編寫高中教案是一個反復推敲和不斷改進的過程,需要教師不斷調整和完善。高中教案范文的閱讀和分析可以激發教師的教學創造力,拓寬教學思路和方法。
最熱高中數學教案詳案(案例16篇)篇一
教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一個包含有疑難問題的實際情境的描述,是一個教學實踐過程中的故事,描述的是教學過程中“意料之外,情理之中的事”。
這可以從以下幾個層次來理解:
教學案例是事件:教學案例是對教學過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學故事的產生、發展的歷程,它是對教學現象的動態性的把握。
教學案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內,并且也可能包含有解決問題的方法在內。正因為這一點,案例才成為一種獨特的研究成果的表現形式。
案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發生的事件,是教學事件的真實再現。是對“當前”課堂中真實發生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。
教學案例是教師教學行為真實、典型的記錄,也是教師教學理念和教學思想的真實體現。因此它是教育教學研究的寶貴資源,也是教師之間交流的重要媒介。進行教學案例的研究是教師不斷反思、改進自己教學的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。
那么如何進行教學案例研究呢?一般情況下,案例研究的程序基本有以下兩個環節:案例研究的準備及實施、案例研究報告的撰寫與反思。
(一)案例研究的準備與實施。
1.研究主題的選擇。
案例研究都要有研究的重點和主題,這個主題常與教學改革的核心理念、常見的疑難問題和困惑事件相關,一般來說可以從教學的各個方面確定研究的主題,如從教師教學行為確定主題——教學材料的選擇、教學中的提問、教學媒體的使用、教學評價語言、課堂教學調控行為等;也可以從學生的學習方式確定主題——探究性學習、問題解決學習、合作學習、實踐性活動等。另外從學科特點、教學內容等都可以確定研究的主題。
研究者要了解當前教學的大背景,教改的大方向,要熟悉相關的《課程標準》和有針對性地作一些理論準備。還要通過有關的調查,搜集詳盡的材料(如閱讀教師的教學設計,進行訪談等),同時初步確定案例研究的方向、研究任務,即初步確定案例的內容是關于教學策略、學生行為或是教學技能的研究。
一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發現更有潛力?選擇的事件對學生是否有較大的情感影響(心靈是否受到震撼)?關鍵事件再現了前人(或自己)過去成功的行為嗎?事件呈現的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關的問題嗎?研究的主題如果反映以上的一些內容,那么這樣的案例研究在自我學習、內省和深層次理解方面就可能更加富有成效。
高中數學教學案例研究的主題內容主要集中在三方面:(1)學科特點的體現:如數學思想方法的教學、數學思維品質的培養、本質屬性的抽象、數學結論的推廣等;(2)學生數學學習規律的探究:如數學學習習慣、解決問題的思維方式、獨立思考與合作學習等;(3)教師專業知識的提升:如數學板書與電子屏幕的展示對學生思維的影響、數學語言的訓練對人們思維的影響、數學知識模式化教學的優劣等。
2.案例研究的基本方法。
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學活動的自然狀態下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學對象——學生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學實錄、教學程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學時間分配表等,以便以后繼續分析案例提供翔實的原始材料。
(2)訪談與調查。對一些課堂教學不能觀察到的師生內心活動,如教師教學的目的、教學程序的意圖、教學手段的運用以及教學達標的成效等一些需要進一步了解的問題,可以通過與執教教師的交談以及和學生的座談,以豐富和充實課堂教學觀察的材料;對學生在課堂教學活動中回答問題的心理狀態、解題思路等問題,也可以在課后做一些問卷調查;對學生達標的成度、效度,也可以作一些測試調查。從這些訪談、調查的材料中,再分析課堂教學的現象,不難發現造成各種課堂現象與教師教學行為之間的因果關系,然后再具體尋找在哪個教學環節中出現問題,從中提煉出解決問題的對策。
(3)文獻分析。文獻分析是通過查閱文獻資料,從過去和現在的有關研究成果中受到啟發,從中找到課堂教學現象的理論依據,從而增強案例分析的說服力。當然,對廣大第一線教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現象,而是通過有關教育理論文獻的查閱,去進一步解讀課堂教學的活動,挖掘案例中的教育思想。如在數學教學中,我們常常通過學生的動手操作來獲得有關的數學概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關文獻資料,從學習中提高研究者自身的理論水平。
(二)案例研究報告的撰寫。
1.常見的案例報告格式。
撰寫教學案例,結構可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當前,國內外課堂教學案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關鍵教學事件等的分析。
下面介紹兩種常用的案例編寫的格式:
(1)“描述+分析”式。
此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結論。案例的描述一般是把課堂教學活動中的某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質,講述理論的解釋,明確正確的方法,最終獲得對關鍵教學事件的正確把握。
(2)“背景+描述+問題+詮釋”式。
此格式是一種要求比較高的編寫格式,而且,它在實際教學中的作用也更大。通常它將整個案例分為四個部分:
a.主題與背景。
主題是關鍵教學事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發生的地點、時間、人物的一些基本情況。當然,這部分的內容不宜很長,只需提綱挈領敘述清楚即可。
b.情景描述。
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學活動。
c.問題討論。
這是根據主題要求與情景描述,進行的分析、歸納、總結與提煉,包括學科知識的要點、教學法和情景特點以及案例的說明與注意事項。這部分內容主要是為案例教學服務的,目的是提高教師的認識水平與學生主動學習的能力。不同的教學觀念,不同的教學手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。
d.詮釋與研究。
這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學行為的技術資料、課堂教學實錄以及教學活動背后的故事等作理論上的分析。例如,在課堂教學中,我們常看到這樣的現象,課堂教學的效果高于預期的目標,反之教師期望的目標學生沒有達到或有所偏離,教學內容呈現的先后與學生理解的程度、教學方法運用與學生內在動機的激發等環節存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內在思想,揭示其教育規律就顯得十分的必要。
2.案例報告撰寫的關鍵。
(1)掌握四個原則。要寫好教學案例,除了平時多積累素材,學習他人的案例作品以提高寫作技巧外,還應把握以下四點:
a.主題性原則:要有捕捉關鍵教學事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數學教育方式、明確學生數學學習的難點和重點,尋找數學教師專業發展的途徑與規律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學活動實錄,要反映事件發生的過程,重點描述反映關鍵教學事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。
案例鮮明的主題通常關系到教學的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現形式就是文題直接體現主題。因此,設計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發現。來源于實踐的教學案例并非都有同等價值,關鍵要看撰寫者對實踐的發展與理論的升華程度,包括對題目的推敲。如有的教學案例重點描述了有戲劇性的情節,用了“細節決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創意的題目《“導之有方”方能“導之有效”》、《跳出數學教數學》、《在數學的疑難處悟成長》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內容,在明確主題,恰當擬題后再動筆,才能寫出高質量的案例。
b.理論性原則:解決問題的策略中應當蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學生做了什么,參與程度,投入程度如何,教師如何引導點撥,師生心理、行為變化情況等,無不體現教師的教學思想和教育基本原理。
c.敘事性原則:案例報告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學生動的事實為主要情節,可以夾敘夾議,也可以選擇情景片段,可以是一節課中的情景,也可以是圍繞一個主題的幾節課的情景片段。
d.學科性原則:數學案例報告一定要體現學科的特征,要有較深刻的理性思考,要反映數學的基本思想與方法,要符合課程標準,滿足教材內容的呈現方法,積極培養良好的思維習慣。就是撰寫者的教育思想和教育理念在教學實踐中具體體現。
(2)用好四種表述。教學案例的表述方法很多,可以歸納為以下四種方法:
a.故事式陳述法:就是教學全程或某一精彩教學片段實錄,包括教師和學生的一言一行。陳述時,根據操作程序作一點“簡評”,最后作“總評”。
b.以案說理:對教學過程進行陳述時,舍去與文題不相關或不重要的部分,并強化與主題相關的重要情節,尤其是引發高潮的關鍵行為,然后有較長篇幅的理性思考。
c.圖表展示法:用圖表進行統計的形式體現撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學生的參與人數,投入程度,解決問題的質量等多個問題,都可以在一張或數張圖表上用百分比或個(次)數進行統計。在每一張圖表后,應有一段“分析”或“結論”,將撰寫者的教學理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。
d.分析討論法:在撰寫時,應汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。
3.優秀案例的特征。
(1)時代性:一個好的案例描述的是現實生活場景——案例的敘述要把事件置于一個時空框架之中,應該以關注今天所面臨的疑難問題為著眼點,至少應該是近年發生的事情,展示的整個事實材料應該與整個時代及教學背景相照應,這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產生移情作用。
(2)真實性:一個好的案例應該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應注明資料來源。
(3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細過程,這應該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應該是與特定的背景材料相關最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個好的案例需要有對已經做出的解決問題的決策的評價——評價是為了給新的決策提供參考點。可在案例的開頭或結尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。
1.選材面過窄。從內容上看,多數案例是關于課堂教學甚至局限于一節課的研究,往往不能說明問題,或者在一節課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學情境的豐富性、復雜性和聯系性認識不夠。
2.缺乏典型性。有的案例對教學實踐沒有挖掘與反思,隨意摘取一些教學片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。
3.主題不明確。主要體現為:
(1)主題渙散。有的案例象記流水帳,沒有根據需要進行恰當的取舍,看不出作者要反映、探討什么問題,缺乏指導性、創新性和參考性。
(2)定題過于隨意。有的案例直接用案例研究依據的文題為題目,如《“三角函數”教學案例》、《“拋物線”教學案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結構不合理。案例作為一種文體,有它自己的寫作結構,只有優化案例的結構,才能增強案例的可讀性和指導性。如寫成一般的教學設計,一般包括“備課思路、教學目標、教學重點、教學方法、課前準備、教學內容、教學過程”等內容;寫成教學實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創新,平淡無趣,看不出案例研究和反映的問題。
5.描述與分析脫節。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。
最熱高中數學教案詳案(案例16篇)篇二
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
兩角差的余弦公式。
用-b代替b看看有什么結果?
最熱高中數學教案詳案(案例16篇)篇三
下面給出教學實施過程設計的簡要思路:
(一)引入的設計
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.
肯定學生回答,并糾正學生中不規范的表述.再看一個問題:
問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?
啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節主體內容教學的設計
學生或獨立研究,或合作研究,教師巡視指導.
經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
綜合兩種情況,我們得出如下結論:
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統一的形式.
這樣上邊的結論可以表述如下:
啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評價不同思路,達成共識:
(1)當 時,方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
(2)當 時,由于 、 不同時為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結論:
為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.
(三)練習鞏固、總結提高、板書和作業等環節的設計
略
最熱高中數學教案詳案(案例16篇)篇四
1.在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的數學基礎知識。2.培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。
本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養要求(分為三項技能與四項能力)
計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。
空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。
數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)
第2單元不等式(8學時)
第3單元函數(12學時)
第4單元指數函數與對數函數(12學時)
第5單元三角函數(18學時)
第6單元數列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第9單元立體幾何(14學時)
第10單元概率與統計初步(16學時)
2.職業模塊
第1單元三角計算及其應用(16學時)
第2單元坐標變換與參數方程(12學時)
第3單元復數及其應用(10學時)
最熱高中數學教案詳案(案例16篇)篇五
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態度與價值觀:提高學生空間想象力,體會三視圖的作用。
難點:識別三視圖所表示的空間幾何體。
觀察、動手實踐、討論、類比。
(一)創設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統稱為幾何體的三視圖。
三視圖的畫法規則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理
請學生回顧發表如何作好空間幾何體的三視圖
(五)布置作業
課本p20習題1.2[a組]1。
最熱高中數學教案詳案(案例16篇)篇六
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節所學知識.
3.情感.態度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
(一)創設情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節要學的內容。
設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;(2)我國古代的四大發明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神
(三)質疑答辯,發展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;(2)我國的小河流.讓學生充分發表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
高一(4)班的一位同學,那么a,b與集合a分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合a的元素,就說a屬于集合a,記作a?a.
如果a不是集合a的元素,就說a不屬于集合a,記作a?a.
(2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關系分別是什么?請用數學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1a組第1題.
6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節課我們學習了哪些知識內容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業:1.課后書面作業:第13頁習題1.1a組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
最熱高中數學教案詳案(案例16篇)篇七
教學內容:
整十數加一位數及相應的減法。
教學目標:
1、讓學生經歷兩位數加、減一位數的口算方法的探索過程,能比較熟練的進行口算。并了解加、減發算式中各部分的名稱。
2、在根據數的組成探索口算方法的過程中,體會知識間的內在聯系,發展思維能力和口算能力。
3、培養用數學的觀念看周圍的事物的意識,培養同學之間的相互合作、交流的態度。
教學重難點:
兩位數加、減一位數的口算方法。
教學準備:
課件。
教學過程:
2個十和5個一合起來是(),8個十和4個一合起來是()。95里面是由()個十和()個一組成。81里面有()個十和()個一。
1、出示32頁情景圖。
2、提問:你能從圖中獲得哪些數學信息?能提出一個數學問題嗎?
學生回答:梳理問題。
(1)一共有多少個桃?
(2)一共有34個桃,去掉框里的30個,還剩多少個桃?
3、怎樣列式?
(1)先想一想。
(2)小組交流。
小組內交流自己的算法。
(3)指名小組匯報。
結合學生回答小結:根據看圖,數出來的;用小棒擺出來的;根據數的組成來思考的。34+4就是把3個十和4個一合起來,是34;34-30就是從34里去掉3個十,還剩4個一,是4。
4、解答“試一試”。
提問:4+30等于多少,你又可以怎樣算?
(1)先想一想。
(2)小組交流。
小組內交流自己的算法。
(3)指名小組匯報。
4個一和3個十和起來是34;因為30+4=34,所以4+30=34。
談話:“34-4”你會算嗎?填在書上,并輕聲地說說你是怎樣想的。
指名回答,結合學生回答適當補充。
5、介紹算式中各部分的名稱。
(1)介紹加法算式中各部分的名稱。
談話:每個小朋友都有自己的名子,在每一個算式中每個部分也都有各自的名子。在加法算式30+4=34中,相加的兩個數都叫做加數。兩個加數相加的結果叫做和。
(2)介紹減法算式各部分的名稱。
(3)指名說出算式4+30=34,34-4=30中各部分的名稱。
1、“想想做做”第1題。
(1)出示圖,讓學生說圖意。
(2)根據圖意,列出四個算式。
(3)說說每道算式表達什么意思。
2、“想想做做”第2題。
先獨立完成,再說說怎樣想的?
提問:根據60+3=63你能想到其他三個算式嗎?
3、“想想做做”第3題。
先獨立完成,再說說是怎樣想的,集體核對結果。
4、“想想做做”第4題。
根據表中第一行的名稱說說左表用什么方法計算,右表用什么方法計算。
5、“想想做做”第5題。
先了解“相鄰數”是什么意思,再寫數交流。
6、“想想做做”第6、7題。
先說說每題中的.已知條件和要求的問題。
再自己獨立完成。
同桌交流并說說是怎樣想的。
最熱高中數學教案詳案(案例16篇)篇八
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的`正、余弦公式的正用、逆用和變用技巧。
兩角差的余弦公式。
用-b代替b看看有什么結果?
最熱高中數學教案詳案(案例16篇)篇九
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的正、余弦公式的'正用、逆用和變用技巧。
兩角差的余弦公式。
用-b代替b看看有什么結果?
最熱高中數學教案詳案(案例16篇)篇十
在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數特征,由圓的'一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
【過程與方法】。
通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發現及分析解決問題的實際能力得到提高。
【情感態度與價值觀】。
滲透數形結合、化歸與轉化等數學思想方法,提高學生的整體素質,激勵學生創新,勇于探索。
【重點】。
掌握圓的一般方程,以及用待定系數法求圓的一般方程。
【難點】。
二元二次方程與圓的一般方程及標準圓方程的關系。
三、教學過程。
(一)復習舊知,引出課題。
1、復習圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
最熱高中數學教案詳案(案例16篇)篇十一
理解數列的概念,掌握數列的`運用。
【知識點精講】。
1、數列:按照一定次序排列的一列數(與順序有關)。
2、通項公式:數列的第n項an與n之間的函數關系用一個公式來表示an=f(n)。
(通項公式不)。
3、數列的表示:。
(1)列舉法:如1,3,5,7,9……;。
(2)圖解法:由(n,an)點構成;。
(3)解析法:用通項公式表示,如an=2n+1。
5、任意數列{an}的前n項和的性質。
最熱高中數學教案詳案(案例16篇)篇十二
三角函數的誘導公式是普通高中課程標準實驗教科書(人教b版)數學必修四,第一章第二節內容,其主要內容是公式(一)至公式(四)。本節課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法。
通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。因此本節內容在三角函數中占有非常重要的地位.
以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式。
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數化為銳角三角函數。
誘導公式(三)的推導及應用。
誘導公式的應用。
多媒體。
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
已知 由
可知
而 (課件演示,學生發現)
所以
于是可得: (三)
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數式的值或化簡三角函數式。
設計意圖:結合學過的公式(一)(二),發現特點,總結公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發現新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)
例3:求下列各三角函數值:
(1)
(2)
(3)
(4)
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數轉化為銳角三角函數,體現轉化化歸,數形結合思想的應用,培養了學生分析問題、解決問題的能力,熟練應用解決問題。
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設計,注重細節的東西,語速需要改正
3.進一步的學習網頁制作,讓你的網頁更加的完善,學生更容易操作
5.上課的生動化,形象化需要加強
1.評議者:網絡輔助教學,起到了很好的效果;教態大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數學時,最好值有個側重點;網絡設計上,網頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網絡教學效果良好,給學生自主思考,學習的空間發揮,教學設計得好;建議:課堂講課聲音,語調可以更有節奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經驗。
4.評議者:引導學生通過網絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調相對平緩,總結時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 4)給學生答案,這個網頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規范化的推理
最熱高中數學教案詳案(案例16篇)篇十三
(2)進一步理解曲線的方程和方程的曲線。
(3)初步掌握求曲線方程的方法。
(4)通過本節內容的教學,培養學生分析問題和轉化的能力。
求曲線的方程。
計算機。
啟發引導法,討論法。
【引入】。
1.提問:什么是曲線的方程和方程的曲線。
學生思考并回答,教師強調。
2.坐標法和解析幾何的意義、基本問題。
對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何,解析幾何的兩大基本問題就是:
(1)根據已知條件,求出表示平面曲線的方程。
(2)通過方程,研究平面曲線的性質。
【問題】。
如何根據已知條件,求出曲線的方程。
【概括總結】通過學生討論,師生共同總結:
分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:
首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:
(1)建立適當的坐標系,用有序實數對例如表示曲線上任意一點的坐標;
(2)寫出適合條件的點的集合;
(3)用坐標表示條件,列出方程;
(4)化方程為最簡形式;
(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.
上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正。
下面再看一個問題:
【小結】師生共同總結:
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
【作業】課本第72頁練習1,2,3;
最熱高中數學教案詳案(案例16篇)篇十四
(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2、過程與方法。
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3、情感態度與價值觀。
(1)提高空間想象力與直觀感受。
(2)體會對比在學習中的作用。
(3)感受幾何作圖在生產活動中的應用。
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
1、學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2、教學用具:三角板、圓規。
(一)創設情景,揭示課題。
1、我們都學過畫畫,這節課我們畫一物體:圓柱。
把實物圓柱放在講臺上讓學生畫。
2、學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節主要學習的內容。
(二)研探新知。
1、例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。
練習反饋。
根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2、例2,用斜二測畫法畫水平放置的圓的直觀圖。
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的`直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3、探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
4、平行投影與中心投影。
投影出示課本p17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5、鞏固練習,課本p16練習1(1),2,3,4。
三、歸納整理。
學生回顧斜二測畫法的關鍵與步驟。
四、作業。
1、書畫作業,課本p17練習第5題。
最熱高中數學教案詳案(案例16篇)篇十五
(4)結合教學內容,培養學生學習數學的興趣和“用數學”的意識,激勵學生勇于創新.。
理解二元一次不等式表示平面區域是教學重點。
如何擾實際問題轉化為線性規劃問題,并給出解答是教學難點。
(一)引入新課。
最熱高中數學教案詳案(案例16篇)篇十六
掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
向量的性質及相關知識的綜合應用。
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的`有關性質解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數學建模的思想,切實培養分析和解決問題的能力。