念及概念教學的再把握,相對于傳統的教學,有了比較大的變化。這是我們的嘗試,也是一種思考和探索。
整體的把握:
數學概念不僅是局部的,而且是全局的;不僅是靜態的.,而且是動態的;不僅是學科的,而且是兒童的。所以對方程概念及其教學應從多個層面加以把握:
形式層面——含有未知數的等式(是關系的一種)。這是一種靜態的結論。
發現層面——經歷方程模式的生成過程,它來源于現實又回到現實,尋找等量關系并用方程來表示。這是一個動態的過程。
直觀具體層面——舉出正例或反例。
直覺層面——一種數學的意識、一種方程的感覺。
這樣才能形成一個有力的認知結構(其中包含知識結構、方法結構和經驗結構)
目標的把握:
經歷從現實問題到方程概念建立的過程,(方程是從現實生活到數學的一個提煉過程,一個用數學符號提煉現實生活中特定關系的過程。)體會方程是刻畫現實世界的數學模型。
滲透方程思想的三個方面:設立未知量,將其當作已知數,參與到問題中事實的表達;建立等量關系,用方程表示(方程是說明兩件事情是等價的);區別未知量與己知量,只要經過運算,就可用已知數表示未知量。
過程的把握:
統攬全局基礎上的局部聚集,突出“知識胚胎”的生成。學生的認識不是線性發展的,而是整體式推進的。各個部分知識的拼裝不可能產生真正意義上的有生命的知識,只有胚胎式的整體推進才能領略到知識生命的意蘊。所以概念教學須克服原有的分割式、部分式教學,突出“知識胚胎”的生成。傳統教學注重從部分到整體,形成一個結構。現代教學應更重視從整體到部分再到整體,形成更有意義和活力的結構。
本課方程概念的教學,力圖圍繞目標形成一個包括知識技能、思維方式和方程思想的整體結構,在其后的教學中再對方程的各個部分進行深化,形成所謂同心圓結構的知識生成模型,這是兒童認識的規律,也許可以解決數學教學中知識太“散”的問題。
經歷“問題情景——數學模型——解釋與應用”的全過程。從“問題情景——數學模型”展開數學化和結構化的過程。再從“數學模型——解釋與應用”展開結合現實尋找意義的過程。方程整體概念生成必須經歷這樣的過程,才能使目標的各個部分協調地組合在一起,產生一種數學的意識和方程的觀念。
參考文獻:
(2)林永偉、葉立軍編著.《數學史與數學教育》第65頁.方程產生歷史的啟示意義。
(3)《全日制義務教育數學課程標準(實驗稿)》北京師范大學出版社。
方程的意義篇三
教學目標:
1、使學生初步認識方程的意義,知道等式和方程之間的關系,并能進行辨析。
2、使學生會用方程表示簡單情境中的等量關系,培養學生的動手操作能力、觀察能力、分析能力和解決實際問題的能力。
教學重點:方程的意義。
教學難點:正確區分等式和方程這組概念。
教學準備:簡易天平、法碼、水筆、橡皮泥、紙條、白紙、磁鐵。
教學過程:
一、課前談話:
同學們,你們平時喜歡干什么?你們喜歡玩嗎?喜歡的`請舉手?
這么多人喜歡玩,老師想問這么多同學中有人玩過玩過蹺蹺板嗎?玩過的請舉手,誰來說說玩蹺蹺板時是怎樣的情景?(學生自由回答)
當兩邊的距離相等,重的一邊會把輕的一邊蹺起來,兩邊的重量相等,蹺蹺板就平衡。
二、新授
1、玩一玩
誰想上來玩?
你能用一個數學式子來表示這時候的現象嗎?(用水筆板書:20+20<50)
再在左邊放一個10克的法碼,這時天平怎么樣?(平衡了)
看來我們還可以用式子來表示天平的平衡情況,你們想不想親自來玩一玩?
給你們5分鐘的時間,比一比哪個小組又快又好。
哪個小組把自己所寫的式子拿上來展示出來。
(有不一樣的都可以拿上來)
2、分類
你們對這些式子滿意嗎?
誰來說說你們是按照什么標準分的?
1、如果學生中有“是否含有未知數”(板書:含有未知數)“是否是等式”(板書:等式)這兩類的指名上黑板分,其余的口頭交流。
2、把學生寫的式子分成兩堆,讓學生分]
師:你能把這一種再分成兩類嗎?怎么分?指名板演。
你們發現了這一類式子有什么特點?(揭示:含有未知數的等式)
象這樣,含有未知數的等式我們把它叫做方程。這也是我們今天這堂課要學習的內容。出示課題。
3、理解概念
練習:你能舉一個方程的例子嗎?學生在本子上寫一個。
回憶一下,我們以前見過方程嗎,在哪見過?(學生展示交流)
4、鞏固概念
老師這兒也有幾個式子,它們是方程嗎?(用手勢表示,隨機讓學生說說為什么)
通過這幾道題的練習,你對方程有了哪些新的認識?
(1)未知數不一定用x表示。
(2)未知數不一定只有一個。
一個方程,必須具備哪些條件?
5、比較辨析
師:含有未知數的等式叫方程,那么方程和等式有什么關系呢?
如果老師說,方程一定是等式。對嗎?(結合板書交流)
等式也一定是方程。(結合板書交流)
也就是說:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式來表示方等式和方程之間的關系嗎?
例如畫圖或者別的方式,小組合作,試一試。(用水筆畫在白紙上,字要寫得大些)
三、鞏固
師:同學們的圖非常形象地表示出了方程和等式之間的關系,
1、這些圖你能用方程來表示嗎?
師:這里還有一些有關我們學校的信息,誰來讀一讀。
3、新的謝橋中心小學,是蘇州市內占地面積最大的小學之一。建筑面積約25000平方米,3幢教學樓的建筑面積一共約為19500平方米,平均每幢為c平方米,其它建筑面積為m平方米。你能選擇其中一些信息列出方程來嗎?(同桌交流)
四、小結
學了這堂課你有什么想說的嗎?你有什么想對老師說的嗎?
方程的意義篇四
教學內容:
教科書第1頁的例1、例2和試一試,完成練一練和練習一的第1~2題。
教學目標:
理解方程的含義,初步體會等式與方程的聯系與區別,體會方程就是一類特殊的等式。
教學重點:
理解并掌握方程的意義。
教學難點:
會列方程表示數量關系。
教學過程:
一、教學例1
1.出示例1的天平圖,讓學生觀察。
提問:圖中畫的是什么?從圖中能知道些什么?想到什么?
2.引導
(1)讓不熟悉天平不認識天平的學生認識天平,了解天平的作用。
二、教學例2
1.出示例2的天平圖,引導學生分別用式子表示天平兩邊物體的質量關系。
2.引導:告訴學生這些式子中的x都是未知數;觀察這些式子,說一說寫出的式子中哪些是等式,這些等式都有什么共同的特點。
3.討論和交流:寫出的式子中,有幾個是等式,有幾個不是,而寫出的等式都含有未知數,在此基礎上,揭示方程的概念。
三、完成練一練
1.下面的式子哪些是等式?哪些是方程?
2.將每個算式中用圖形表示的未知數改寫成字母。
四、鞏固練習
1.完成練習一第1題
先仔細觀察題中的式子,在小組里說說哪些是等式,哪些是方程,再全班交流。要告訴學生,方程中的未知數可以用x表示,也可以用y表示,還可以用其他字母表示,以免學生誤以為方程是含有未知數x的等式。
2.完成練習一第2題
五、小結
今天,我們學習了什么內容?你有哪些收獲?需要提醒同學們注意什么?還有什么問題?
六、作業
完成補充習題
板書設計:
方程的意義
x+50=100
x+x=100
像x+50=150、2x=200這樣含有未知數的等式叫做方程
方程的意義篇五
"義務教育課程標準實驗教科書數學"五年級上冊p53~54方程的意義
方程的意義對學生來說是一節全新的概念課,讓學生用一種全新的思維方式去思考問題,拓展了學生思維的空間,是數學思想方法認識上的一次飛躍.方程的意義是學生學了四年的算術知識,及初步接觸了一點代數知識(如用字母表示數)的基礎上進行學習的,同時也是學習"解方程"的基礎,是滲透用方程表示數量關系式的一個突破口,是今后用方程解決實際問題的一塊奠基石.
根據新課標的要求,結合教材的特點和學生原有的相關認識基礎及生活經驗確定本節課的教學目標:
1,使學生在具體的情境中理解方程的含義,體會等式與方程的關系,并會用方程表示簡單情境中的等量關系.
2,經歷從生活情境到方程模型的構建過程,使學生在觀察,描述,分類,抽象,交流,應用的過程中,感受方程的思想方法及價值,發展抽象思維能力和增強符號感.
3,讓學生在學習中體驗到數學源于生活,充分享受學習數學的樂趣,進一步感受數學與生活之間的密切聯系.
教學重點:理解方程的含義,以及在具體的情境中建立方程的模型.
教學難點:正確尋找等量關系列方程.
概念教學本來就比較抽象,而且方程思想作為一種全新的思維方式又有別于學生一貫的算術思路,因此在教學時要重視學生在理解的基礎上感知方程的意義,充分利用學生原有的認識基礎,關注由具體實例到一般意義的抽象概括過程,盡量直觀化,生活化,發揮具體實例對于抽象概括的支撐作用,同時又要及時引導學生超脫實例的具體性,實現必要的抽象概括過程.經歷從具體-----抽象------應用的認知過程.
:
課件,天平,實物若干等
課前準備:利用學具(簡易天平)感受天平平衡的原理.
教學過程
學生活動
設計意圖
一,創設情景,建立表象
1.認識天平.
2.同學們通過課前的實際操作你發現要使天平平衡的條件是什么
(天平兩邊所放物體質量相等)
3.用式子表示所觀察到的情景:
情景一:導入等式
(1)天平左邊放一個300克和一個150克的橙子,天平的右邊放一個450克的菠蘿
300+150=450
(2)天平左邊放四盒250克的牛奶,右邊放一盒1000克的牛奶
250+250+250+250=1000
或250×4=1000
情景二:從不平衡到平衡引出不等式與含有未知數的等式
(1)
在杯子里面加入一些水,天平會有什么變化
要使天平平衡,可以怎么做
情景三:看圖列等式
(1)
x+y=250
(2)
536+a=600
直觀認識天平
回憶課前操作實況理解平衡原理
觀察情景圖,先用語言描述天平所處的狀態,再用式子表示
觀察課件顯示的情景圖,小組合作交流用等式表示所看到的天平所處的狀態
數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上.學生通過課前"玩學具"已建立天平平衡的條件是左右兩邊所放物體的質量相等的印象,通過天平的平衡原理引入等式是為下一步認識方程作好必要的鋪墊,同時通過天平的直觀性又進一步讓學生體會等式的含義.
通過學生的觀察以及對情景的描述并用等式表示,直觀具體,生動形象,能充分調動學生的學習積極性和強烈的求知欲望同時又培養學生的語言表達能力及符號感(從具體情境中抽象出數量關系并用符號來表示,理解符號所代表的數量關系).