教案模板的設計需要充分考慮學生的主體地位和個性差異,以促進學生的主動參與和積極學習。學習如何修改和改進教案模板可以讓我們的教學更加靈活和有針對性。
必修數學教案(模板20篇)篇一
專題八當今世界經濟的全球化趨勢。
通史概要:
當今世界經濟發展有兩個明顯的趨勢:一是世界經濟區域集團化,二是世界經濟全球化。世界經濟區域集團化是最終實現經濟全球化的重要步驟和途徑,經濟全球化則是區域經濟集團化的最終歸宿。
世界經濟區域集團化是生產力高度發展的必然產物,是生產國家化、國際分工向縱深發展需要加強合作的結果,也是世界經濟競爭激烈的表現。它產生的原因有:現代科技的發展、國際間經濟競爭和客觀上存在的分工。區域集團化的發展分為三個階段:第一階段為五六十年代,世界經濟集團化的趨勢主要出現在歐洲,如歐洲煤炭共同體的出現。第二階段為六七十年代,區域集團化成為一種世界經濟現象。歐洲區域集團化趨勢進一步發展,如歐共體的建立;一些發展中國家的地區性經濟集團也紛紛出現,如東盟的出現。第三階段為80年代至今,區域集團化掀起新的浪潮,進入了較高層次的經濟一體化時期,出現了歐盟、北美自由貿易區和亞太經合組織三大區域經濟集團。
世界經濟全球化是世界生產力發展的要求和結果,是不以人的意志為轉移的歷史趨勢。它突出的表現在國際貿易、國際投資、國際金融和跨國公司的發展。經濟全球化的過程中的問題是:在經濟全球化的過程中,不可避免地把資本主義固有的矛盾擴展到全球,造成南北矛盾、貧富分化、環境問題、能源危機、全球性的經濟金融危機、恐怖組織活動猖獗等等,直接影響到人類的生存與發展。
我國在當今世界經濟發展趨勢中,作為發展中國家,應該如何面對機遇和挑戰,成了新時期經濟發展人們共同關心的話題。從中國加入亞太經合組織、加入世界貿易組織,加強同東盟的聯系的史實中,我們的態度是:在堅持獨立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態,加強國際的合作與交流,參與國際競爭,抓住機遇,接受挑戰,在國際的競爭和合作中,提高我國的經濟發展水平,跟隨世界發展的潮流。概括而言,就是辯證地看待世界經濟發展趨勢這一經濟現象,樹立正確的.發展觀。
一歐洲的聯合。
課標要求:以歐洲聯盟、北美自由貿易區及亞太經濟合作組織為例,認識當今世界經濟區域集團化發展趨勢。
教學目標:
(1)知識與能力:分析第二次世界大戰后西歐經濟進入“黃金時代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認識歐洲聯盟成立對世界經濟和政治格局的影響。
概述歐元產生的影響,培養多角度、多層次理解問題的能力。
(2)過程與方法:通過討論西歐經濟在二戰后進入“黃金時代”的共同原因,進一步思考中國的社會主義建設應如何借鑒其合理的方法與正確的經驗,學習用聯系的方法看待問題,提高理論指導實踐的能力;通過分組學習,搜集“歐共體”及“歐盟”成立的資料,了解整個歐洲走向聯合的過程,認識當今世界經濟區域集團化發展趨勢。
(3)情感、態度與價值觀:通過對歐洲走向聯合這段歷史的學習,認識當今國際社會國家間團結協作的重要性,樹立國際意識;通過對歐洲走向聯合的史實的歸納,得出一個別國家或地區怎樣才能快速發展的一般規律;并結合我國的實際,進一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現代化建設而奮斗的責任感。
教學課時:1課時。
重點難點:
重點:歐洲走向聯合過程及影響。
難點:歐洲走向聯合的原因。
教學建議:
1、本課共有三個方面的內容,“西歐經濟的'黃金時代'”主要講述:二戰后的20世紀50年代到60年代,西歐各國經濟在恢復的基礎上,進入調整增長期,被稱為西歐經濟的“黃金時代”;“從'歐共體到'歐洲聯盟'”主要是歐洲從經濟一體化到政治一體化的發展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進一步表明歐洲走向聯合的趨勢。
2、西歐經濟高速發展的共同原因:第一,西歐各國進行社會改革和政策調整。進行社會改革,例如:推行福利制度,適當改善人民的生活條件,緩和社會矛盾,穩定社會秩序;進行政策調整,如:將一些私人壟斷企業國有化,并建立有關國計民生的重要工業部門。這些政策的推行,促進了西歐經濟的穩定持續高速發展,從而出現前所未有的繁榮。第二,馬歇爾計劃的實施,解決了西歐戰后經濟發展的啟動資金,西歐重工業在短時期內完成了新的裝備,并有能力購買足夠的工業原料。第三,戰后西歐廣泛使用第三次科技革命的成果,并對產業部門進行了改造,使勞動生產率大大提高,從而有力地推動了經濟的高速發展。
3、伴隨著歐洲經濟合作的成功,歐洲經濟不斷的恢復,要求在國際上發揮更重要的作用。因而要加強在政治領域的合作成為歐洲各國的一致要求。面對二戰結束后以美蘇為首的兩極爭霸的冷戰格局,歐洲各國迫切要求組成一個更加強大的團體來維護自己的利益。于是在政治領域的合作很快便實施開來。
4、為進一步加強歐洲共同體之間的經濟合作與交流,減少共同體內部成員國存在的貿易壁壘,用統一的貨幣在歐共體各國之間流通,實現經濟的聯合,從而進一步加強歐洲各國之間的政治合作。
二、發展的亞太。
課標要求:以歐洲聯盟、北美自由貿易區及亞太經濟合作組織為例,認識當今世界經濟區域集團化發展趨勢。
教學目標:
(1)知識與能力:了解東盟的發展歷程,說說中國與東盟的交往情況;分析北美自由貿易區建立的原因和影響,比較北美自由貿易區與歐盟的異同;概述亞太經濟合作組織建立的過程,探討亞太國家加強合作的途徑與方式。
(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴大及其影響;用列表等方式比較北美自由貿易區與歐盟的異同,學習用比較的方法認識歷史問題;通過上網等途徑搜集中國參加apec會議的資料,多渠道去了解和認識apec建立的史實及影響。
(3)情感、態度與價值觀:通過對東盟、北美自由貿易區和亞太經合組織等區域經濟一體化進程的學習和了解,體會當今世界國家間加強合作、競爭與發展的重要性,樹立合作與競爭的意識。
教學課時:1課時。
重點難點:
重點:通過了解歐洲聯盟、北美自由貿易區及亞太經濟合作組織,認識當今世界經濟區域集團化發展趨勢。
難點:中國積極參與世界區域經濟組織的意義。
教學建議:
1、在經濟全球化的進程中,亞太地區的經濟集團化也在不斷深入發展。世界三大區域性經濟集團有兩個分別在該地區。這一地區成為當今世界上經濟發展最活躍地區。課文分別以“東盟”、“北美自由貿易區”和“亞太經全組織”三個經濟區域集團為例,介紹了當今世界經濟區域集團化發展趨勢。每個集團內部有著自身的規則的同時也不斷與其它區域集團相聯系,從而使世界經濟形成了密不可分的一個整體。
2、東南亞國家聯盟自1967成立以來,已經歷時近三分之一世紀。東盟在維護和促進各成員國相互間的政治和經濟合作,實現地區和平穩定,加快成員國經濟增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。
3、日本經濟的崛起,特別是歐洲經濟一體化實施的外在壓力,美國、加拿大和墨西哥3國發展各自經濟的內在動力,是北美自由貿易區成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價值觀念、風俗習慣等又頗相似;經濟互補性強;相互貿易基礎良好,美、加、墨3國具有實行經濟一體化的必要性,又具有實行經濟一體化的可能性。美國認為要取得世界經濟的主導地位,只有建立以自己為中心經濟區域集團,才能在經濟全球化大潮中立于不敗之地。
4、二十世紀七十年代后,亞太地區,特別是東亞各國和地區的對外開放經濟政策和經濟迅速發展為亞太區域經濟合作創造了條件。東亞地區經濟的發展,國際收支條件的改善,緩解亞太地區南北之間的矛盾,為亞太經濟合作創造了條件。歐共體統一市場和美加自由貿易區的建立,刺激了亞太向區域經濟合作的方向發展。亞太經合組織的主要活動,為各成員提供區域經濟,科技,貿易和發展等方面多邊合作的機會,交流各成員在這些領域內的經驗,促進本區域的共同發展.它從產生、發展及運作模式均區別于歐盟和nafta,有自身的特點,這些特點適應了apec各成員國經濟發展的狀況和經濟運行模式。
三、經濟全球化的世界。
課標要求:
(1)以“布雷頓森林體系”建立為例,認識第二次世界大戰后以美國為主導的資本主義世界經濟體系的形成。
(2)了解世界貿易組織(wto)的由來和發展,認識它在世界經濟全球化進程中的作用。了解中國參加世界貿易組織(wto)的史實,認識其影響和作用。
(3)了解經濟全球化的發展趨勢,探討經濟全球化進程中的問題。
教學目標:
(1)知識與能力:了解“布雷頓森林體系”建立的基本史實,分析其影響;簡述世界貿易組織(wto)的由來和發展,認識它在世界經濟全球化進程中的作用;了解中國參加世界貿易組織(wto)的史實,認識其影響和作用;概述經濟全球化的發展趨勢,探討經濟全球化進程中的問題。
(2)過程與方法:閱讀課文和查找中國加入世貿組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿易組織建立的必要性并對中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經濟全球化對本地區的影響是利大于弊還是弊大于利?如何解決經濟全球化出現的問題?從多角度去分析歷史問題。
必修數學教案(模板20篇)篇二
1.閱讀課本練習止。
2.回答問題:
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3.完成練習。
4.小結。
二、方法指導。
1.在學習對數函數時,同學們應從熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
2.本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開,同學們在學習時應該把兩個函數進行類比,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質。
一、提問題。
1.對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明。
二、變題目。
1.試求下列函數的反函數:
(1);(2);(3);(4)。
2.求下列函數的定義域:。
(1);(2);(3)。
3.已知則=;的定義域為。
1.對數函數的有關概念。
(1)把函數叫做對數函數,叫做對數函數的底數。
(2)以10為底數的對數函數為常用對數函數。
(3)以無理數為底數的對數函數為自然對數函數。
2.反函數的概念。
在指數函數中,是自變量,是的函數,其定義域是,值域是;在對數函數中,是自變量,是的函數,其定義域是,值域是,像這樣的兩個函數叫做互為反函數。
3.與對數函數有關的定義域的求法:
4.舉例說明如何求反函數。
一、課外作業:習題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數的函數值恒為負值的的取值范圍。
必修數學教案(模板20篇)篇三
1. 閱讀課本 練習止.
2. 回答問題
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3. 完成 練習
4. 小結.
二、方法指導
1. 在學習對數函數時,同學們應從熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
一、提問題
1. 對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明.
二、變題目
1. 試求下列函數的反函數:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數函數的'有關概念
(1)把函數 叫做對數函數, 叫做對數函數的底數;
(2)以10為底數的對數函數 為常用對數函數;
(3)以無理數 為底數的對數函數 為自然對數函數.
2. 反函數的概念
在指數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ;在對數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ,像這樣的兩個函數叫做互為反函數.
3. 與對數函數有關的定義域的求法:
4. 舉例說明如何求反函數.
一、課外作業: 習題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數 的函數值恒為負值的 的取值范圍.
必修數學教案(模板20篇)篇四
教學目標。
理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導過程,掌握其應用.
教學重難點。
1.教學重點:兩角和、差正弦和正切公式的推導過程及運用;。
2.教學難點:兩角和與差正弦、余弦和正切公式的靈活運用.
教學過程。
必修數學教案(模板20篇)篇五
用坐標法解決幾何問題的步驟:
第二步:通過代數運算,解決代數問題;
第三步:將代數運算結果“翻譯”成幾何結論、
重點與難點:直線與圓的方程的應用、
問 題設計意圖師生活動
生:回顧,說出自己的看法、
2、解決直線與圓的位置關系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設計意圖師生活動
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學例4,并完成練習題1、2、
生:建立適當的直角坐標系, 探求解決問題的方法、
8、小結:
(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導 學生完成練習題、
生:閱讀教科書的例3,并完成第
問 題設計意圖師生活動
題的需要準備什么工作?
(2)如何建立直角坐標系,才能易于解決平面幾何問題?
(3)你認為學好“坐標法”解決問題的關鍵是什么?
必修數學教案(模板20篇)篇六
教學目標。
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學過程。
復習。
兩角差的余弦公式。
用-b代替b看看有什么結果?
必修數學教案(模板20篇)篇七
3.通過參與編題解題,激發學生學習的愛好.
教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復習提問
等差數列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.
二.主體設計
通項公式反映了項與項數之間的函數關系,當等差數列的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知求).找學生試舉一例如:“已知等差數列中,首項,公差,求.”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用
(1)已知等差數列中,首項,公差,則-397是該數列的第x項.
(2)已知等差數列中,首項,則公差
(3)已知等差數列中,公差,則首項
這一類問題先由學生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數列中,求的值.
(2)已知等差數列中,求.
若學生的題目只有這兩種類型,教師可以小結(請出題者、解題者概括):因為已知條件可以化為關于和的二元方程組,所以這些等差數列是確定的,由和寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數列的一個條件(等式),能否確定一個等差數列?學生回答后,教師再啟發,由這一個條件可得到關于和的二元方程,這是一個和的`制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).
如:已知等差數列中,…
由條件可得即,可知,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發現規律,完善問題(3)已知等差數列中,求;;;;….
類似的還有
(4)已知等差數列中,求的值.
以上屬于對數列的項進行定量的研究,有無定性的判定?引出
3.研究等差數列的單調性
4.研究項的符號
這是為研究等差數列前項和的最值所做的預備工作.可配備的題目如
(1)已知數列的通項公式為,問數列從第幾項開始小于0?
(2)等差數列從第x項起以后每項均為負數.
三.小結
1.用方程思想熟悉等差數列通項公式;
2.用函數思想解決等差數列問題.
四.板書設計
等差數列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數列的單調性
4.研究項的符號
必修數學教案(模板20篇)篇八
本節課力的合成,是在學生了解力的基本性質和常見幾種力的基礎上,通過等效替代思想,研究多個力的合成方法,是對前幾節內容的深化。
本節重點介紹力的合成法則——平行四邊形定則,但實際這是所有矢量運算的共同工具,為學習其他矢量的運算奠定了基礎。
更重要的是,力的合成是解決力學問題的基礎,對今后牛頓運動定律、平衡問題、動量與能量問題的理解和應用都會產生重要影響。
因此,這節課承前啟后,在整個高中物理學習中占據著非常重要的地位。
二、教學目標定位。
為了讓學生充分進行實驗探究,體驗獲取知識的過程,本節內容分兩課時來完成,今天我說課的內容為本節內容的第一課時。根據上述教材分析,考慮到學生的實際情況,在本節課的教學過程中,我制定了如下教學目標:。
一、知識與技能。
理解合力、分力、力的合成的概念理解力的合成本質上是從等效的角度進行力的替代。
探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力。
二、過程與方法。
通過學習合力和分力的概念,了解物理學常用的方法——等效替代法。
通過實驗探究方案的設計與實施,體驗科學探究的過程。
三、情感態度與價值觀。
培養學生的合作精神,激發學生學習興趣,形成良好的學習方法和習慣。
培養認真細致、實事求是的實驗態度。
根據以上分析確定本節課的重點與難點如下:
一、重點。
合力和分力的概念以及它們的關系。
實驗探究力的合成所遵循的法則。
二、難點。
平行四邊形定則的理解和運用。
三、重、難點突破方法——教法簡介。
本堂課的重、難點為實驗探究力的合成所遵循的法則——平行四邊形定則,為了實現重難點的突破,讓學生真正理解平行四邊形定則,就要讓學生親自體驗規律獲得的過程。
因此,本堂課在學法上采用學生自主探究的實驗歸納法——通過重現獲取知識和方法的思維過程,讓學生親自去體驗、探究、歸納總結。體現學生主體性。
實驗歸納法的步驟如下。這樣設計讓學生不僅能知其然,更能知其所以然,這也是本堂課突破重點和難點的重要手段。
本堂課在教法上采用啟發式教學——通過設置問題,引導啟發學生,激發學生思維。體現教師主導作用。
四、教學過程設計。
采用六環節教學法,教學過程共有六個步驟。
教學過程第一環節、創設情景導入新課:
第二環節、新課教學:
展示合力與分力以及力的合成的概念,強調等效替代法。舉例說明等效替代法是一種重要的物理方法。
第三環節、合作探究:
首先,教師展示實驗儀器,讓學生思考如何設計實驗,,如何進行實驗呢?學生面對器材可能會覺得無從下手。再次設置問題引導學生思維,讓學生面對儀器分組討論以下四個問題。
問題1要用動畫輔助說明。在問題2中,教師要強調結點的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學生注意測力計的使用,減小實驗誤差。通過對這四個問題的討論,再結合多媒體動畫的展示,使學生對探究的步驟清晰明了。
然后,學生分組實驗,合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實驗完成后請學生展示實驗結果,應該立即可得出結論一:比較分力與合力的大小,可得互成角度的兩個力的合成,不能簡單地利用代數方法相加減.
那合力與分力到底滿足什么關系呢?
此時要引導學生思考:既然從數字上找不到關系,哪可不可以從幾何上找找關系呢?學生會立即猜想出o、a、c、b像是一個平行四邊形的四個頂點,ob可能是這個平行四邊形的對角線.哪么猜想是否正確呢?親自實踐才有發言權,學生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。
學生作圖后發現對角線與合力很接近。教師說明實驗的誤差是不可避免的,科學家經過很多次的、精細的實驗,最后確認對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結論二:力的合成法則——平行四邊形定則。
進入。
第四環節:歸納總結。
將本文的word文檔下載到電腦,方便收藏和打印。
必修數學教案(模板20篇)篇九
引用:本文《高中化學必修二教案(人教版)》來源于師庫網,由師庫網博客摘錄整理,以下是的詳細內容:開發利用金屬礦物和海水...《基本營養物質》教案化學反應的速率和限度化學能與熱能化學與資源綜合利用、環...最簡單的有機化合物dd...《生活中兩種常見的'有機...來自石油和煤的兩種基本...引用:師庫網溫馨提示本篇內容來源于師庫網,旨在用于課件制作交流,非盈利性質,僅供參考,針對本文的問題如需了解更詳細,可留言或者聯系客服tags:教案、課件、師庫網、教案網、課件網
必修數學教案(模板20篇)篇十
要學好數學,最關鍵的是要有一個好的基礎。只有打牢數學基礎,才能夠把高中數學好,同樣只有打好基礎,才能夠數學取得高分。打好基礎是最關鍵的!比如:建一棟大樓,如果地基不穩,不管大樓有多么豪華,都只是華而不實。
想學好數學,對數學感興趣。
其實學好數學最好的辦法就是發自內心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數學的積極性也就提高了,覺得數學并沒有那么難,就愿意去多接觸了。
多做題反復做,有題感。
其實學好數學辦法就是要大量做題,反復去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
必修數學教案(模板20篇)篇十一
(2)了解區間的概念;。
(2)了解區間的概念就是指能夠體會用區間表示數集的意義和作用;。
【問題診斷分析】在本節課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養學生的抽象概況能力,其中關鍵是理論聯系實際,把抽象轉化為具體。
問題1:一枚炮彈發射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發:在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養學生的歸納、概況的能力。
必修數學教案(模板20篇)篇十二
1. 掌握數軸的三要素,能正確畫出數軸。
2、會用數軸上的點表示有理數;;會求一個有理數的相反數;能利用數軸比較有理數的大小。
【過程與方法】 經歷從現實情景抽象出數軸的過程,體會數學與現實生活的聯系
【情感態度與價值觀】 感受數形結合的思想方法;
【教學重點】會說出數軸上已知點所表示的數,能將已知數在數軸上表示出來。
【教學難點】利用數軸比較有理數的大小。
(一)創設情境,引入課題
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數的圖形就是今天我們要學的內容―數軸(板書課題)
(二)得出定義,揭示內涵
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(教師示范畫數軸,邊說邊畫):
(1)畫直線,取原點
(2)標正方向
(3)選取單位長度,標數(強調:負數從0向左寫起)。
概念:規定了原點、正方向和單位長度的直線叫做數軸。
(三)強化概念,深入理解
1、下列圖形哪些是數軸,哪些不是,為什么?
學生回答,相互糾正,理解數軸三要素,鞏固數軸概念。
2、學生自己在練習本上畫一個數軸。教師在黑板上畫
(四)動手練習,歸納總結
1、在數軸上的點表示有理數。
一個學生在黑板上完成,其他同學在自己所畫數軸上完成。
明確“任何一個有理數都可以用數軸上的一個點來表示”
2.指出數軸上a,b,c,d各點分別表示什么數。@師愿教育
3、通過數軸比較有理數的大小。觀察類比溫度計回答問題
(1)在數軸上表示的兩個數,(右 ) 邊的數總比 ( 左)邊的數大;
(2)正數都(大于 )0,負數都(小于)0;正數(大于)一切負數。
例1、比較下列各數的.大小: -1.5 , 0.6, -3, -2
鞏固所學知識
(五)、歸納小結,強化思想
師生總結本課內容。
1、數軸的概念,數軸的三要素
2、數軸上兩個不同的點所表示的兩個有理數大小關系
3、所有的有理數都可以用數軸上的點來表示
師:你感到自己今天的表現怎樣?
習題2.2 1、2、3
選作第4題
必修數學教案(模板20篇)篇十三
掌握三角函數模型應用基本步驟:。
(1)根據圖象建立解析式;。
(2)根據解析式作出圖象;。
(3)將實際問題抽象為與三角函數有關的簡單函數模型.
教學重難點。
利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型。
教學過程。
一、練習講解:《習案》作業十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發動螺旋槳。
練習:教材p65面3題。
三、小結:1、三角函數模型應用基本步驟:。
(1)根據圖象建立解析式;。
(2)根據解析式作出圖象;。
(3)將實際問題抽象為與三角函數有關的簡單函數模型.
2、利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型.
四、作業《習案》作業十四及十五。
將本文的word文檔下載到電腦,方便收藏和打印。
必修數學教案(模板20篇)篇十四
1.使學生了解奇偶性的概念,回會利用定義判定簡單函數的奇偶性。
2.在奇偶性概念形成過程中,培養學生的觀察,歸納能力,同時滲透數形結合和非凡到一般的思想方法。
3.在學生感受數學美的同時,激發學習的愛好,培養學生樂于求索的精神。
教學重點,難點。
重點是奇偶性概念的形成與函數奇偶性的判定。
難點是對概念的熟悉。
教學用具。
投影儀,計算機。
教學方法。
引導發現法。
教學過程。
一.引入新課。
前面我們已經研究了函數的單調性,它是反映函數在某一個區間上函數值隨自變量變化而變化的性質,今天我們繼續研究函數的另一個性質。從什么角度呢?將從對稱的角度來研究函數的性質。
(學生可能會舉出一些數值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函數具體化,如和等。)。
學生經過思考,能找出原因,由于函數是映射,一個只能對一個,而不能有兩個不同的,故函數的圖象不可能關于軸對稱。最終提出我們今天將重點研究圖象關于軸對稱和關于原點對稱的問題,從形的特征中找出它們在數值上的規律。
二.講解新課。
2.函數的奇偶性(板書)。
學生開始可能只會用語言去描述:自變量互為相反數,函數值相等。教師可引導學生先把它們具體化,再用數學符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發現結論,這樣的是不存在的)從這個結論中就可以發現對定義域內任意一個,都有成立。最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調整。
(1)偶函數的定義:假如對于函數的定義域內任意一個,都有,那么就叫做偶函數。(板書)。
(給出定義后可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規律是什么呢?(同時打出或的圖象讓學生觀察研究)。
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義。
(2)奇函數的定義:假如對于函數的定義域內任意一個,都有,那么就叫做奇函數。(板書)。
(由于在定義形成時已經有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。
例1。判定下列函數的奇偶性(板書)。
(1);(2);
(3);;
(5);(6)。
(要求學生口答,選出12個題說過程)。
解:(1)是奇函數。(2)是偶函數。
(3),是偶函數。
學生經過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數。(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)。
從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述。即第(4)題中表面成立的=不能經受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。
可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結論。
(3)定義域關于原點對稱是函數具有奇偶性的必要但不充分條件。(板書)。
由學生小結判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數中有是奇函數不是偶函數,有是偶函數不是奇函數,也有既不是奇函數也不是偶函數,那么有沒有這樣的函數,它既是奇函數也是偶函數呢?若有,舉例說明。
例2。已知函數既是奇函數也是偶函數,求證:。(板書)(試由學生來完成)。
(4)函數按其是否具有奇偶性可分為四類:(板書)。
例3。判定下列函數的奇偶性(板書)。
(1);(2);(3)。
由學生回答,不完整之處教師補充。
解:(1)當時,為奇函數,當時,既不是奇函數也不是偶函數。
(2)當時,既是奇函數也是偶函數,當時,是偶函數。
(3)當時,于是,
當時,,于是=,
綜上是奇函數。
教師小結(1)(2)注重分類討論的使用,(3)是分段函數,當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數整個定義域內性質的刻畫,因此必須均有成立,二者缺一不可。
三.小結。
1.奇偶性的概念。
2.判定中注重的問題。
四.作業略。
五.板書設計。
2.函數的奇偶性例1.例3.
(1)偶函數定義。
(2)奇函數定義。
(3)定義域關于原點對稱是函數例2。小結。
具備奇偶性的必要條件。
(4)函數按奇偶性分類分四類。
探究活動。
(2)判定函數在上的單調性,并加以證實。
在此基礎上試利用這個函數的單調性解決下面的問題:
必修數學教案(模板20篇)篇十五
1、基本概念:
(1)必然事件:在條件s下,一定會發生的事件,叫相對于條件s的必然事件;。
(2)不可能事件:在條件s下,一定不會發生的事件,叫相對于條件s的不可能事件;。
(3)確定事件:必然事件和不可能事件統稱為相對于條件s的確定事件;。
(4)隨機事件:在條件s下可能發生也可能不發生的事件,叫相對于條件s的隨機事件;。
(5)頻數與頻率:在相同的條件s下重復n次試驗,觀察某一事件a是否出現,稱n次試驗中事件a出現的次數na為事件a出現的頻數;對于給定的隨機事件a,如果隨著試驗次數的增加,事件a發生的頻率fn(a)穩定在某個常數上,把這個常數記作p(a),稱為事件a的概率。
必修數學教案(模板20篇)篇十六
1、使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項。
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數確定的。
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式。
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的`前幾項。
2、通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力。
3、通過由求的過程,培養學生嚴謹的科學態度及良好的思維習慣。
(1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等。
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系。在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列。函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法。由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法。
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規律性的結論,如正負相間用來調整等。如果學生一時不能寫出通項公式,可讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系。
(5)對每個數列都有求和問題,所以在本節課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。
(6)給出一些簡單數列的通項公式,可以求其項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的。
必修數學教案(模板20篇)篇十七
1、了解函數的單調性和奇偶性的概念,把握有關證實和判定的基本方法。
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念。
(2)能從數和形兩個角度熟悉單調性和奇偶性。
(3)能借助圖象判定一些函數的單調性,能利用定義證實某些函數的單調性;能用定義判定某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2、通過函數單調性的證實,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想。
3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度。
必修數學教案(模板20篇)篇十八
1.古人見面常用的禮儀是拜禮和揖禮。前者主要以叩頭跪拜為主,后者則以拱手示意為主。
2.座次:坐西向東為尊,其次是坐北朝南,再次是坐南朝北,最卑是坐東朝西。3.銀河:又叫銀漢、天漢、星漢、河漢、云漢、星河。
4.五岳:東岳泰山、西岳華山、南岳衡山、北岳恒山、中岳嵩山。
5.五湖:太湖、鄱陽湖、青草湖、丹陽湖、洞庭湖。
6.趨:從長者尊者前面走過,要小步快走,以示敬意,叫“趨”。
7.三吳:吳興郡、吳郡、會稽郡。
8.三楚:西楚、東楚、南楚。
9.古人紀年:干支紀年和帝王紀年。干支紀年是十天干和十二地支依次兩兩相配而成得一種紀年方法。帝王紀年是按照帝王即位的年次或年號來紀年(明清兩代)的方法。
10.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸。
11.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥。
12.古人紀月:序數紀月和特殊稱謂紀月。每季用孟、仲、季區分。用朔(初一)、望(十五)、晦(月末)等名稱標識日期。
夜半丙夜三更23-1雞鳴丁夜四更1-3平日戊夜五更3-5。
14.名:古代嬰兒出生幾個月后,一般由父親命名。
15.字:是20歲舉行加冠儀式后才起的,標志著成人。字是對名的解釋和補充,對名有表述、闡釋作用,因此又叫“表字”。有的字與名相近相成,也有的相反相成。
16.號:是一種固定的別名,又叫“別號”。
17.謚號:古代帝王、諸侯、高官大臣、貴族及其他有地位的人死后,根據其生前的品德來定的,帶有或褒或貶或同情的稱號。
18.古人自稱名,稱人稱字,這是基本的禮貌。
19.《周易》把禮儀分為五類:
吉禮:有關祭祀的,包括祭祀自然、神、祖先。兇禮:有關喪葬的,包括憑吊各種天災人禍。
軍禮:有關軍事活動的。賓禮:有關外交活動的,包括朝、聘、會、盟等國事活動。
嘉禮:有關個人成長和交往以及王位承襲的,包括冠禮、婚禮、宴飲之禮、養老禮等。
侯曉旭。
必修數學教案(模板20篇)篇十九
人教版語文必修1-5冊通假字(人教版高二必修)。
1今老矣,無能為也已矣。
2行李之往來,共其乏困供。
3夫晉,何厭之有饜。
4秦伯說,與鄭人盟悅。
5失之所與,不知智。
6秦王必h見臣悅。
7今日往而不反者,豎子也返。
8燕王誠振怖大王之威震。
9秦王還柱而走環。
10群臣驚愕,卒起不意,盡失其度猝。
11距關,毋內諸侯,拒納。
12張良出,要項伯邀。
13愿伯具言臣之不敢倍德也背。
14旦日不可不蚤自來謝項王早。
15令將軍與臣有s隙。
16因擊沛公于坐座。
17匪來貿絲,來即我謀非。
18于嗟鳩兮,無食桑葚吁。
19士之耽兮,猶可說也脫。
20淇則有岸,隰則有泮畔。
21涼婢囟改錯措。
22饔粢賾髻奄郁悒。
23何方圜之能周兮圓。
24進不入以離尤兮罹。
25芳菲菲其彌章彰。
26箱簾六七十奩。
27蒲葦紉如絲韌。
28契闊談宴。
29取諸懷抱,悟言一室之內晤。
30馮虛御風憑。
31長樂王回深父甫。
32所守或匪親非。
33則無望民之多于鄰國也毋。
34無失其時毋。
35頒白者不負戴于道路矣斑。
36涂有餓莩而不知發途。
37以為輪。
38雖有槁暴又。
39合從締交,相與為一縱。
40師者,所以傳道受業解惑也授。
41或師焉,或不焉否。
42一尊還酹江月樽。
43秦王以十五城請易寡人之璧,可予不否。
44拜送書于庭廷。
45召有司案圖按。
46秦自公以來二十余君穆。
47唯大王與群臣孰計議之熟。
48畔主背親叛。
49與旃毛并咽之氈。
50掘野鼠去草食而食之l。
51空自苦亡人之地無。
52信義安所見乎現。
53王必欲降武,請畢今日之o歡。
54因泣下衿,與武決去訣。
55乃瞻衡宇橫。
56景翳翳以將入影。
57儼驂w于上路嚴。
58云銷雨霽消。
59北冥有魚溟。
60小知不及大知,小年不及大年智。
61湯之問棘也是已矣。
62此小大之辯也辨。
63德合一君,而征一國者耐。
64御六氣之辯變。
65臣以險釁,夙遭閔兇憫。
66零丁孤苦,至于成立伶仃。
67常在床蓐,臣侍湯藥褥。
68祖母今年九十有六又。
必修數學教案(模板20篇)篇二十
3、情感態度與價值觀目標:感受代數與幾何問題的相互轉換。體會品面直角坐標系在解決實際問題的作用,培養數學學習興趣。
重點:理解平面直角坐標中點與數的一一對應關系;
難點:根據坐標描出點的位置,以及坐標軸上的點的坐標特點。
教師準備四張大的紙質坐標格子。
一、溫故知新,導入新課。
游戲導入:上一節課我們學習了有序數對,大家學習積極性很高,今天老師先考考你們, 看你們掌握了多少。
我們將教室里的座位分為八列七排。a排b號記做有序數對(a,b),同學們先找準自己的數對號。聽老師報數對,若是你自己的數對號,就快速站起來。反應太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。
我們可以發現,通過教室平面內的有序數對,可以唯一的確定與之對應的同學。
二、新課教學
課本例子:我們知道數軸上的點可以用一個數來表示,這個數叫做這個點的坐標。例如點a數軸上的坐標是-4,點b數軸上的坐標是2;我們說坐標是3.5的點,也可以在數軸上唯一確定。
學生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小
b說我們可以每個點列一個數軸???
教師活動:引導學生思考,怎么才能用同一標準,方便的確定每一點的位置?
結合橫縱排編號以及數軸,我們可以綜合考慮,引出一個橫縱的數軸?
得出結論:我們可以在平面內畫兩條相互垂直、原點重合的數軸,組成平面直角坐標系,水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸,取向上為正方向;兩坐標軸的交點為平面直角坐標系的原點。
那有了這樣的平面直角坐標系,平面內的點就可以用之前學的有序數對來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標是3,垂足n在y軸上的坐標是4,我們說a的坐標是3,縱坐標是4,有序數對(3,4)就叫做a的坐標,記作a(3,4)
教師提問2:同學們按照這種做法,在坐標紙上標出b、c、d的坐標。
教師活動:走下講臺,關注學生的匯坐標過程方法,指出學生出現問題的地方,并予以改正。
教師提問3:在橫縱坐標軸上各標一點e、f,問:坐標原點以及這兩點的坐標是什么?
教師活動:引導學生思考歸納坐標軸上的點的坐標的特點。
得出結論:原點的坐標是(0,0),x軸上的點的坐標的縱坐標為0;y軸上的點的坐標的橫坐標為0。
三、課程鞏固
師生互動:與學生一起回憶平面直角坐標系的各部分的意義,平面內的點怎么對應坐標,以及坐標軸上的點的坐標特點。
“練一練”:
在黑板上貼出四張事先準備好的紙質坐標格子,在上面標出任意的abcdefg等點,每組我點一個按坐標序列對,對應的同學上黑板,來描出各點的坐標。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學生不能提示,提示一次扣2分。比賽看哪組學生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同學上黑板來描點。
教師活動:規范課堂氣氛,公平的評判,對于表現好的小組代表予以表揚,表現稍遜的學生不要氣餒,給予鼓勵,爭取下一次可以獲勝。
四、小結作業:
思考平面直角坐標系中坐標與點的對應關系,如何由坐標值確定點的位置。下節課我們會探討這個問題。
平面直角坐標系:平面內畫兩條相互垂直、原點重合的數軸組成
水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;
豎直的數軸稱為y軸或縱軸,取向上為正方向;
兩坐標軸的交點為平面直角坐標系的原點。