總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此,讓我們寫一份總結吧。什么樣的總結才是有效的呢?這里給大家分享一些最新的總結書范文,方便大家學習。
推薦數學必修一知識點總結(推薦)一
1.1.1
算法的概念
1、算法概念:
在數學上,現代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.2.算法的特點:
(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的(2)確定性:算法中的每一步應該是確定的并且能有效地執行且得到確定的結果,而不應當是模棱兩可.
(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.(5)普遍性:很多具體的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.1.1.2
程序框圖
1、程序框圖基本概念:
(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
(二)構成程序框的圖形符號及其作用
程序框起止框輸入、輸出框處理框法中任何需要輸入、輸出的位置。賦值、計算,算法中處理數據需要的算式、公式等分別寫在不同的用以處理數據的處理框內。判斷某一條件是否成立,成立時在出口處標判斷框明“是”或“y”;不成立時標明“否”或“n”。不可少的。表示一個算法輸入和輸出的信息,可用在算名稱功能表示一個算法的起始和結束,是任何流程圖學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規則,畫程序框圖的規則如下:1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。5、在圖形符號內描述的語言要非常簡練清楚。(三)、算法的三種基本邏輯結構:順序結構、條件結構、循環結構。
1、順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。
順序結構在程序框圖中的體現就是用流程線將程序框自上而下地連接起來,按順序執行算法步驟。如在示意圖中,a框和b框是依次執行的,只有在執行完a框指定的操作后,才能接著執行b框所指定的操作。2、條件結構:
ab條件結構是指在算法中通過對條件的判斷根據條件是否成立而選擇不同流向的算法結構。
條件p是否成立而選擇執行a框或b框。無論p條件是否成立,只能執行a框或b框之一,不可能同時執行a框和b框,也不可能a框、b框都不執行。一個判斷結構可以有多個判斷框。
3、循環結構:在一些算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構又稱重復結構,循環結構可細分為兩類:
(1)、一類是當型循環結構,如下左圖所示,它的功能是當給定的條件p成立時,執行a框,a框執行完畢后,再判斷條件p是否成立,如果仍然成立,再執行a框,如此反復執行a框,直到某一次條件p不成立為止,此時不再執行a框,離開循環結構。
(2)、另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然后判斷給定的條件p是否成立,如果p仍然不成立,則繼續執行a框,直到某一次給定的條件p成立為止,此時不再執行a框,離開循環結構。
aapp成立成立不成立不成立p
當型循環結構直到型循環結構
注意:1循環結構要在某個條件下終止循環,這就需要條件結構來判斷。因此,循環結構中一定包含條件結構,但不允許“死循環”。2在循環結構中都有一個計數變量和累加變量。計數變量用于記錄循環次數,累加變量用于輸出結果。計數變量和累加變量一般是同步......執行的,累加一次,計數一次。1.2.1
輸入、輸出語句和賦值語句1、輸入語句
(1)輸入語句的一般格式
圖形計算器格式input“提示內容”;變量input“提示內容”,變量(2)輸入語句的作用是實現算法的輸入信息功能;(3)“提示內容”提示用戶輸入什么樣的信息,變量是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數,不能是函數、變量或表達式;(5)提示內容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。2、輸出語句
(1)輸出語句的一般格式
圖形計算器格式print“提示內容”;表達式disp“提示內容”,變量(2)輸出語句的作用是實現算法的輸出結果功能;(3)“提示內容”提示用戶輸入什么樣的信息,表達式是指程序要輸出的數據;(4)輸出語句可以輸出常量、變量或表達式的值以及字符。3、賦值語句
(1)賦值語句的一般格式
(2)賦值語句的作用是將表達式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦值號,與數學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數據、常量或算式;(5)對于一個變量可以多次賦值。
注意:①賦值號左邊只能是變量名字,而不能是表達式。如:2=x是錯誤的。②賦值號左
右不能對換。如“a=b”“b=a”的含義運行結果是不同的。③不能利用賦值語句進行代數式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數學中的等號意義不同。
1.2.2條件語句
1、條件語句的一般格式有兩種:(1)ifthenelse語句;(2)ifthen語句。2、ifthenelse語句
ifthenelse語句的一般格式為圖1,對應的程序框圖為圖2。
圖形計算器變量=表達式格式表達式變量if條件then語句1else語句2endif滿足條件?是語句1否語句
圖1圖2
分析:在ifthenelse語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執行的操作內容;“語句2”表示不滿足條件時執行的操作內容;endif表示條件語句的結束。計算機在執行時,首先對if后的條件進行判斷,如果條件符合,則執行then后面的語句1;若條件不符合,則執行else后面的語句2。3、ifthen語句
ifthen語句的一般格式為圖3,對應的程序框圖為圖4。if條件then語句endif(圖3)
是滿足條件?否(圖4)執行的操語句注意:“條件”表示判斷的條件;“語句”表示滿足條件時
作內容,條件不滿足時,結束程序;endif表示條件語句的結束。計算機在執行時首先對if后的條件進行判斷,如果條件符合就執行then后邊的語句,若條件不符合則直接結束該條件語句,轉而執行其它語句。
1.2.3循環語句
循環結構是由循環語句來實現的。對應于程序框圖中的兩種循環結構,一般程序設計語言中也有當型(while型)和直到型(until型)兩種語句結構。即while語句和until語句。
1、while語句
(1)while語句的一般格式是對應的程序框圖是
循環體while條件循環體wend滿足條件?否是(2)當計算機遇到while語句時,先判斷條件的真假,如果條件符合,就執行while與wend之間的循環體;然后再檢查上述條件,如果條件仍符合,再次執行循環體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執行循環體,直接跳到wend語句后,接著執行wend之后的語句。因此,當型循環有時也稱為“前測試型”循環。2、until語句
(1)until語句的一般格式是對應的程序框圖是
do循環體loopuntil條件循環體滿足條件?是否(2)直到型循環又稱為“后測試型”循環,從until型循環結構分析,計算機執行該語句時,先執行一次循環體,然后進行條件的判斷,如果條件不滿足,繼續返回執行循環體,然后再進行條件的判斷,這個過程反復進行,直到某一次條件滿足時,不再執行循環體,跳到loopuntil語句后執行其他語句,是先執行循環體后進行條件判斷的循環語句。分析:當型循環與直到型循環的區別:(先由學生討論再歸納)(1)當型循環先判斷后執行,直到型循環先執行后判斷;
在while語句中,是當條件滿足時執行循環體,在until語句中,是當條件不滿足時執行循環
1.3.1輾轉相除法與更相減損術
1、輾轉相除法。也叫歐幾里德算法,用輾轉相除法求最大公約數的步驟如下:(1):用較大的數m除以較小的數n得到一個商為m,n的最大公約數;若(3):若商
s2r1r0s0和一個余數
r0r0;(2):若
s1r0=0,則n
r1≠0,則用除數n除以余數
r1得到一個商
r0和一個余數
r1;
=0,則
r2r1為m,n的`最大公約數;若≠0,則用除數除以余數
rn1得到一個
和一個余數;依次計算直至
rn=0,此時所得到的即為所求的最
大公約數。2、更相減損術
我國早期也有求最大公約數問題的算法,就是更相減損術。在《九章算術》中有更相減損術求最大公約數的步驟:可半者半之,不可半者,副置分母子之數,以少減多,更相減損,求其等也,以等數約之。
翻譯為:(1):任意給出兩個正數;判斷它們是否都是偶數。若是,用2約簡;若不是,執行第二步。(2):以較大的數減去較小的數,接著把較小的數與所得的差比較,并以大數減小數。繼續這個操作,直到所得的數相等為止,則這個數(等數)就是所求的最大公約數。例2用更相減損術求98與63的最大公約數.分析:(略)
3、輾轉相除法與更相減損術的區別:
(1)都是求最大公約數的方法,計算上輾轉相除法以除法為主,更相減損術以減法為主,計算次數上輾轉相除法計算次數相對較少,特別當兩個數字大小區別較大時計算次數的區別較明顯。
(2)從結果體現形式來看,輾轉相除法體現結果是以相除余數為0則得到,而更相減損術
則以減數與差相等而得到
1.3.2秦九韶算法與排序1、秦九韶算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問題
f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0
=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0
求多項式的值時,首先計算最內層括號內依次多項式的值,即v1=anx+an-1然后由內向外逐層計算一次多項式的值,即
v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0、
這樣,把n次多項式的求值問題轉化成求n個一次多項式的值的問題。2、兩種排序方法:直接插入排序和冒泡排序1、直接插入排序
基本思想:插入排序的思想就是讀一個,排一個。將第1個數放入數組的第1個元素中,以后讀入的數與已存入數組的數進行比較,確定它在從大到小的排列中應處的位置.將該位置以及以后的元素向后推移一個位置,將讀入的新數填入空出的位置中.(由于算法簡單,可以舉例說明)2、冒泡排序
基本思想:依次比較相鄰的兩個數,把大的放前面,小的放后面.即首先比較第1個數和第2個數,大數放前,小數放后.然后比較第2個數和第3個數......直到比較最后兩個數.第一趟結束,最小的一定沉到最后.重復上過程,仍從第1個數開始,到最后第2個數......由于在排序過程中總是大數往前,小數往后,相當氣泡上升,所以叫冒泡排序.
1.3.3進位制1、概念:進位制是一種記數方式,用有限的數字在不同的位置表示不同的數值。可使用數字符號的個數稱為基數,基數為n,即可稱n進位制,簡稱n進制。現在最常用的是十進制,通常使用10個阿拉伯數字0-9進行記數。對于任何一個數,我們可以用不同的進位制來表示。比如:十進數57,可以用二進制表示為111001,也可以用八進制表示為71、用十六進制表示為39,它們所代表的數值都是一樣的。
一般地,若k是一個大于一的整數,那么以k為基數的k進制可以表示為:
anan1...a1a0(k)(0ank,0an1,...,a1,a0k),
而表示各種進位制數一般在數字右下腳加注來表示,如111001(2)表示二進制數,34(5)表示5進制數
第二章統計
2.1.1簡單隨機抽樣
1.總體和樣本
總體:在統計學中,把研究對象的全體叫做總體.個體:把每個研究對象叫做個體.
總體容量:把總體中個體的總數叫做總體容量.
為了研究總體的有關性質,一般從總體中隨機抽取一部分:研究,我們稱它為樣本.其中個體的個數稱為樣本容量。......
2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。3.簡單隨機抽樣常用的方法:
(1)抽簽法;⑵隨機數表法;⑶計算機模擬法;⑷使用統計軟件直接抽取。
在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調查對象群體中的每一個對象編號;(2)準備抽簽的工具,實施抽簽
,,,
(3)對樣本中的每一個個體進行測量或調查
例:請調查你所在的學校的學生做喜歡的體育活動情況。5.隨機數表法:
例:利用隨機數表在所在的班級中抽取10位同學參加某項活動。
2.1.2系統抽樣
1.系統抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
k(抽樣距離)=n(總體規模)/n(樣本規模)
前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規則分布。可以在調查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環性規律,且這種循環和抽樣距離重合。
2.系統抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統抽樣可以大大提高估計精度。
2.1.3分層抽樣
1.分層抽樣(類型抽樣):
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。
兩種方法:
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。
2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標準:
(1)以調查所要分析和研究的主要變量或相關的變量作為分層的標準。
(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變量作為分層變量。
(3)以那些有明顯分層區分的變量作為分層變量。3.分層的比例問題:
(1)按比例分層抽樣:根據各種類型或層次中的單位數目占總體單位數目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數據資料進行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實際的比例結構。
2.2.2用樣本的數字特征估計總體的數字特征
1、本均值:xx1x2xnn
2、.樣本標準差:ss2(x1x)(x2x)(xnx)n222
3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數據得到的分布、均值和標準差并不是總體的真正的分布、
均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。
4.(1)如果把一組數據中的每一個數據都加上或減去同一個共同的常數,標準差不變(2)如果把一組數據中的每一個數據乘以一個共同的常數k,標準差變為原來的k倍(3)一組數據中的最大值和最小值對標準差的影響,區間(x3s,x3s)的應用;“去掉一個最高分,去掉一個最低分”中的科學道理2.3.2兩個變量的線性相關1、概念:
(1)回歸直線方程(2)回歸系數2.最小二乘法
3.直線回歸方程的應用
(1)描述兩變量之間的依存關系;利用直線回歸方程即可定量描述兩個變量間依存
的數量關系
(2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即
因變量y)進行估計,即可得到個體y值的容許區間。
(3)利用回歸方程進行統計控制規定y值的變化,通過控制x的范圍來實現統計控
制的目標。如已經得到了空氣中no2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中no2的濃度。
4.應用直線回歸的注意事項
(1)做回歸分析要有實際意義;(2)回歸分析前,最好先作出散點圖;(3)回歸直線不要外延。
第三章概率
3.1.13.1.2隨機事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件s下,一定會發生的事件,叫相對于條件s的必然事件;(2)不可能事件:在條件s下,一定不會發生的事件,叫相對于條件s的不可能事件;(3)確定事件:必然事件和不可能事件統稱為相對于條件s的確定事件;
(4)隨機事件:在條件s下可能發生也可能不發生的事件,叫相對于條件s的隨機事件;(5)頻數與頻率:在相同的條件s下重復n次試驗,觀察某一事件a是否出現,稱n次試
驗中事件a出現的次數na為事件a出現的頻數;稱事件a出現的比例nafn(a)=n為事件a出現的概率:對于給定的隨機事件a,如果隨著試驗次數的增加,事件a發生的頻率fn(a)穩定在某個常數上,把這個常數記作p(a),稱為事件a的概率。
(6)頻率與概率的區別與聯系:隨機事件的頻率,指此事件發生的次數na與試驗總次數n
na的比值n,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率
3.1.3概率的基本性質
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若a∩b為不可能事件,即a∩b=ф,那么稱事件a與事件b互斥;
(3)若a∩b為不可能事件,a∪b為必然事件,那么稱事件a與事件b互為對立事件;(4)當事件a與b互斥時,滿足加法公式:p(a∪b)=p(a)+p(b);若事件a與b為對立
事件,則a∪b為必然事件,所以p(a∪b)=p(a)+p(b)=1,于是有p(a)=1p(b)
2、概率的基本性質:
1)必然事件概率為1,不可能事件概率為0,因此0≤p(a)≤1;2)當事件a與b互斥時,滿足加法公式:p(a∪b)=p(a)+p(b);
3)若事件a與b為對立事件,則a∪b為必然事件,所以p(a∪b)=p(a)+p(b)=1,于是有p(a)=1p(b);
4)互斥事件與對立事件的區別與聯系,互斥事件是指事件a與事件b在一次試驗中不會同時發生,其具體包括三種不同的情形:(1)事件a發生且事件b不發生;(2)事件a不發生且事件b發生;(3)事件a與事件b同時不發生,而對立事件是指事件a與事件b有且僅有一個發生,其包括兩種情形;(1)事件a發生b不發生;(2)事件b發生事件a不發生,對立事件互斥事件的特殊情形。3.2.13.2.2古典概型及隨機數的產生
1、(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。(2)古典概型的解題步驟;①求出總的基本事件數;
a包含的基本事件數②求出事件a所包含的基本事件數,然后利用公式p(a)=總的基本事件個數
3.3.13.3.2幾何概型及均勻隨機數的產生
1、基本概念:
(1)幾何概率模型:如果每個事件發生的概率只與構成該事件區域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:
構成事件a的區域長度(面積或體積)積);
p(a)=試驗的全部結果所構成的區域長度(面積或體(3)幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等.
推薦數學必修一知識點總結(推薦)二
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。
1.通過實例,了解集合的含義,體會元素與集合的.屬于關系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。
9.在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數。
10.通過具體實例,了解簡單的分段函數,并能簡單應用。
11.通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。
12.學會運用函數圖象理解和研究函數的性質。
課時分配(14課時)
1.1.1 | 集合的含義與表示 | 約1課時 | 9月1日 |
1.1.2 | 集合間的基本關系 | 約1課時 | 9月4日 | | 9月12日 |
1.1.3 | 集合的基本運算 | 約2課時 | |
小結與復習 | 約1課時 | ||
1.2.1 | 函數的概念 | 約2課時 | |
1.2.2 | 函數的表示法 | 約2課時 | 9月13日 | | 9月25日 |
1.3.1 | 單調性與最大(小)值 | 約2課時 | |
1.3.2 | 奇偶性 | 約1課時 | |
小結與復習 | 約2課時 |
1.通過具體實例,了解指數函數模型的實際背景。
2.理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。
3。理解指數函數的概念和意義,能借助計算器或計算機畫出具體指數函數的圖象,探索并理解指數函數的單調性與特殊點。
4.在解決簡單實際問題過程中,體會指數函數是一類重要的函數模型。
5。理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及其對簡化運算的作用。
6。通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性和特殊點。
7.通過實例,了解冪函數的概念;結合函數的圖象,了解它們的變化情況。
課時分配(15課時)
2.1.1 | 引言、指數與指數冪的運算 | 約3課時 | 9月27日30日 |
2.1.2 | 指數函數及其性質 | 約3課時 | 10月8日10日 |
2.2.1 | 對數與對數運算 | 約3課時 | 10月11日14日 |
2.2.2 | 對數函數及其性質 | 約3課時 | 10月15日18日 |
2.3 | 冪函數 | 約1課時 | 10月19日24日 |
小結 | 約2課時 |
1。結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。
根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。
2。利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。
3。收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。
4。根據某個主題,收集17世紀前后發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,采取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數模型的應用實例 | 約2課時 | |
小結 | 約1課時 |
考生只要在全面復習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規范答題,一定會穩中求進,取得優異的成績。
推薦數學必修一知識點總結(推薦)三
- 高中數學必修一知識點總結 推薦度:
- 高二數學知識點總結 推薦度:
- 高二數學必修四《任意角和弧度制》教案 推薦度:
- 高一歷史必修一知識點總結 推薦度:
- 初中數學知識點總結 推薦度:
- 相關推薦
高二數學必修2知識點總結
你可能體驗過很多美妙的事情,比如撫慰心靈的樂曲,賞心悅目的畫作,動人心弦的詩歌,不過有一樣東西,能夠包含上面所有的內容,那就是數學。下面是小編整理的高二數學必修2知識點總結,歡迎來參考!
一般我們把不含任何元素的集合叫做空集。
(1)按元素屬性分類,如點集,數集。
(2)按元素的個數多少,分為有/無限集
關于集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構成集合,關鍵在于看這些對象是否有明確的標準。
集合可以根據它含有的元素的個數分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負整數全體構成的集合,叫做自然數集,記作n;
在自然數集內排除0的'集合叫做正整數集,記作n+或n*;
整數全體構成的集合,叫做整數集,記作z;
有理數全體構成的集合,叫做有理數集,記作q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)
實數全體構成的集合,叫做實數集,記作r。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)
1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{ }”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.
有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.
無限集有時也用上述的列舉法表示,例如,自然數集n可表示為{1,2,3,…,n,…}.
2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質來描述。
例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大于0”
而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為
{x∈r│x能被2整除,且大于0}或{x∈r│x=2n,n∈n+},
大括號內豎線左邊的x表示這個集合的任意一個元素,元素x從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。
一般地,如果在集合i中,屬于集合a的任意一個元素x都具有性質p( x),而不屬于集合a的元素都不具有的性質p(x),則性質p(x)叫做集合a的一個特征性質。于是,集合a可以用它的性質p(x)描述為{x∈i│p(x)}
它表示集合a是由集合i中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質描述法,簡稱描述法。
例如:集合a={x∈r│x2-1=0}的特征是x2 -1=0
s("content_relate");【高二數學必修2知識點總結】相關文章:
1.高一數學必修一知識點總結
2.高中數學必修四知識點總結
3.高二語文必修3《蜀道難》知識點
4.高二語文必修5《滕王閣序》知識點整理
5.高二語文必修4柳永詞兩首知識點
6.高一政治必修一知識點總結
7.必修2《采薇》說課稿
8.高二外研社必修五作文
9.高二語文必修三作文
推薦數學必修一知識點總結(推薦)四
1、理解集合的概念和性質。
2、了解元素與集合的表示方法。
3、熟記有關數集。
4、培養學生認識事物的能力。
集合概念、性質
集合概念的理解
1、定義:
集合:一般地,某些指定的對象集在一起就成為一個集合(集)。元素:集合中每個對象叫做這個集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素為1、3、5、7,
例(2)的元素為到兩定點距離等于兩定點間距離的點,
例(3)的元素為滿足不等式3x—2x+3的實數x,
例(4)的元素為所有直角三角形,
例(5)為高一·六班全體男同學。
一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??
為方便,常用大寫的拉丁字母表示集合:a={我校的籃球隊員},b={1,2,3,4,5}
(1)確定性;(2)互異性;(3)無序性。
3、元素與集合的關系:隸屬關系
元素與集合的關系有“屬于∈”及“不屬于?(?也可表示為)兩種。如a={2,4,8,16},則4∈a,8∈a,32?a。
集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集a記作a?a,相反,a不屬于集a記作a?a(或)
注:1、集合通常用大寫的拉丁字母表示,如a、b、c、p、q??
元素通常用小寫的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開口方向,不能把a∈a顛倒過來寫。
4
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0。
(2)非負整數集內排除0的集。記作n__或n+ 。q、z、r等其它數集內排除0
的集,也是這樣表示,例如,整數集內排除0的集,表示成z__
請回答:已知a+b+c=m,a={x|ax2+bx+c=m},判斷1與a的關系。
【一、及時回憶】
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發,補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節,循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
【二、重復鞏固】
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長。可以當天鞏固新知識,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節進行知識歸納總結,必須把相關知識串聯在一起,形成知識網 絡,達到對知識和方法的整體把握。
【三、合理安排】
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,并非間隔時間越長越好,而要適合自己的復習規律。
【四、突破重點難點】
對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點“超市”,可隨時點擊,進行復習。
【五、效果檢測】
隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環節的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,并適時采取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。
總體原則
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關的知識點都寫出來,要知道數學講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學好)。
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的題目,一定要拿到應得的分數。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
推薦數學必修一知識點總結(推薦)五
使學生學好從事社會主義現代化建設和進一步學習現代科學技術所必需的數學基礎知識和基本技能,培養學生的運算能力、邏輯思維能力和空間想象能力,以逐步形成運用數學知識來分析和解決實際問題的能力。要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性,培養學生的科學態度和辨證唯物主義的觀點。
1、4班共人,男生xx人,女生xx人;本班相對而言,數學尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。xx5班共xx人,男生xx人,女生xx人;本班相對而言,數學尖子約xx人,中上等生約人,中等生約xx人,中下生約xx人,差生約xx人。
2、4班在初中升入高中的升學考試中,數學成績在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分為xx,最低分為xx。
5班在初中升入高中的升學考試中,數學成績在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分為xx,最低分為xx。
3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結果是:
1、教材內容:集合、一元二次不等式、簡易邏輯、映射與函數、指數函數和對數函數、數列、等差數列、等比數列。
2、集合概念及其基本理論,是近代數學最基本的內容之一;函數是中學數學中最重要的基本概念之一;數列有著廣泛的應用,是進一步學習高等數學的基礎。
3、教材重點:幾種函數的圖像與性質、不等式的解法、數列的概念、等差數列與等比數列的通項公式、前n項和的公式。
4、教材難點:關于集合的各個基本概念的涵義及其相互之間的區別和聯系、映射的概念以及用映射來刻畫函數概念、反函數、一些代數命題的證明、
5、教材關鍵:理解概念,熟練、牢固掌握函數的圖像與性質。
6、采用了由淺入深、減緩坡度、分散難點,逐步展開教材內容的做法,符合從有限到無限的認識規律,體現了從量變到質變和對立統一的辯證規律。每階段的內容相對獨立,方法比較單一,有助于掌握每一階段內容。
7、各部分知識之間的聯系較強,每一階段的知識都是以前一階段為基礎,同時為下階段的學習作準備。
8、全期教材重要的內容是:集合運算、不等式解法、函數的奇偶性與單調性、等差與等比數列的通項和前n項和。
1、理解集合、子集、交集、并集、補集的概念。了解空集和全集的意義,了解屬于、包含、相等關系的意義,能掌握有關的術語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。
推薦數學必修一知識點總結(推薦)六
1、認真“聽”的習慣。
為了教和學的同步,教師應要求學生在課堂上集中思想,專心聽老師講課,認真聽同學發言,抓住重點、難點、疑點聽,邊聽邊思考,對中、高年級學生提倡邊聽邊做聽課筆記。
2、積極“想”的習慣。
積極思考老師和同學提出的問題,使自己始終置身于教學活動之中,這是提高學習質量和效率的重要保證。學生思考、回答問題一般要求達到:有根據、有條理、符合邏輯。隨著年齡的升高,思考問題時應逐步滲透聯想、假設、轉化等數學思想,不斷提高思考問題的質量和速度。
3、仔細“審”的習慣。
審題能力是學生多種能力的綜合表現。教師應要求學生仔細閱讀教材內容,學會抓住字眼,正確理解內容,對提示語、旁注、公式、法則、定律、圖示等關鍵性內容更要認真推敲、反復琢磨,準確把握每個知識點的內涵與外延。建議教師們經常進行“一字之差義差萬”的專項訓練,不斷增強學生思維的深刻性和批判性。
4、獨立“做”的習慣。
練習是教學活動的重要組成部分和自然延續,是學生最基本、最經常的獨立學習實踐活動,還是反映學生學習情況的主要方式。教師應教育學生對知識的理解不盲從優生看法,不受他人影響輕易改變自己的見解;對知識的運用不抄襲他人現成答案;課后作業要按質、按量、按時、書寫工整完成,并能作到方法最佳,有錯就改。
5、善于“問”的習慣。
俗話說:“好問的孩子必成大器”。教師應積極鼓勵學生質疑問難,帶著知識疑點問老師、問同學、問家長,大力提倡學生自己設計數學問題,大膽、主動地與他人交流,這樣既能融洽師生關系,增進同學友情,又可以使學生的交際、表達等方面的能力逐步提高。
6、勇于“辯”的習慣。
討論和爭辯是思維最好的媒介,它可以形成師生之間、同學之間多渠道、廣泛的信息交流。讓學生在爭辯中表現自我、互相啟迪、交流所得、增長才干,最終統一對真知的認同。
7、力求“斷”的習慣。
民族的創新能力是綜合國力的重要表現,因此新大綱強調在數學教學中應重視培養學生的創新意識。教師應積極鼓勵學生思考問題時不受常規思路局限,樂于和善于發現新問題,能夠從不同角度詮釋數學命題,能用不同方法解答問題,能創造性地操作或制作學具與模型。
8、提早“學”的習慣。
從小學生認識規律看,要獲得良好的學習成績,必須牢牢抓住預習、聽課、作業、復習四個基本環節。其中,課前預習教材可以幫助學生了解新知識的要點、重點、發現疑難,從而可以在課堂內重點解決,掌握聽課的主動權,使聽課具有針對性。隨著年級的升高、預習的重要性更加突出。
9、反復“查”的習慣。
培養學生檢查的能力和習慣,是提高數學學習質量的重要措施,是培養學生自覺性和責任感的必要過程,這也是新大綱明確了的教學要求。練習后,學生一般應從“是否符合題意,計算是否合理、靈活、正確,應用題、幾何題的解答方法是否科學”等幾個方面反復檢查驗算。
10、客觀“評”的習慣。
學生客觀地評價自己和他人在學習活動中的表現,本身就是一種高水平的學習。只有客觀地評價自己、評價他人,才能評出自信,評出不足,從而達到正視自我、不斷反思、追求進步的目的,逐步形成辯證唯物主義認識觀。
11、經常“動”的習慣。
數學知識具有高度的抽象性,小學生的思維帶有明顯的具體性,所以新大綱強調應重視從學生的生活經驗中學習理解數學,加強實踐能力的培養。在教學中,教師應強調學生手腦并用,以動促思,對難以理解的概念通過舉實例加以解決,對較復雜的應用題通過畫圖找到正確的解答方法,對模糊的幾何知識通過剪剪拼拼或實驗達到投石問路的目的。
12、有心“集”的習慣。
學生在學習活動中犯錯并不可怕,可怕的是同一問題多次犯錯。為避免同一錯誤經常犯,有責任民的教師在教室里布置了錯會診專欄,有心計的學生建立錯誤的知識檔案,將平時練習或考試中出現的錯題收集在一起,反復警示自己,值得提倡。
13、靈活“用”的習慣。
學習的目的在于應用,要求學生在課堂上學到的知識加以靈活運用,既能起到鞏固和消化知識的作用,又有利于將知識轉化成能力,還能達到培養學生學習數學的興趣的目的。