教案模板是教師編寫教學計劃、組織教學活動的重要工具,它包含了教學目標、教學內容、教學步驟等內容,是教師教學的指南和依據。希望以下的教案模板范例能夠幫助大家更好地進行教學設計。
數學余弦定理說課稿(精選15篇)篇一
大家好!
今天我說課的內容是余弦定理,本節內容共分3課時,今天我將就第1課時的余弦定理的證明與簡單應用進行說課。下面我分別從教材分析。目標的確定。方法的選擇和教學過程的設計這四個方面來闡述我對這節課的教學設想。
本節內容是江蘇出版社出版的普通高中課程標準實驗教科書《數學》必修五的第一章第2節,在此之前學生已經學習過了勾股定理。平面向量、正弦定理等相關知識,這為過渡到本節內容的學習起著鋪墊作用。本節內容實質是學生已經學習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關系,將三角形的“邊”與“角”有機的聯系起來,實現邊角關系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學習中判斷三角形形狀,證明三角形有關的等式與不等式提供了重要的依據。
在本節課中教學重點是余弦定理的內容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學難點是余弦定理的發現及證明;教學關鍵是余弦定理在三角形邊角計算中的運用。
基于以上對教材的認識,根據數學課程標準的“學生是數學學習的主人,教師是數學學習的組織者。引導者與合作者”這一基本理念,考慮到學生已有的認知結構和心理特征,我認為本節課的教學目標有:
基于本節課是屬于新授課中的數學命題教學,根據《學記》中啟發誘導的思想和布魯納的發現學習理論,我將主要采用“啟發式教學”和“探究性教學”的教學方法即從一個實際問題出發,發現無法使用剛學習的正弦定理解決,造成學生在認知上的沖突,產生疑惑,從而激發學生的探索新知的欲望,之后進一步啟發誘導學生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養能力。
在教學中利用計算機多媒體來輔助教學,充分發揮其快捷、生動、形象的特點。
為達到本節課的教學目標、突出重點、突破難點,在教材分析、確定教學目標和合理選擇教法與學法的基礎上,我把教學過程設計為以下四個階段:創設情境、引入課題;探索研究、構建新知;例題講解、鞏固練習;課堂小結,布置作業。具體過程如下:
1、創設情境,引入課題。
利用多媒體引出如下問題:
a地和b地之間隔著一個水塘現選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。
【設計意圖】由于學生剛學過正弦定理,一定會采用剛學的知識解題,但由于無法找到一組已知的邊及其所對角,從而產生疑惑,激發學生探索欲望。
2、探索研究、構建新知。
(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領學生從特殊情況為直角三角形()時考慮。此時使用勾股定理,得。
(3)考慮到我們所作的圖為銳角三角形,討論上述結論能否推廣到在為鈍角三角形()中。
通過解決問題可以得到在任意三角形中都有,之后讓同學們類比出……這樣我就完成了對余弦定理的引入,之后總結給出余弦定理的內容及公式表示。
在學生已學習了向量的基礎上,考慮到新課改中要求使用新工具、新方法,我會引導同學類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導學生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構建。
根據余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:
(1)已知三邊,求三個角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。
3、例題講解、鞏固練習。
本階段的教學主要是通過對例題和練習的思考交流、分析講解以及反思小結,使學生初步掌握使用余弦定理解決問題的方法。其中例題先以學生自己思考解題為主,教師點評后再規范解題步驟及板書,課堂練習請同學們自主完成,并請同學上黑板板書,從而鞏固余弦定理的運用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學生對余弦定理的運用。
例2對于例題1(2),求的大小。
【設計意圖】已經求出了的度數,學生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發現使用余弦定理求解角的問題可以避免解的取舍問題。
例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,
【設計意圖】例3通過對和的比較,體現了“余弦定理是勾股定理的'推廣”這一思想,進一步加深了對余弦定理的認識和理解。
課堂練習:
練習1在中,
(1)已知,求;
(2)已知,求。
【設計意圖】檢驗學生是否掌握余弦定理的兩個形式,鞏固學生對余弦定理的運用。
練習2若三條線段長分別為5,6,7,則用這三條線段()。
a、能組成直角三角形。
b、能組成銳角三角形。
c、能組成鈍角三角形。
d、不能組成三角形。
【設計意圖】與例題3相呼應。
練習3在中,已知,試求的大小。
【設計意圖】要求靈活使用公式,對公式進行變形。
4、課堂小結,布置作業。
先請同學對本節課所學內容進行小結,教師再對以下三個方面進行總結:
(3)余弦定理的可以解決的兩類解斜三角形的問題。
通過師生的共同小結,發揮學生的主體作用,有利于學生鞏固所學知識,也能培養學生的歸納和概括能力。
布置作業。
必做題:習題1、2、1、2、3、5、6;
選做題:習題1、2、12、13。
【設計意圖】。
作業分為必做題和選做題、針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高。
各位老師,以上所說只是我預設的一種方案,但課堂是千變萬化的,會隨著學生和教師的臨時發揮而隨機生成。預設效果如何,最終還有待于課堂教學實踐的檢驗。
本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。
數學余弦定理說課稿(精選15篇)篇二
各位老師大家好!
今天我說課的內容是余弦定理,本節內容共分3課時,今天我將就第1課時的余弦定理的證明與簡單應用進行說課。下面我分別從教材分析。教學目標的確定。教學方法的選擇和教學過程的設計這四個方面來闡述我對這節課的教學設想。
本節內容是江蘇教育出版社出版的普通高中課程標準實驗教科書《數學》必修五的第一章第2節,在此之前學生已經學習過了勾股定理。平面向量、正弦定理等相關知識,這為過渡到本節內容的學習起著鋪墊作用。本節內容實質是學生已經學習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關系,將三角形的“邊”與“角”有機的聯系起來,實現邊角關系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學習中判斷三角形形狀,證明三角形有關的等式與不等式提供了重要的依據。
在本節課中教學重點是余弦定理的內容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學難點是余弦定理的發現及證明;教學關鍵是余弦定理在三角形邊角計算中的運用。
基于以上對教材的認識,根據數學課程標準的“學生是數學學習的主人,教師是數學學習的組織者。引導者與合作者”這一基本理念,考慮到學生已有的認知結構和心理特征,我認為本節課的教學目標有:
基于本節課是屬于新授課中的數學命題教學,根據《學記》中啟發誘導的思想和布魯納的發現學習理論,我將主要采用“啟發式教學”和“探究性教學”的教學方法即從一個實際問題出發,發現無法使用剛學習的正弦定理解決,造成學生在認知上的沖突,產生疑惑,從而激發學生的探索新知的欲望,之后進一步啟發誘導學生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養能力。
在教學中利用計算機多媒體來輔助教學,充分發揮其快捷、生動、形象的特點。
為達到本節課的教學目標、突出重點、突破難點,在教材分析、確定教學目標和合理選擇教法與學法的基礎上,我把教學過程設計為以下四個階段:創設情境、引入課題;探索研究、構建新知;例題講解、鞏固練習;課堂小結,布置作業。具體過程如下:
1、創設情境,引入課題。
利用多媒體引出如下問題:
a地和b地之間隔著一個水塘現選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。
【設計意圖】由于學生剛學過正弦定理,一定會采用剛學的知識解題,但由于無法找到一組已知的邊及其所對角,從而產生疑惑,激發學生探索欲望。
2、探索研究、構建新知。
(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領學生從特殊情況為直角三角形()時考慮。此時使用勾股定理,得。
(3)考慮到我們所作的圖為銳角三角形,討論上述結論能否推廣到在為鈍角三角形()中。
通過解決問題可以得到在任意三角形中都有,之后讓同學們類比出……這樣我就完成了對余弦定理的引入,之后總結給出余弦定理的內容及公式表示。
在學生已學習了向量的基礎上,考慮到新課改中要求使用新工具、新方法,我會引導同學類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導學生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構建。
根據余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:
(1)已知三邊,求三個角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。
3、例題講解、鞏固練習。
本階段的教學主要是通過對例題和練習的思考交流、分析講解以及反思小結,使學生初步掌握使用余弦定理解決問題的方法。其中例題先以學生自己思考解題為主,教師點評后再規范解題步驟及板書,課堂練習請同學們自主完成,并請同學上黑板板書,從而鞏固余弦定理的運用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學生對余弦定理的運用。
例2對于例題1(2),求的大小。
【設計意圖】已經求出了的度數,學生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發現使用余弦定理求解角的問題可以避免解的取舍問題。
例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,
【設計意圖】例3通過對和的比較,體現了“余弦定理是勾股定理的推廣”這一思想,進一步加深了對余弦定理的認識和理解。
課堂練習:
練習1在中,
(1)已知,求;
(2)已知,求。
【設計意圖】檢驗學生是否掌握余弦定理的兩個形式,鞏固學生對余弦定理的運用。
練習2若三條線段長分別為5,6,7,則用這三條線段()。
a、能組成直角三角形。
b、能組成銳角三角形。
c、能組成鈍角三角形。
d、不能組成三角形。
【設計意圖】與例題3相呼應。
練習3在中,已知,試求的大小。
【設計意圖】要求靈活使用公式,對公式進行變形。
4、課堂小結,布置作業。
先請同學對本節課所學內容進行小結,教師再對以下三個方面進行總結:
(3)余弦定理的可以解決的兩類解斜三角形的問題。
通過師生的共同小結,發揮學生的主體作用,有利于學生鞏固所學知識,也能培養學生的歸納和概括能力。
布置作業。
必做題:習題1、2、1、2、3、5、6;
選做題:習題1、2、12、13。
作業分為必做題和選做題、針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高。
各位老師,以上所說只是我預設的一種方案,但課堂是千變萬化的,會隨著學生和教師的臨時發揮而隨機生成。預設效果如何,最終還有待于課堂教學實踐的檢驗。
本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。
數學余弦定理說課稿(精選15篇)篇三
《余弦定理》是全日制中等教育國家規劃教材(人教版)數學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關三角形的三類問題:
1、已知兩邊及其夾角,求第三邊和其他兩個角。
2、已知三邊求三個內角;
3、判斷三角形的形狀。以及相關的證明題。
本著數學與專業有機結合的指導思想,讓數學服務于專業的需要。以及最大限度的提高學生的學習興趣,在本節課,我不是將余弦定理簡單呈現給學生,而是創造設情境,設計了與機械相關聯并具有愛國主題的二個任務,通過任務驅動法教學,極大提高了學生的學習興趣,激發學生探索新知識的強烈求知欲望,在完成數學教學任務的同時,強化了數學與專業的有機結合,培養了學生將數學知識運用于自身專業中的能力。同時通過任務驅動,培養了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的`激發了愛國主義精神。
在確定教學方法前,首先要求教師吃透教材,選擇恰當的教學方法和教學手段把知識傳授給學生。本節課主要采用任務驅動法、引導發現法、觀察法、歸納總結法、講練結合法。并采用電教手段使用多媒體輔助教學。
1、任務驅動法。
教師精心設計與機械專業相關聯的二個任務,作為貫穿整節課的主線,通過具體任務的完成,提高學生學習的興趣,激發求知欲,啟發學生對問題進行思考。在研究過程中,激發學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發了愛國主義精神。
2、引導發現法、觀察法。
通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發,發現余弦定理,并證明它。
3、歸納總結法。
學生通過前期的探索研究,自主歸納總結出余弦定理及其推論及判斷三角形形狀的相關規律。
4、講練結合法。
講授充分發揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發揮出學生的主觀能動性,成為學習的主體。
學生學法主要有觀察、分析、發現、自主探究、小組協作等方法。經教師啟發、誘導,學生通過觀察與分析去發現并證明余弦定理,培養歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質。
(一)知識目標。
2、使學生初步掌握應用余弦定理解斜三角形。
(二)能力目標。
1、培養學生在本專業范圍內熟練運用余弦定理解決實際問題的能力。
2、通過啟發、誘導學生發現和證明余弦定理的過程,培養學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過對余弦定理的推導,培養學生的知識遷移能力和建模意識,及合作學習的意識。
(三)德育目標。
1、培養學生的愛國主義精神、及團結、協作精神。
2、通過三角函數、余弦定理、向量的數量積等知識的聯系理解事物之間普遍聯系與辯證統一。
分析勾股定理的結構特征,從而突破發現余弦定理,應用余弦定理解斜三角形。
教學中注重突出重點、突破難點,從五個層次進行教學。
創設情境、任務驅動;
引導探究、發現定理;
完成任務、應用遷移;
拓展升華、交流反思;
(一)導入。
1、教師創設情境設置二個任務,做為貫穿本課的主線和數學與專業有機結合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。
2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經教師啟發、誘導,學生通過探索研究,合理猜想來發現余弦定理。
(二)新課。
3、證明猜想,導出余弦定理及余弦定理的變形。
經過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4、解決二個任務。
5、操作演練,鞏固提高。
6、小結:
通過學生口答方式小結,讓學生強化記憶,分清重點,深化對余弦定理的理解。
7、作業:
板書是課堂教學重要部分,為再現知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。
數學余弦定理說課稿(精選15篇)篇四
一、教材分析:(說教材)。
二、說教學思路。
本著數學與專業有機結合的指導思想,讓數學服務于專業的需要。以及最大限度的提高學生的學習興趣,在本節課,我不是將余弦定理簡單呈現給學生,而是創造設情境,設計了與機械相關聯并具有愛國主題的二個任務,通過任務驅動法教學,極大提高了學生的學習興趣,激發學生探索新知識的強烈求知欲望,在完成數學教學任務的同時,強化了數學與專業的有機結合,培養了學生將數學知識運用于自身專業中的能力。同時通過任務驅動,培養了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的激發了愛國主義精神。
三、說教法。
教師精心設計與機械專業相關聯的二個任務,作為貫穿整節課的主線,通過具體任務的完成,提高學生學習的興趣,激發求知欲,啟發學生對問題進行思考。在研究過程中,激發學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發了愛國主義精神。
2.引導發現法、觀察法。
通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發,發現余弦定理,并證明它。
3.歸納總結法。
學生通過前期的探索研究,自主歸納總結出余弦定理及其推論及判斷三角形形狀的相關規律。
4.講練結合法。
講授充分發揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發揮出學生的主觀能動性,成為學習的主體。
四、說學法。
學生學法主要有觀察、分析、發現、自主探究、小組協作等方法。經教師啟發、誘導,學生通過觀察與分析去發現并證明余弦定理,培養歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質。
五、教學目標。
(一)知識目標。
2、使學生初步掌握應用余弦定理解斜三角形。
1
(二)能力目標。
1、培養學生在本專業范圍內熟練運用余弦定理解決實際問題的能力。
2、通過啟發、誘導學生發現和證明余弦定理的過程,培養學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過對余弦定理的推導,培養學生的知識遷移能力和建模意識,及合作學習的意識。
(三)德育目標。
1、培養學生的愛國主義精神、及團結、協作精神。
2、通過三角函數、余弦定理、向量的數量積等知識的聯系理解事物之間普遍聯系與辯證統一。
六、教學重點。
教學重點是余弦定理及應用余弦定理解斜三角形;
七、教學難點。
教學中注重突出重點、突破難點,從五個層次進行教學。
創設情境、任務驅動;
引導探究、發現定理;
完成任務、應用遷移;
拓展升華、交流反思;
小結歸納、布置作業。
(一)、導入。
1、教師創設情境設置二個任務,做為貫穿本課的主線和數學與專業有機結合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。
2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經教師啟發、誘導,學生通過探索研究,合理猜想來發現余弦定理。
(二)、新課。
3.證明猜想,導出余弦定理及余弦定理的變形。
經過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4.解決二個任務。
5.操作演練,鞏固提高。
6.小結:
通過學生口答方式小結,讓學生強化記憶,分清重點,深化對余弦定理的理解。
7.作業:
九、板書設計。
板書是課堂教學重要部分,為再現知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。
十、課后反思。
在教學設計上,采用任務驅動,教師精心設計與機械專業相關聯的二個任務,作為貫穿整節課的主線,通過具體任務的完成,即提高學生學習的興趣,又激發求知欲;知識點學習則循序漸進,符合學生的認知特點。經教師啟發、誘導,學生通過觀察、分析、發現、自主探究、小組協作等方法在獲取新知的同時,培養了歸納與猜想、抽象與概括等邏輯思維能力。
數學余弦定理說課稿(精選15篇)篇五
《余弦定理》是全日制中等國家規劃教材(人教版)數學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關三角形的三類問題:
1)、已知兩邊及其夾角,求第三邊和其他兩個角。
2)、已知三邊求三個內角;
3)、判斷三角形的形狀。以及相關的證明題。
本著數學與專業有機結合的指導思想,讓數學服務于專業的需要。以及最大限度的提高學生的學習興趣,在本節課,我不是將余弦定理簡單呈現給學生,而是創造設情境,設計了與機械相關聯并具有愛國主題的二個任務,通過任務驅動法教學,極大提高了學生的學習興趣,激發學生探索新知識的強烈求知欲望,在完成數學教學任務的同時,強化了數學與專業的有機結合,培養了學生將數學知識運用于自身專業中的能力。同時通過任務驅動,培養了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的激發了愛國主義精神。
在確定教學方法前,首先要求教師吃透教材,選擇恰當的教學方法和教學手段把知識傳授給學生。本節課主要采用任務驅動法、引導發現法、觀察法、歸納總結法、講練結合法。并采用電教手段使用多媒體輔助教學。
1.任務驅動法。
教師精心設計與機械專業相關聯的二個任務,作為貫穿整節課的主線,通過具體任務的完成,提高學生學習的興趣,激發求知欲,啟發學生對問題進行思考。在研究過程中,激發學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發了愛國主義精神。
2.引導發現法、觀察法。
通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發,發現余弦定理,并證明它。
3.歸納總結法。
學生通過前期的探索研究,自主歸納總結出余弦定理及其推論及判斷三角形形狀的相關規律。
4.講練結合法。
講授充分發揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發揮出學生的主觀能動性,成為學習的主體。
學生學法主要有觀察、分析、發現、自主探究、小組協作等方法。經教師啟發、誘導,學生通過觀察與分析去發現并證明余弦定理,培養歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質。
(一)知識目標。
2、使學生初步掌握應用余弦定理解斜三角形。
1
(二)能力目標。
1、培養學生在本專業范圍內熟練運用余弦定理解決實際問題的能力。
2、通過啟發、誘導學生發現和證明余弦定理的過程,培養學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過對余弦定理的推導,培養學生的知識遷移能力和建模意識,及合作學習的意識。
(三)德育目標。
1、培養學生的愛國主義精神、及團結、協作精神。
2、通過三角函數、余弦定理、向量的數量積等知識的聯系理解事物之間普遍聯系與辯證統一。
教學重點是余弦定理及應用余弦定理解斜三角形;
教學中注重突出重點、突破難點,從五個層次進行教學。
創設情境、任務驅動;
引導探究、發現定理;
完成任務、應用遷移;
拓展升華、交流反思;
小結歸納、布置作業。
(一)、導入。
1、教師創設情境設置二個任務,做為貫穿本課的主線和數學與專業有機結合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。
2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經教師啟發、誘導,學生通過探索研究,合理猜想來發現余弦定理。
(二)、新課。
3.證明猜想,導出余弦定理及余弦定理的變形。
經過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4.解決二個任務。
5.操作演練,鞏固提高。
6.小結:
通過學生口答方式小結,讓學生強化記憶,分清重點,深化對余弦定理的理解。
7.作業:
板書是課堂教學重要部分,為再現知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。
在教學設計上,采用任務驅動,教師精心設計與機械專業相關聯的二個任務,作為貫穿整節課的主線,通過具體任務的完成,即提高學生學習的興趣,又激發求知欲;知識點學習則循序漸進,符合學生的認知特點。經教師啟發、誘導,學生通過觀察、分析、發現、自主探究、小組協作等方法在獲取新知的同時,培養了歸納與猜想、抽象與概括等邏輯思維能力。
數學余弦定理說課稿(精選15篇)篇六
一、教材分析:(說教材)。
《余弦定理》是全日制中等教育國家規劃教材(人教版)數學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關三角形的三類問題:1)、已知兩邊及其夾角,求第三邊和其他兩個角。2)、已知三邊求三個內角;3)、判斷三角形的形狀。以及相關的證明題。
二、說教學思路。
本著數學與專業有機結合的指導思想,讓數學服務于專業的需要。以及最大限度的提高學生的學習興趣,在本節課,我不是將余弦定理簡單呈現給學生,而是創造設情境,設計了與機械相關聯并具有愛國主題的二個任務,通過任務驅動法教學,極大提高了學生的學習興趣,激發學生探索新知識的強烈求知欲望,在完成數學教學任務的同時,強化了數學與專業的有機結合,培養了學生將數學知識運用于自身專業中的能力。同時通過任務驅動,培養了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設計的兩個任務具有愛國主義題材,學生在完成知識學習的同時,也極大的激發了愛國主義精神。
三、說教法。
教師精心設計與機械專業相關聯的二個任務,作為貫穿整節課的主線,通過具體任務的完成,提高學生學習的興趣,激發求知欲,啟發學生對問題進行思考。在研究過程中,激發學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發了愛國主義精神。
2.引導發現法、觀察法。
通過對勾股定理的觀察和三角形直角的相關變形,學生從中受啟發,發現余弦定理,并證明它。
3.歸納總結法。
學生通過前期的探索研究,自主歸納總結出余弦定理及其推論及判斷三角形形狀的相關規律。
4.講練結合法。
講授充分發揮教師主導作用,引導學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發揮出學生的主觀能動性,成為學習的主體。
四、說學法。
學生學法主要有觀察、分析、發現、自主探究、小組協作等方法。經教師啟發、誘導,學生通過觀察與分析去發現并證明余弦定理,培養歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質。
五、教學目標。
(一)知識目標。
1、使學生掌握余弦定理及其證明。
2、使學生初步掌握應用余弦定理解斜三角形。
1
(二)能力目標。
1、培養學生在本專業范圍內熟練運用余弦定理解決實際問題的能力。
2、通過啟發、誘導學生發現和證明余弦定理的過程,培養學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過對余弦定理的推導,培養學生的知識遷移能力和建模意識,及合作學習的意識。
(三)德育目標。
1、培養學生的愛國主義精神、及團結、協作精神。
2、通過三角函數、余弦定理、向量的數量積等知識的聯系理解事物之間普遍聯系與辯證統一。
六、教學重點。
教學重點是余弦定理及應用余弦定理解斜三角形;
七、教學難點。
教學中注重突出重點、突破難點,從五個層次進行教學。
創設情境、任務驅動;
引導探究、發現定理;
完成任務、應用遷移;
拓展升華、交流反思;
小結歸納、布置作業。
(一)、導入。
1、教師創設情境設置二個任務,做為貫穿本課的主線和數學與專業有機結合的鈕帶,通過完成這二個任務,達到掌握余弦定理并學會應用的目標。
2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經教師啟發、誘導,學生通過探索研究,合理猜想來發現余弦定理。
(二)、新課。
3.證明猜想,導出余弦定理及余弦定理的變形。
經過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4.解決二個任務。
5.操作演練,鞏固提高。
6.小結:
通過學生口答方式小結,讓學生強化記憶,分清重點,深化對余弦定理的理解。
7.作業:
九、板書設計。
板書是課堂教學重要部分,為再現知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。
十、課后反思。
在教學設計上,采用任務驅動,教師精心設計與機械專業相關聯的二個任務,作為貫穿整節課的主線,通過具體任務的完成,即提高學生學習的興趣,又激發求知欲;知識點學習則循序漸進,符合學生的認知特點。經教師啟發、誘導,學生通過觀察、分析、發現、自主探究、小組協作等方法在獲取新知的同時,培養了歸納與猜想、抽象與概括等邏輯思維能力。
數學余弦定理說課稿(精選15篇)篇七
這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)教學目標。
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。
情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。
(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發現勾股定理。
突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
數學余弦定理說課稿(精選15篇)篇八
“勾股定理的逆定理”一節,是在上節“勾股定理”之后,繼續學習的一個直角三角形的判斷定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。課標要求學生必須掌握。
(二)、教學目標:。
根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節課的教學目標。
知識技能:
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。
過程與方法:
2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形結合方法的應用。
3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
情感態度:
(三)、學情分析:
盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節課的重點、難點和關鍵。
關鍵:輔助線的添法探索。
本節課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數學認識結構的目的。
(一)、復習回顧:復習回顧與勾股定理有關的內容,建立新舊知識之間的聯系。
(二)、創設問題情境。
一開課我就提出了與本節課關系密切、學生用現有的知識可探索卻又解決不好的問題,去提示本節課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如***那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發了學生的興趣,因而全身心地投入到學習中來,創造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數學就在身邊。
(三)、學生在教師的指導下嘗試解決問題,總結規律(包括難點突破)。
因為幾何來源于現實生活,對初二學生來說選擇適當的時機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。
接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創造的快樂。
在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發揮教課書的作用,養成學生看書的習慣,這也是在培養學生的自學能力。
(四)、組織變式訓練。
本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結論,這些作法培養了學生靈活轉換、舉一反三的能力,發展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調節教法,同時注意加強有針對性的個別指導,把發展學生的思維和隨時把握學生的學習效果結合起來。
(五)、歸納小結,納入知識體系。
本節課小結先讓學生歸納本節知識和技能,然后教師作必要的`補充,尤其是注意總結思想方法,培養能力方面,比如輔助線的添法,數形結合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發現并證明的,這種討論問題的方法是培養我們發現問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。
(六)、作業布置。
由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業。a組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養,以及提高他們學好數學的信心。b組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養他們的思維素質,發展學生的個性有積極作用。
為貫徹實施素質教育提出的面向全體學生,使學生全面發展主動發展的精神和培養創新活動的要求,根據本節課的教學內容、教學要求以及初二學生的年齡和心理特征以及學生的認知規律和認知水平,本節課我主要采用了以學生為主體,引導發現、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養學生的學習興趣,調動學生的學習積極性,發展學生的思維;有利于培養學生動手、觀察、分析、猜想、驗證、推理能力和創新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。
此外,本節課我還采用了理論聯系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯系學生現有的經驗和感性認識,由最鄰近的知識去向本節課遷移,通過動手操作讓學生***探討、主動獲取知識。
總之,本節課遵循從生動直觀到抽象思維的認識規律,力爭最大限度地調動學生學習的積極性;力爭把教師教的過程轉化為學生親自探索、發現知識的過程;力爭使學生在獲得知識的過程中得到能力的培養。
文檔為doc格式。
數學余弦定理說課稿(精選15篇)篇九
“兩角差的余弦公式”是課標教材人教版必修4第三章《三角恒等變換》第一節第一課時的內容。學生已經學習了三角函數的基本關系和誘導公式以及平面向量,在此基礎上,本章將學習任意兩個角和、差的三角函數式的變換。作為本章的第一節課,重點是引導學生通過合作、交流,探索兩角差的余弦公式,為后續簡單的恒等變換的學習打好基礎。由于兩角差的余弦公式推導方法有很多,書本上出現兩種證明方法——三角函數線法和向量法。課本中豐富的生活實例為學生用數學的眼光看待生活,體驗用數學知識解決實際問題,有助于增強學生的數學應用意識。
二、學情分析。
學生在第一章已經學習了三角函數的基本關系和誘導公式以及平面向量,但只對有特殊關系的兩個角的三角函數關系通過誘導公式變換有一定的了解。對任意兩角和、差的三角函數知之甚少。本課時面對的學生是高一年級的學生,學生對探索未知世界有主動意識,對新知識充滿探求的渴望,但應用已有知識解決問題的能力還處在初期,需進一步提高。
三、教法學法分析。
(一)、說教法。
基于新課標的理念中“學生主體性和教師主導性”的原則以及本班學生的實際情況,我采取如下教學方法:
1、通過學生熟悉的實際生活問題引入課題,為公式學習創設情境,拉近數學與現實的距離,激發學生的求知欲,調動學生的主體參與的積極性。
2、突破教材,引導學生利用較為簡潔的兩種方法——兩點間距離公式和向量法,在鼓勵學生主體參與、樂于探究、勤于思考公式推導的同時,充分發揮教師的主導作用。
3、采用投影儀、多媒體等現代教學手段,增強教學簡易性和直觀性。
4、通過有梯度的練習、變式訓練、分層作業,學生對知識掌握逐步提高。
(二)、說學法。
從學生已有的認知水平、認知能力出發,經過觀察分析、自主探究、推導證明、歸納總結等環節,理解公式的推導過程,通過有梯度的練習、變式訓練、分層作業,學生逐步提高對知識掌握。
四、教學目標。
(根據新課程標準和本節知識的特點,以及本班學生的實際情況,確立以下教學目標)。
(一)、知識目標。
1、理解兩角差的余弦公式的推導過程,并會利用兩角差的余弦公式解決簡單問題。
(二)、能力目標。
通過利用同角三角函數變換及向量推導兩角差的余弦公式,學生體會利用已有知識解決問題的一般方法,提高學生分析問題和解決問題的能力。
(三)、情感目標。
使學生經歷數學知識的發現、探索和證明的過程,體驗成功探索新知的樂趣,激發學生提出問題的意識以及努力分析問題、解決問題的激情。
五、教學重難點。
(由于本節課主要內容是公式的推導,所以教學重難點如下:)。
數學余弦定理說課稿(精選15篇)篇十
兩角差的余弦公式是推導其它十個公式的基礎,所以我想著重講這一小節,本節課的重點和難點是兩角差的余弦公式的推導,所以在備課階段,我研究了教材和教師用書,并且還在網上下載了許多這節課的教學設計。同時我根據我們班學生對知識理解的快慢,把兩角差余弦公式的幾何證明方法舍去了,想只講它的向量的方法,有兩方面的考慮,第一是剛結束平面向量的學習,對數量積還有印象,第二是從另一個方面讓學生去體會向量作為一種工具的應用,從而使學生能對數學有那么一點點興趣。
在我準備好之后,我又問了其他的數學老師,她們也同意只講向量的證明方法,另一個方法對學生連提都不提,另外我還問了一下如何引入這一節的內容,并提了我的引入方法——將教材上的例題進行適當的改編,降低了難度,但是老師告訴我就直接點明主題就行了,加入引入的話會把學生繞暈的。我自己也想了想上次課講數量積的時候對文科生用功的例子引入,結果可以想象,開頭學生就覺得好難,等到講數量積定義的時候學生完全聽不進去了,那節課算是失敗的。這一次我想了想采取了保守的策略——直接進入主題。
剛開始的時候效果還是不錯的,通過讓學生猜測15度《兩角差的余弦公式》的`教學反思——潘紅亞的余弦值引起了學生的興趣,很自然的進入了公式的推導,但是我沒有想到會在寫角的終邊與單位圓交點坐標時遇到了困難,學生一點想不起來三角函數是如何定義的,再加上當時快下課了,我沒有進一步引導,而只是按照我自己的進度講完推導過程,最后學生迷茫的表情讓我很有挫敗感,我就帶著學生一塊記憶公式,并告訴他們只要會用公式做題就可以了,聽不懂就算了。
這節課過后,我自己靜下心來想了想,我犯了數學課的大忌,一味地講公式,套解法是最快得分的捷徑,但它也是扼殺思考的最有效的管道。數學的根基在于理解而非公式或解法。通過最近的講課,我發現張碩老師對我們講的有關數學教學的理論我都沒用上,所以我想等到講必修五的時候,我需要的是花大量的時間備課,適當應用一些新的教學理論,改變一下數學課堂,實習就是將自己學到的理論應用于實踐。
數學余弦定理說課稿(精選15篇)篇十一
本節課是高中數學教材北師大版必修5第二章《解三角形》余弦定理的第一課時內容,《課程標準》和教材把解三角形這部分內容安排在必修5,位置相對靠后,在此前學生已經學習了三角函數、平面向量、直線和圓的方程等與本章知識聯系密切的內容,使得這部分知識的處理有了比較多的工具,某些內容處理的更加簡潔。學數學的最終目的是應用數學,可是比較突出的是,學生應用數學的意識不強,創造能力弱,往往不能把實際問題抽象成數學問題,不能把所學的知識應用到實際問題中去,盡管對一些常見數學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發現問題、解決問題的思維方法了解不夠,針對這些情況,教學中要重視從實際問題出發,引入數學課題,最后把數學知識應用于實際問題。
余弦定理是關于任意三角形邊角之間的另一定理,是解決有關三角形問題與實際問題(如測量等)的重要定理,它將三角形的邊角有機的結合起來,實現了邊與角的互化,從而使三角和幾何有機的結合起來,為求與三角形有關的問題提供了理論依據。
教科書直接從三角形三邊的向量出發,將向量等式轉化為數量關系,得到余弦定理,言簡意賅,簡潔明快,但給人感覺似乎跳躍較大,不夠自然,因此在創設問題情境中加了一個鋪墊,即讓學生想用向量方法證明勾股定理,再由特殊到一般,將直角三角形推廣為任意三角形,余弦定理水到渠成,并與勾股定理統一起來,這一嘗試是想回答:一個結論源自何處,是怎樣想到的。正弦定理和余弦定理源于向量的加減法運算,其實向量的加減法的三角法則和平行四四邊形法則從形上揭示了三角形的邊角關系,而正弦定理與余弦定理是從數量關系上揭示了三角形的邊角關系,向量的數量積則打通了三角形邊角的數形聯系,因此用向量方法證明正、余弦定理比較簡潔,在證明余弦定理時,讓學生自主探究,尋找新的證法,拓展思維,打通余弦定理與正弦定理、向量、解析幾何、平面幾何的聯系,在比較各種證法后體會到向量證法的優美簡潔,使知識交融、方法熟練、能力提升。
數學教學的主要目標是激發學生的潛能,教會學生思考,讓學生變得聰明,學會數學的發現問題,具有創新品質,具備數學文化素養是題中之義,想一想,成人工作以后,有多少人會再用到余弦定理,但圍繞余弦定理學生學到的發現方法、思維方式、探究創造與數學精神則會受用不盡。數學教學活動首先應圍繞培養學生興趣、激發原動力,讓學生想學數學這門課,同時指導學生掌握數學學習的一般方法,具備終身學習的基礎。教師要不斷提出好的數學問題,還要教會學生提出問題,培養學生發現問題的意識和方法,并逐步將發現問題的意識變成直覺和習慣,在本節課中,通過余弦定理的發現過程,培養學生觀察、類比、發現、推理的能力,學生在教師引導下,自主思考、探究、小組合作相互交流啟發、思維碰撞,尋找不同的證明方法,既培養了學生學習數學的興趣,同時掌握了學習概念、定理的基本方法,增強了學生的問題意識。其次,掌握正確的學習方法,沒有正確的'學習方法,興趣不可能持久,概念、定理、公式、法則的學習方法是學習數學的主要方法,學習的過程就是知其然,知其所以然、舉一反三的過程,學習余弦定理的過程正是指導學生掌握學習數學的良好學習方法的范例,引導學生發現余弦定理的來龍去脈,掌握余弦定理證明方法,理解余弦定理與其他知識的密切聯系,應用余弦定理解決其他問題。在余弦定理教學中,尋求一題多解,探究證明余弦定理的多種方法,指導一題多變,改變余弦定理的形式,如已知兩邊夾角求第三邊的公式、已知三邊求角的余弦值的公式,啟發學生一題多想,引導學生思考余弦定理與正弦定理的聯系,與勾股定理的聯系、與向量的聯系、與三角知識的聯系以及與其他知識方法的聯系,通過不斷改變方法、改變形式、改變思維方式,夯實了數學基礎,打通了知識聯系,掌握了數學的基本方法,豐富了數學基本活動經驗,激發了數學創造思維和潛能。
教學中也會有很多遺憾,有許多的漏洞,在創設情境,引導學生發現推導方法、鼓勵學生質疑提問、猜想等方面有很多遺憾,比如:如何引入向量,解釋的不夠。最后,希望各位同仁批評指正。
數學余弦定理說課稿(精選15篇)篇十二
(一)創設情境,導入新課。
問題1:任意角的三角函數是如何定義的?
(從實際問題出發,引導學生思考,從任意角的三角函數定義考慮能否求出,,從而引入本節課的課題----兩角差的余弦公式)。
問題2:我們在初中時就知道一些特殊角的三角函數值。那么大家驗證一下,=嗎?,下面我們就一起探究兩角差的余弦公式。
(引導學生利用特殊角檢驗,產生認知沖突,從而激發學生探究兩角差的余弦公式的興趣。)。
(二)探索公式,建構新知。
(由于兩角差的余弦公式推導方法有很多,本節課突破教材,引導學生利用較為簡潔的兩種方法——兩點間距離公式和向量法,書本上出現三角函數線法留給學生參照書本課下探究。公式得出后,生成點的動畫,讓學生進一步感知兩角差的余弦公式對任意角均成立,并啟發學生觀察公式的特征。)。
方法一(兩點間距離公式):如圖,角的終邊與單位圓交于;角的終邊與單位圓交于;角的終邊與單位圓交于;則:
所以:。
由于我們前面的推導均是在,且的條件下進行的,因此(1)式還不具備一般性。
若(1)式是否依然成立呢?
當時,設與的夾角為,則。
另一方面于是所以。
也有。
方法三(學生自主探究三角函數線法)。
(三)例題講解,知識遷移。
例1化簡求值:
(通過例1中有梯度的練習,學生能夠實現對公式的正向和逆向的簡單應用.求同時求出引例中橋的長度,培養學生應用數學的能力)。
(變式的教學中引導學生使用兩種方法:
方法一:從公式本身思考。
方法二:引導學生發現。
提高學生應用知識的能力和邏輯思維能力)。
(四)開放小結,歸納提升。
小結:本節課你學到了那些知識,有什么樣的心得體會?
口訣:余余正正異相連。
(引導學生從公式內容和推導方法兩個方面進行小結,不僅使學生對本節課的知識結構有一個清晰的認識,而且對所用到的數學方法和涉及的數學思想也得以領會,這樣既可以使學生完成知識建構,又可以培養其能力。開放式小結,啟發靈活,以問促思,能夠較全面的幫助學生歸納知識,形成技能。)。
(五)分層作業,鞏固提高(必做題)p127,練習1,3,4。
(選做題同學可以思考:能否用直角三角形中的三角函數關系證明兩角差的余弦公式?課后作業設置有必做題和選做題,使不同程度的學生都得到能力的提升,符合因材施教的教學規律)。
八、板書設計。
九、教后反思。
數學余弦定理說課稿(精選15篇)篇十三
本課中,教師立足于所創設的情境,通過學生自主探索、合作交流,親身經歷了提出問題、解決問題、應用反思的過程,學生成為余弦定理的“發現者”和“創造者”,切身感受了創造的苦和樂,知識目標、能力目標、情感目標均得到了較好的落實,為今后的“定理教學”提供了一些有用的借鑒。
創設數學情境是“情境。應用”教學的基礎環節,教師必須對學生的身心特點、知識水平、教學內容、教學目標等因素進行綜合考慮,對可用的情境進行比較,選擇具有較好的教育功能的情境。
從應用需要出發,創設認知沖突型數學情境,是創設情境的常用方法之一。“余弦定理”具有廣泛的應用價值,故本課中從應用需要出發創設了教學中所使用的數學情境。該情境源于教材第一章1。3正弦、余弦定理應用的例1。實踐說明,這種將教材中的例題、習題作為素材改造加工成情境,是創設情境的一條有效途徑。只要教師能對教材進行深入、細致、全面的研究,便不難發現教材中有不少可用的素材。
“情境。應用”教學模式主張以問題為“紅線”組織教學活動,以學生作為提出問題的主體,如何引導學生提出問題是教學成敗的關鍵,教學實驗表明,學生能否提出數學問題,不僅受其數學基礎、生活經歷、學習方式等自身因素的影響,還受其所處的環境、教師對提問的態度等外在因素的制約。因此,教師不僅要注重創設適宜的數學情境(不僅具有豐富的內涵,而且還具有“問題”的誘導性、啟發性和探索性),而且要真正轉變對學生提問的態度,提高引導水平,一方面要鼓勵學生大膽地提出問題,另一方面要妥善處理學生提出的問題。關注學生學習的結果,更關注學生學習的過程;關注學生數學學習的水平,更關注學生在數學活動中所表現出來的情感與態度;關注是否給學生創設了一種情境,使學生親身經歷了數學活動過程.把“質疑提問”,培養學生的數學問題意識,提高學生提出數學問題的能力作為教與學活動的起點與歸宿。
2、培養學生自主學習、合作學習、研究(探究)性學習的學習方式。
(1)新教材與一期教材相比,有一個很大的變化就是在課本中增加了若干“探究與實踐”的研究性課題,這些課題往往有著一定的實際生活情景,如出租車計價問題,測量建筑高度,郵資問題,“雪花曲線”等等,這些課題除了增強學生的數學應用能力之外,還有一個重要作用就是改變學生以往的學習方式。
在教學實踐中,我對不同內容采取了不同的處理方式,像用單位圓中有向線段表示三角比;組合貸款中的數學問題主要在課堂引導學生完成;像郵件與郵費問題、上海出租車計價問題、聲音傳播問題、測建筑物的高度則采取課內介紹、布置、檢查,學生主要在課外完成的方法。學生通過調查、上網收集數據,集體研究討論,實踐動手操作,無形之中使自己學習的主動性得以大大提高,自學能力也有所長足發展,從而有效的培養學生自主獲取知識的能力,以適應未來社會發展的需要。
由此可見,新課程突出了“以學生發展為本”的素質教育理念與目標,強調素質的動態性和發展性,揭示了素質教育的本質,把學生素質的發展作為適應新世紀需要的培養目標和根本所在。因此,在教學實踐中必須確立學生的主體地位。
(2)從培養學生的學習興趣著手,變被動接受性學習為主動學習、自主學習、合作學習、研究(探究)性學習。根本改變重教法而輕學法的狀況,使學生真正做到不但“知其然”,而且“知其所以然”,教師不僅要授之于“魚”,更應該授之于“漁”,把本來應該讓學生分析、總結、歸納、解決的問題由學生自己來解決。對學習有困難的學生,教師要多給予及時的關照與幫助,鼓勵他們主動參與數學學習活動,嘗試用自己的方式解題,敢于發表自己的看法,對出現的問題要幫助他們分析產生的原因,并鼓勵他們自己去改正,從而增強學習數學的信心和興趣。對于學有余力并對數學有興趣的學生,教師可以為他們提供一些有價值的材料,指導他們閱讀,發展他們的數學才能。
數學余弦定理說課稿(精選15篇)篇十四
引例:
例2:
例3:
4:
小結:
教學評價分析。
診斷性評價:
1.按常規,學生很可能想到先探究兩角和的正弦公式,怎樣想到先研究兩角差的余弦公式是一個難點(但非重點),教學時可以直接提出研究兩角差的余弦公式。但后面補充老教材的證明方法,讓學生明白和與差內在的聯系性與統一性,努力讓學習過程自然。
2.盡管教材在前面的習題中,已經為用向量法證明兩角差的余弦公式做了鋪墊,多數學生仍難以想到.教師需要引導學生,聯想到向量的數量積公式和單位圓上點的坐標特點,努力使數學思維顯得自然、合理。
3.用向量的數量積公式證明兩角差的余弦公式時,學生容易犯思維不嚴謹的錯誤,教學時需要引導學生搞清楚兩角差與相應向量的夾角的聯系與區別。
預期效果:。
1、讓學生在掌握兩角差的余弦公式探究方法的基礎上,能夠自我總結形成公式探究的一般方法。
2、激發學生的探究欲望,能夠獨立或合作提出推導其它三角恒等式的方案,形成對三角恒等變換的本質認識,加深對靈活運用公式的理解。
3、培養學生的“問題意識”,在探索的過程中學會將“知識問題化”,大膽、合理地提出猜測,通過證明、完善,最終達到將“問題知識化”的目的.
數學余弦定理說課稿(精選15篇)篇十五
本課是在學生學習了三角函數、平面幾何、平面向量、正弦定理的基礎上而設置的教學內容,因此本課的教學有較多的處理辦法。從解三角形的問題出發,提出解題需要,引發認知沖突,激起學生的求知欲望,調動了學生的學習積極性;在定理證明的教學中,引導學生從向量知識、坐標法、平面幾何等方面進行分析討論。在給出余弦定理的三個等式和三個推論之后,又對知識進行了歸納比較,發現特征,便于學生識記,同時也指出了勾股定理是余弦定理的特殊情形,提高了學生的思維層次。
命題的應用是命題教學的一個重要環節,學習命題的重要目的是應用命題去解決問題。所以,例題的精選、講解是至關重要的。設計中的例1、例2是常規題,讓學生應用數學知識求解問題,鞏固余弦定理知識。例3是已知兩邊一對角,求解三角形問題,可用正弦定理求之,也可用余弦定理求解,通過比較分析,突出了正、余弦定理的聯系,深化了對兩個定理的理解,培養了解決問題的能力。本課在繼承了傳統數學教學模式優點,結合新課程的要求進行改進和發展,以發展學生的數學思維能力為主線,發揮教師的設計者,組織者作用,在使學生掌握知識的同時,幫助學生摸索自己的學習方法。
本課的教學應具有承上啟下的目的。因此在教學設計時既兼顧前后知識的聯系,又使學生明確本課學習的重點,將新舊知識逐漸地融為一體,構建比較完整的知識系統。所以在余弦定理的表現方式、結構特征上重加指導,只有當學生正確地理解了余弦定理的本質,才能更好地應用求解問題。本課教學設計力求在型(模型、類型),質(實質、本質),思(思維、思想方法)上達到教學效果。本課之前學生已學習過三角函數,平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯系的內容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡潔的工具。因此在本課的教學設計中抓住前后知識的聯系,重視數學思想的教學,加深對數學概念本質的理解,認識數學與實際的聯系,學會應用數學知識和方法解決一些實際問題。學生應用數學的意識不強,創造力不足、看待問題不深入,很大原因在于學生的知識系統不夠完善。因此本課運用聯系的觀點,從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對學生進行示范引導,將舊知識與新知識進行重組擬合及提高,幫助學生建立自己的良好知識結構。
本課學生動手較多,會有很多新問題產生,因此顯得課堂時間不足。今后教學要在這方面注意把握。