在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過(guò)文章可以把我們那些零零散散的思想,聚集在一塊。那么我們?cè)撊绾螌?xiě)一篇較為完美的范文呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來(lái)看一看吧。
二次根式教學(xué)設(shè)計(jì)二次根式教學(xué)設(shè)計(jì)人教版篇一
1、使學(xué)生理解最簡(jiǎn)二次根式的概念;
難點(diǎn):最簡(jiǎn)二次根式概念的理解。
計(jì)算:
我們?cè)倏聪旅娴膯?wèn)題:
簡(jiǎn),得到
從上面例子可以看出,如果把二次根式先進(jìn)行化簡(jiǎn),會(huì)對(duì)解決問(wèn)題帶來(lái)方便。
答:
1、被開(kāi)方數(shù)的因數(shù)是整數(shù)或整式;
2、被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。
例1 試判斷下列各式中哪些是最簡(jiǎn)二次根式,哪些不是?為什么?
解
(1)不是最簡(jiǎn)二次根式。因?yàn)閍3=a2·a,而a2可以開(kāi)方,即被開(kāi)方數(shù)中有開(kāi)得盡方的因式。整數(shù)。
(3)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式x2+y2開(kāi)不盡方,而且是整式。
(4)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式a-b開(kāi)不盡方,而且是整式。
(5)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式5x開(kāi)不盡方,而且是整式。
(6)不是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)中的因數(shù)8=22·2,含有開(kāi)得盡的因數(shù)22。
指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論。
2、在二次根式的被開(kāi)方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡(jiǎn)二次根式。
例2 把下列各式化為最簡(jiǎn)二次根式:
分析:把被開(kāi)方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)
例3 把下列各式化成最簡(jiǎn)二次根式:
分析:題(1)的被開(kāi)方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡(jiǎn)二次根式。
題(2)及題(3)的被開(kāi)方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的.商的形式,再把分母有理化,把原式化成最簡(jiǎn)二次根式。
通過(guò)例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡(jiǎn)二次根式的方法。
答:如果被開(kāi)方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫(xiě)成分式的形式,然后利用分母有理化化簡(jiǎn)。
如果被開(kāi)方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開(kāi)得盡方的因式或因數(shù)開(kāi)出來(lái),從而將式子化簡(jiǎn)。
a、2 b、3
c、1 d、0
3、把下列各式化成最簡(jiǎn)二次根式:
答案:
1、b
2、b
1、最簡(jiǎn)二次根式必須滿足兩個(gè)條件:
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。
(2)如果被開(kāi)方數(shù)含有分母,應(yīng)去掉分母的根號(hào)。
1、把下列各式化成最簡(jiǎn)二次根式:
2、把下列各式化成最簡(jiǎn)二次根式:
二次根式教學(xué)設(shè)計(jì)二次根式教學(xué)設(shè)計(jì)人教版篇二
1.了解二次根式的意義;
2. 掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;
3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;
4.通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
5. 通過(guò)二次根式性質(zhì) 和 的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
啟發(fā)式、講練結(jié)合。
(一)復(fù)習(xí)提問(wèn)
1.什么叫平方根、算術(shù)平方根?
2.說(shuō)出下列各式的意義,并計(jì)算:
表示的是算術(shù)平方根。
(二)引入新課
我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:
新課:二次根式
定義: 式子 叫做二次根式。
(1)式子 只有在條件a0時(shí)才叫二次根式, 是二次根式嗎?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
根式指的是某種式子的外在形態(tài).請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
二次根式教學(xué)設(shè)計(jì)二次根式教學(xué)設(shè)計(jì)人教版篇三
一:教學(xué)內(nèi)容分析
本節(jié)課是在數(shù)的開(kāi)方的有關(guān)知識(shí)的基礎(chǔ)上展開(kāi)的,有了一定知識(shí)基礎(chǔ),并且在勾股定理中有所運(yùn)用,他們并不陌生,所以只要我們連接好新舊知識(shí),學(xué)生很容易接受,加強(qiáng)新舊知識(shí)的聯(lián)系,化為知為已知。
三、教學(xué)目標(biāo):
1.知識(shí)與技能
(1)理解二次根式的概念.(2)二次根式有意義的判定.
2.過(guò)程與方法
3.情感、態(tài)度與價(jià)值觀
四、教學(xué)重難點(diǎn)
五、教學(xué)方法
啟發(fā)式教學(xué)法
六、教學(xué)過(guò)程 導(dǎo)入新課(問(wèn)題導(dǎo)入)
請(qǐng)同學(xué)們獨(dú)立完成下列三個(gè)問(wèn)題: 問(wèn)題
1、7的算術(shù)平方根是()。
問(wèn)題
2、直角三角形的兩條直角邊分別為5和4,斜邊為()。問(wèn)題
3、正方形的面積為s,則它的邊長(zhǎng)為()。推進(jìn)新課
一、二次根式的定義
很明顯√
7、√
說(shuō)明:負(fù)數(shù)沒(méi)有平方根,更沒(méi)有算術(shù)平方根。(4)√a表示什么含義?
二、應(yīng)用遷移
1、對(duì)二次根式概念的考查
√
2、√
3、1/x、√x(x≥0)、√0、-√
2、1/(x+y)、√x+y(x≥0、y≥0)
分析:看是否為二次根式,關(guān)鍵看是否滿足√a(a≥0)的形式。解:略
點(diǎn)撥:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào);第二,被開(kāi)方數(shù)是非負(fù)數(shù)。
分析:有二次根式的定義可知。被開(kāi)方數(shù)一定要大于或等于0,所以3x-1≥0,√3x-1在實(shí)數(shù)范圍內(nèi)有意義。解:由3x-1≥0,得x≥1/3,當(dāng)x≥1/3時(shí),√3x-1在實(shí)數(shù)范圍內(nèi)有意義。
四、本課小結(jié) 本節(jié)要掌握:
1、形如√a(a≥0)的式子叫做二次根式,“√”稱為二次根號(hào)。
2、要使二次根式有意義,必須滿足被開(kāi)方數(shù)要大于或等于0.
五、教學(xué)反思
1:本節(jié)課從舊知識(shí)引入,降低難度,激發(fā)了求知欲,和進(jìn)一步探索的欲望。
2:本節(jié)課重點(diǎn)培養(yǎng)了學(xué)生的思維能力,使學(xué)生真正理解概念。3:學(xué)生用字母表示數(shù)還不熟練還有一部分同學(xué)錯(cuò)誤認(rèn)為a表示正數(shù),-a表示負(fù)數(shù)。所以還應(yīng)加強(qiáng)符號(hào)教學(xué)。
4:對(duì)以前的完全平方式運(yùn)用欠佳,所以應(yīng)加強(qiáng)知識(shí)之間的綜合運(yùn)用能力。
二次根式教學(xué)設(shè)計(jì)二次根式教學(xué)設(shè)計(jì)人教版篇四
1、通過(guò)二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會(huì)進(jìn)行二次根式的混合運(yùn)算。
2、在進(jìn)行二次根式混合運(yùn)算的過(guò)程中,體會(huì)類比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。
教學(xué)重點(diǎn):二次根式混合運(yùn)算算理的理解。
教學(xué)難點(diǎn):類比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。
教學(xué)過(guò)程:
(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書(shū)準(zhǔn)備,然后巡回指導(dǎo),了解情況、)
1、學(xué)生匯報(bào)解題過(guò)程,生說(shuō)師寫(xiě);
2、發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善;
3、師畫(huà)龍點(diǎn)睛強(qiáng)調(diào):
(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。
(先讓學(xué)生獨(dú)立完成,老師做必要的板書(shū)準(zhǔn)備后巡回指導(dǎo),了解情況; 然后讓有一定問(wèn)題的學(xué)生匯報(bào)展示,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)
本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒(méi)說(shuō)到的,老師補(bǔ)充。)
二次根式教學(xué)設(shè)計(jì)二次根式教學(xué)設(shè)計(jì)人教版篇五
1、使學(xué)生理解最簡(jiǎn)二次根式的概念;
難點(diǎn):最簡(jiǎn)二次根式概念的理解。
計(jì)算:
我們?cè)倏聪旅娴膯?wèn)題:
簡(jiǎn),得到
從上面例子可以看出,如果把二次根式先進(jìn)行化簡(jiǎn),會(huì)對(duì)解決問(wèn)題帶來(lái)方便。
答:
1、被開(kāi)方數(shù)的因數(shù)是整數(shù)或整式;
2、被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。
例1 試判斷下列各式中哪些是最簡(jiǎn)二次根式,哪些不是?為什么?
解
(1)不是最簡(jiǎn)二次根式。因?yàn)閍3=a2·a,而a2可以開(kāi)方,即被開(kāi)方數(shù)中有開(kāi)得盡方的因式。整數(shù)。
(3)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式x2+y2開(kāi)不盡方,而且是整式。
(4)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式a-b開(kāi)不盡方,而且是整式。
(5)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式5x開(kāi)不盡方,而且是整式。
(6)不是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)中的因數(shù)8=22·2,含有開(kāi)得盡的因數(shù)22。
指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論。
2、在二次根式的被開(kāi)方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡(jiǎn)二次根式。
例2 把下列各式化為最簡(jiǎn)二次根式:
分析:把被開(kāi)方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)
例3 把下列各式化成最簡(jiǎn)二次根式:
分析:題(1)的被開(kāi)方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡(jiǎn)二次根式。
題(2)及題(3)的被開(kāi)方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡(jiǎn)二次根式。
通過(guò)例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡(jiǎn)二次根式的方法。
答:如果被開(kāi)方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫(xiě)成分式的形式,然后利用分母有理化化簡(jiǎn)。
如果被開(kāi)方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開(kāi)得盡方的因式或因數(shù)開(kāi)出來(lái),從而將式子化簡(jiǎn)。
a、2 b、3
c、1 d、0
3、把下列各式化成最簡(jiǎn)二次根式:
答案:
1、b
2、b
1、最簡(jiǎn)二次根式必須滿足兩個(gè)條件:
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。
(2)如果被開(kāi)方數(shù)含有分母,應(yīng)去掉分母的根號(hào)。
1、把下列各式化成最簡(jiǎn)二次根式:
2、把下列各式化成最簡(jiǎn)二次根式:
二次根式教學(xué)設(shè)計(jì)二次根式教學(xué)設(shè)計(jì)人教版篇六
知識(shí)與技能:
1、理解二次根式的概念。
2、理解二次根式的基本性質(zhì)。
過(guò)程與方法:
能運(yùn)用二次根式的概念解決有關(guān)問(wèn)題、
情感態(tài)度與價(jià)值觀:
經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性和創(chuàng)造性,體驗(yàn)發(fā)現(xiàn)的快樂(lè),并提高應(yīng)用的意識(shí)。
學(xué)生已經(jīng)學(xué)習(xí)了“整式”、“平方根”、“算術(shù)平方根”等知識(shí),已經(jīng)具備了學(xué)習(xí)二次根式的知識(shí)基礎(chǔ)和心理基礎(chǔ),但學(xué)生剛認(rèn)識(shí)二次根式,學(xué)習(xí)將有一定難度。學(xué)生知識(shí)障礙點(diǎn)是二次根式的概念及運(yùn)算,如果學(xué)生在此不能很好地理解和正確的認(rèn)知,將對(duì)今后學(xué)習(xí)產(chǎn)生很大影響,所以要求學(xué)生積極探究、思考,及時(shí)加以鞏固,克服學(xué)習(xí)困難,真正“學(xué)會(huì)”。
2、教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性、
活動(dòng)1【導(dǎo)入】活動(dòng)一
問(wèn)題1你能用帶有根號(hào)的的式子填空嗎?
師生活動(dòng):學(xué)生獨(dú)立完成上述問(wèn)題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià)。
活動(dòng)2【活動(dòng)】講授
問(wèn)題3你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?
追問(wèn):在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?
活動(dòng)3【講授】辨析概念
例1當(dāng)x是怎樣的實(shí)數(shù)時(shí),√x2在實(shí)數(shù)范圍內(nèi)有意義?
例2當(dāng)x是怎樣的實(shí)數(shù)時(shí),√x2在實(shí)數(shù)范圍內(nèi)有意義?√x3呢?
師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問(wèn).
問(wèn)題4你能比較√a與0的大小嗎?
活動(dòng)4【練習(xí)】練習(xí)
練習(xí)當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
練習(xí)1完成教科書(shū)第3頁(yè)的練習(xí)、
練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
練習(xí)1完成教科書(shū)第3頁(yè)的練習(xí)、
練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
練習(xí)1完成教科書(shū)第3頁(yè)的練習(xí)、
練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
活動(dòng)5【活動(dòng)】小結(jié)
小結(jié):
1、二次根式的意義:√a(a≥0)
2、二次根式的性質(zhì):
性質(zhì)1 √a2 = a(a≥0)
活動(dòng)6【測(cè)試】目標(biāo)檢測(cè)
1、下列各式中,一定是二次根式的是()
a、√a b√3 、 c√x2+1 、 d、3√5
2、當(dāng)x取什么時(shí),二次根式√3x無(wú)意義.
3、當(dāng)x取何值時(shí),二次根式√x+3有最小值,其最小值是.
活動(dòng)7【作業(yè)】布置作業(yè)
教科書(shū)習(xí)題16、1第1,3,5,7,10題.