計劃書是為了實現某項目標或完成某項任務而制定的詳細步驟和計劃。它可以幫助我們合理安排時間和資源,提高工作效率。1.以下是小編為大家收集的計劃書范文,僅供參考,希望能給大家一些啟發和幫助。
圓錐的體積教學方案(實用13篇)篇一
圓錐的體積是在學生掌握了圓柱的特征及圓柱的體積等有關知識的基礎上進行教學的。
=1/3sh(知道底面積和高)。
=1/3πr2h(知道半徑和高)。
=1/3π(d*2)2h(知道直徑和高)。
=1/3π(c*2*π)2h(知道周長和高)。
在教學中,我提供的是兩組不同的學具,目的是讓學生通過自己的親身實踐,親自動手,親身體會圓柱與圓錐體積之間的關系,這樣利于培養學生自主探索,與同學之間合作學習,共同解決問題的能力。學生在此項活動中,不僅收獲了知識的來龍去脈,還體會到了與同學合作,共享成果的幸福喜悅。
由于課前把制作的u盤帶回家,未帶回來,所以導致課上無法通過多媒體課件的形式,把動手操作的完整過程給學生進行展示。
上課前的一點一絲疏漏都要力求避免,課前準備真的是對于教師來說至關重要,缺少哪一環都會在課堂上留下遺憾。
圓錐的體積教學方案(實用13篇)篇二
圓錐的體積是在學生直觀認識圓錐的特征,會算圓的面積,以及長方體、正方體、圓柱體的體積的基礎上安排教學的。因此,我有針對性地設計、制作了本節課的輔助教學課件,既突出重點、突破難點,又激發學生的學習興趣,優化教學過程,提高課堂教學質量。
1、復習遷移,做好鋪墊。
由于圓錐體的體積是在學生學過圓柱體的體積的基礎上安排教學的,為了讓學生回憶圓柱體的體積計算公式,以便為知識的遷移和新知識的學習做好鋪墊,我制作了一張圖文并茂的圖文片向學生展示了一個圓柱體圖形,并在圖形下面用醒目的文字向學生提出問題:這是什么形體?它的體積應怎樣計算?這樣一張集文字、圖形、聲音于一體的圖文片,很容易引起學生注意,營造學習氣氛。
2、創設情境,引入新知。
數學來源于生活,我取材于生活以創設情境,使教學過程與生活實際密聯系起來,我制作了一張圖文并茂的圖文片向學生展示了曬谷場上一堆圓錐形的谷子,并在顯眼的位置向學生巧設問題:這堆谷成什么形體?你們能求出這堆谷的體積嗎?這樣,激發了學生的求知欲望,把學生引入到新課探索的活動中。
3、實驗操作,推導公式。
圓錐體積的推導,是本節課的教學難點,為了讓學生直觀感知圓錐的體積與它等底等高的圓柱的體積的關系。首先讓學生用工具做實驗,初步感知,再呈現我制作的圖文片向學生演示:用圓錐裝滿水倒入和它等底等高的圓柱里的過程。并在動畫下面巧設問題:用圓錐裝滿水倒入和它等底等高的空圓柱里,倒幾次正好倒滿?每次水的高度是圓柱高度的幾分之幾?有層次的教學設計,豐富多彩的教學活動,充分體現以教師為主導,以學生為主體的教與學的雙邊活動。學生通過認真操作實驗,觀察思考,都明白了圓錐的體積等于和它等底等高的圓柱體積的1/3,從而推導出圓錐體積的計算公式。
4、自學嘗試,解惑答疑。
為了提高學生解決實際問題的能力,我把課本上的例1制成一張圖文片,配上悠閑的樂曲,讓學生嘗試解答。試做時,我則進行巡視,如有問題,個別輔導,接著指名回答。這樣,能夠把較多的時間留給學生,培養學生的自學能力,使他們從中體驗到學習的成功的樂趣。
本節課《圓錐的體積》以談話法、實驗法為主,討論法、練習法為輔,實現教學目標。教學中,既充分發揮學生的主體作用,調動學生積極主動地參與教學的全過程。小學階段學習的幾何知識是直觀幾何。小學生學習幾何知識不是靠嚴格的論證,而主要是通過觀察、操作。根據課題的特點,主要采取讓學生做實驗的方法主動獲取知識,而且在教學中我注重如何有效的引導學生探究。
例如,在上課開始,我是讓學生回憶圓柱體積公式的推導過程,
讓學生猜測圓錐的體積也可以借助我們已經學過的圖形來驗證,培養學生的遷移類推能力。到學生猜測出用圓柱的體積來幫助研究圓錐時,再進一步讓學生猜測圓柱與圓錐之間的關系,激起學生的學習興趣,然后馬上讓學生自己以小組為單位去驗證自己的猜測是否正確,讓每個學生都經歷一次探究學習的過程。每個學生都經歷了“猜想估計---設計實驗驗證---發現算法”的自主探究學習的過程,按自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。
在探究圓錐體積計算方法的學習過程中,學生不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數學知識,獲得更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發現自身的價值。而且在探究出圓錐體積公式的基礎上,再讓他們想辦法計算出他們小組實驗用的圓錐的體積,又一次給了學生探究的空間,使他們對不光能得出圓錐的體積公式,而且知道怎么應用它。
充分發揮了學生的個性潛能。在學習中充分發揮學生的潛能,讓他們按自己的觀察進行猜測估計,按自己的設想操作學習,對自己學習情況進行總結,反思,在全體學生思維火花的相互碰撞中,出現了驗證等底等高的圓錐體和圓柱體體積的方法。涌現出了對圓錐體體積計算公式中“1/3”的不同理解,實現了學習策略的多樣化,豐富了學生的學習資源。
圓錐的體積是學生在掌握了圓錐的認識和圓柱的體積的基礎上教學的。是小學幾何初步知識教學的重要內容。本節教學分兩個層次進行,一是推導圓錐體積計算公式,二是運用公式求圓錐的體積。我在教學時,主要運用了探究式的教學方法進行教學,收到了較好的效果,現總結以下幾點做法:
一、大膽猜測,培養猜測意識。
假設和猜想是科學的天梯,是科學探究的重要一環。任何發明創造我想都是離不開假設和猜想的。基于這樣的認識,結合本節課教學內容的特點,我在教學中借助教具和學具,讓學生充分觀察“等底等高的圓柱和圓錐”后,再大膽猜想它們的體積可能會有什么樣的關系?”這樣設計,事實證明不僅僅是能夠培養學生的猜測意識,更重要的是充分調動了所有學生的積極性,大家探究的欲望強烈,為本節課的成功教學奠定了基礎。
二、操作驗證,培養科學的實驗觀。
數學不僅是思維科學,也是實驗科學,通過觀察猜想,實驗操作得到數學結論,這種形式也是進行科學研究的最基本形式.教學中,使學生通過自主探究實驗得出結論:圓錐的體積是與這個圓錐等底等高的圓柱體積的三分之一。從而總結出圓錐體積的計算公式:v=1/3sh。
教學圓錐的體積計算時先分組做實驗,在空圓錐里裝滿沙子,然后倒入空等底等高的圓柱中,從倒的次數中觀察到怎樣的現象呢?兩者體積之間有怎樣的關系。我們將空圓錐里裝滿沙子,然后倒入空圓柱中,三次正好裝滿。說明圓錐的體積是圓柱的三分之一。然后用不等底等高的圓錐和圓柱所得的情況與以上不同。最后得到一個原理等底等高。圓錐的體積等于和它等底等高的圓柱體積的三分。
《圓錐的體積》的教學都是先由教師演示等底等高情況下的三分之一,再讓學生去驗證,最后教師通過對比實驗說明不等底等高的差異,而在以上教育中卻不然,我先采用學生做實驗的方法,讓學生親自實踐,在實際中懂得其中的道理,用一個等底等高圓柱和圓錐,讓學生分組進行實際操作,使學生清楚的知道其中的知識點,明白了圓錐與圓柱之間的體積關系,從而是學生發現其中的數學原理,而且我有意地將實驗的環節復合,在看似混亂無序的實踐中,增加了學生對實驗條件的辨別及信息的批判,同時這也是這堂課需要解決的重點和難點。在整個教學過程中,我非常重視讓學生參與教學的全過程,學生始終是活動的主體,我則是這一活動的組織者、指導者、和參與者。同時引導學生用科學的態度去對待這個實驗,實事求是,認真分析自己操作實驗出現了和別人不太一樣的結論的原因,培養學生科學實驗觀。學生學的主動,經歷了一番觀察、發現、合作、探究的過程,既能達到圓滿地推導出了圓錐的體積公式,又使學生的實踐能力得到發揮.
總之,這節課,每個學生都經歷了“猜想---實驗---發現”的自主探究學習的過程。學生獲得的不僅是鮮活的數學知識,獲得更多的是科學探究的學習方法和研究問題的方法,孩子們體驗到了探究成功的喜悅,進行了探究失敗的深刻反思,有利于從小樹立科學的實驗觀。我思考:如果長期在這樣的探究中去學習知識,學生就會變成有思想、會思考、會研究、會學習的人。我為自己加油:做一個引領學生學會探究學習的好老師!
圓錐的體積教學方案(實用13篇)篇三
《圓錐的體積》是九年義務教育六年制小學數學第十一冊第三單元的內容。
1、通過讓學生小組合作探究,利用不同的方法測量出圓錐的體積。體驗到計算圓錐體積的計算公式v=1/3sh是最簡便的方法。
2、鍛煉學生的操作能力,估算能力,評價能力,更好的發展他們的創新能力。
3、培養學生的合作意識及主動探索知識的精神。
讓學生自己親身體驗到計算圓錐體積的不同方法。從而理解計算公式v=1/3sh,并感受到計算公式的簡便。
教學難點:能利用不同方法計算不同物體的體積。知識的活學活用。
1、個學生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。
2、教學軟件。
一、創設情景,激趣引新。
1、首先教師手中拿一圓柱體問:“同學們,老師想知道這個圓柱體的體積你們能幫助我嗎?”
(學生踴躍舉手說明。可以先測量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)
2、教師表示贊同,并抓住這一契機拿出于剛才圓柱等底等高的圓錐,問:“那老師這里還有一個圓錐體,它的體積應該怎樣計算呢?你們知道嗎?”(學生齊答不)那你們想不想研究呢?(學生齊答想)好,下面我們就一起來研究圓錐的體積該怎樣計算。
二、小組合作,探究學習。
1、動手操作,測量圓錐體的體積。
要求:每組同學,利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測量出自己組內的圓錐體的體積。測量物體是容器的厚度不計。
3、分組匯報不同的方法。
〈學生在匯報時可邊講解邊示范〉
方法一:可以利用量杯。首先把圓錐體容器內裝滿水,然后把它倒入量杯內,我們看到水面的刻度就是水的體積也就是圓錐體的體積。
方法二:利用手中的一立方厘米的小木塊進行估算。
方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時看容器空出來的地方為長方體,用一立方分米減去長方體的體積就可以得到圓錐體的體積了。
〈設計意圖:通過討論研究和動手操作,發展學生的創新能力,和解決實際問題的能力。〉
(2)學生再次在小組內操作探究。
(3)匯報結論。
(4)微機演示。
當等底不等高時,當等高不等底時,當底和高都不相等時,出現的結果是怎樣的。
4、評價以上各種辦法
同學們的結論是用公式計算比較方便。
三、解決實際問題
(問題一)
1、各小組量一量,算一算自己組內的圓錐體的體積。(測量,計算時都要保留整數)
2、匯報結果。
先測量出圓錐體的直徑,算出底面積。再測量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶劑可看作體積)
(問題二)
2、匯報結果。
用每立方厘米裝大米的克數乘圓錐的體積。算式:0.9x262≈236克
3、驗證計算結果
用稱稱一稱,比較一下結果。
4、討論兩次結果為什么不同。
由于測量時厚度不計,計算時是近似值。都存在誤差。
〈設計意圖:通過測量,計算等環節,發展學生的應用意識及估算的能力。〉
(問題三)
利用圓錐體積公式計算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(問題四)
計算不規則物體體積或容積。(直說出計算的方法即可)
1、用什么方法計算出葫蘆能裝多少水?
2、胡蘿卜的體積怎樣計算?
3、不規則的零件體積計算?
四、總結全課
說說你的收獲,鼓勵學生學習知識要活學活用,大膽動腦,勇于創新。
圓錐的體積教學方案(實用13篇)篇四
一、復習導入。
1、怎樣計算圓柱的體積?(板書公式)
2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?
3、出示一個圓錐,請學生說說圓錐的特征。
4、導入:前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積應怎樣計算呢?今天這節課我們就來研究這個問題。(板書課題)
二、動手測量,大膽猜想。
1、動手測量,找圓錐和圓柱的底和高的關系。
2、學生動手測量,教師巡視。給予指導。
3、交流得出結論:圓柱和圓錐等底等高。
4、猜想等底等高的圓柱和圓錐的體積之間有什么關系?
三、實驗操作,推導出圓錐體積計算公式。
1、實驗操作。
師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。
2、學生分組實驗,教師巡視。
3、匯報交流,你們組是怎么做實驗的?通過實驗你發現了什么?
4、強調等底等高。
5小結:不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結論)
6、練習(出示)
(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是()立方分米。
(2)一個圓錐的體積是1.8立方分米,與它等底等高的圓柱的體積是()立方分米。
7、得出圓錐的體積計算公式。
8、用字母表示圓錐的體積計算公式。
三、鞏固練習。
1、計算下面圓錐的體積。(只列式不計算)
底面積是6.28平方分米,高是9分米。
底面半徑是6厘米,高是4.5厘米。
底面直徑是4厘米,高是4.8厘米。
底面周長是12.56厘米,高是6厘米。
2、填空。
a圓錐的體積=(),用字母表示是()。
b圓柱體積的與和它()的圓錐的體積相等。
c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。
d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。
3、判斷。(用手勢表示)
a圓柱體的體積一定比圓錐體的體積大()
b圓錐的體積等于和它等底等高的圓柱體的()
c正方體、長方體、圓錐體的體積都等于底面積×高。()
d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()
四、全課小結。
師:今天這結課學習了什么?通過今天的學習研究你有什么收獲?
五、解決實際問題。
在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數保留整噸數)
圓錐的體積教學方案(實用13篇)篇五
《圓錐的體積》一課的教學,是在學生掌握了圓錐的認識和圓柱的體積的基礎上進行的。多年的教學,讓我學習和累計了很多的教學經驗。教學時我先生活故事導入激發學生的學習興趣,再讓學生大膽的猜想圓錐的體積公式,然后通過實驗操作來發現圓錐與等底等高的圓柱之間的關系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。
新課一開始,我就利用教師出示一堆煤,師:將這堆煤倒在地上,會變成什么形狀情境導入,教師再演示削鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形,讓學生觀察,猜測圓錐的體積和什么有關,由于課件很形象直觀,學生很快聯系到了圓柱的體積,而且很容易想到應該是幾分之幾的關系。在猜想中學生的學習興趣高漲,更明確了學習的目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗,讓孩子親歷教學的驗證過程,從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
小學數學教學中的情感發展主要包括學生對數學、數學學習活動的興趣;自信心和意志力,學習數學的態度與學習習慣。本節課的教學,擺脫了傳統“灌”的教學,從引導學生發現問題、探索問題,學生在發現中激起興趣,從探索中尋找快樂,然后又應用知識解決問題。學生經歷了一個探索性的學習過程,不知不覺地掌握了知識,發展了能力,增進了對數學的情感。學習變成了一個賞心悅目的活動。
小學數學教材中,含有大量思想教育因素,是對學生進行教育的良好素材。教師在教學數學知識的同時,要注意發揮教材本身思想教育功能,不失時機地、潛移默化地滲透思想教育活動是兒童認識數學的重要方式。新課改提倡學生的自主活動,把數學學習的主動權交給學生,鼓勵每個學生積極參與教學活動,在教學中創設豐富多彩的活動情境,讓學生親自實踐,大膽探索。
練習設計從基本題入手,過渡到情境題,發展到綜合解決實際問題,這個過程中訓練了學生的解題能力,培養了運用所學知識解決實際問題的能力。
在教學后感覺到遺憾的是,由于教具準備不足的.關系,學生參與以小組合作學習的面小,小組合作分工不太合理,使每個學生不是全身心投入到探究實驗中去。這樣少部份學生的學習參與積極性不高,有點被動、遺憾進行學習,沒有最大限度的發揮每個學生的自主學習的能力。這樣的學習雖然是培養了學生的能力,但合作意識還需加強,學生小組合作完成試驗的默契還需加強。
圓錐的體積教學方案(實用13篇)篇六
這一節失敗的課讓我反思了很多,除了總結和練習,還找到了很多不足之處均待提高。
如:“你打算用什么方法測量這個圓錐的體積?”問題提出后,我僅停頓了2秒,沒有學生舉手我就接著說“我們解決一個未知問題通常會把它轉化為已知問題,那么圓錐的體積可以轉化為我們原來學過的哪個立體圖形的體積呢?”說完這句話,我就意識到,這個地方應該讓學生充分的思考,充分的說一說方法,如果學生說不出,我再說這些話,學生可能會給我很多驚喜。
學生經歷了猜想、體驗、探究、驗證的過程,在實驗的過程中肯定會發現很多問題、矛盾。實驗結束后,學生應該有很多話要說。此時問一問,你想說什么?既給了學生一個思維提升的過程,又能順利的總結出這節課的結論。
這個問題,我曾經百思不得其解,總以為就是高年級學生的公開課比低年級的公開課難上,這節課后也豁然找到了原因:一是出在我平時的課堂上。由于平時上課總要照顧后進生,所以在回答問題時,往往不去叫舉手的好學生,總去點不舉手的后進生,公開課時也不由自主地這樣做。但是這樣做的后果就是導致,舉手的同學本來就有些害怕,我還總不去叫他。不但打擊了舉手同學的積極性,還打消了其他同學舉手的念頭。另一個很重要的原因是緣于教師上課的心態。對著低年級學生上課,我們很容易放下姿態,去“哄”他們,有一點做的好、說的好了,教師就會給很高的評價。而且態度還“和藹可親”
圓錐的體積教學方案(實用13篇)篇七
圓錐的體積是在學習了圓錐的認識的基礎上進行教學的。
這節課我是這樣設計的:第一部分,復習圓錐的特征和圓柱的體積=底面積×高。反思:復習舊知識之間的聯系,便于運用已學知識推動新知識的學習,為學習新知識做準備。
第二部分,便于圓柱體積的計算公式,先讓學生用轉化的思想大膽猜測,能否把體積計算方法轉化成已學過的立體圖形來推導圓錐體積公式呢?學生猜測之后,讓學生拿出手中等底等高的圓柱體,然后同桌討論得出結論,全班交流。再進行第二次實驗,同桌交換圓柱或圓錐倒進沙子之后,同桌討論,全班交流,老師引導學生兩次實驗的結論有什么不同,經過學生的討論,師生歸納出:圓錐的體積等于等底等高的圓柱體積的三分之一。并強調v=3sh的前提條件是等底等高。
反思:這一環節讓學生用轉化的思想猜測,激發學生的學習興趣,調動學生的探究欲望。緊接著讓學生兩次動手實驗,親自體驗知識的探究過程。符合小學生的認知規律,便于學生主動地獲取知識,掌握正確的學習方法。通過實驗,學生參與了知識的形成過程,得出了只有在等底等高的情況下圓錐的體積是圓柱的三分之一,否則這個結論不成立。
圓錐的體積教學方案(實用13篇)篇八
1、通過實驗發現等底等高的圓柱和圓錐體積之間的關系,從而得出體積的計算公式,能運用公式解答有關實際問題。
2、通過動手操作參與實驗,發現等底等高的圓柱和圓錐體積之間的關系,并通過猜想、探索和發現的過程,推導出圓錐的體積公式。
3、通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,感受數學方法的內在魅力,激發學生參加探索的興趣。
教學重點: 通過實驗的方法,得到計算圓錐的體積。
教學難點:運用圓錐的體積公式進行正確地計算。
教學準備:等底等高的圓柱和圓錐容器模型各一個。
一、復習導入
師:同學們,請看大屏幕(課件出示圓柱削成最大圓錐)。
1、圓柱體積的計算公式是什么? (指名學生回答)
2、圓錐有什么特征?
同學們,圓柱的體積我們已經知道怎么求,那與它等底等高的圓錐的體積同學們知道怎么求嗎?讓我們一同走進圓錐的體積與等底等高的圓柱體體積有什么關系的知識課堂吧!(板書:圓錐的體積)
二、探究新知
課件出示等底等高的圓柱和圓錐
1、引導學生觀察:這個圓柱和圓錐有什么相同的地方?
學生回答:它們是等底等高的。
猜想:
(1)、你認為圓錐體積的大小與它的什么有關?
(2)、你認為圓錐的體積和什么圖形的體積關系最密切?猜一猜它們的體積有什么關系?
2、學生動手操作實驗
(1)、用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒滿?
(2)、通過實驗,你發現了什么?
小結:通過實驗我們發現圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一 。
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積= 1/3×圓柱體積 )
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢? (板書:圓錐的體積= 1/3×底面積×高)
師:用字母應該怎樣表示? (v=1/3sh)
師:在這個公式里你覺得哪里最應該注意?
三、教學試一試
四、鞏固練習
1、計算圓錐的體積
2、判一判
3、算一算
4、拓展延伸
五、總結
通過這節課的學習,你有什么收獲呢?
六、板書:
圓錐的體積=圓柱的體積×1/3
圓錐的體積=底面積×高×1/3
用字母表示v=1/3sh
圓錐的體積教學方案(實用13篇)篇九
使學生初步掌握圓錐體積的計算公式。
并能運用公式正確地計算圓錐的體積,發展學生的空間觀念。
等底等高的圓柱和圓錐,水和沙,多媒體課件。
一課時。
一、復習。
1、圓錐有什么特征?(課件出示)。
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數學學習中的應用。
二、導人新課。
我們已經學過圓柱體積的計算公式,那么圓錐的體積是不是和圓柱體積有關呢?今天我們就來學習圓錐體積的計算。
三、新課。
1、教學圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
學生分組實驗。
匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒滿。
多指名說。
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找幾名同學說。
師:圓柱的體積等于什么?
生:等于“底面積×高”。
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
師:用字母應該怎樣表示?
然后板書字母公式:v=1/3sh。
師:在這個公式里你覺得哪里最應該注意?
1/3×19×12=76((立方厘米))。
答:這個零件體積是76立方厘米。
做一做:課件出示,學生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積v?
3、已知圓錐的底面直徑d和高h,如何求體積v?
4、已知圓錐的底面周長c和高h,如何求體積v?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2:(課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數保留整千克)。
判斷:課件出示,學生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大()。
2、圓錐的體積等于和它等底等高的圓柱體積的()。
3、正方體、長方體、圓錐體的體積都等于底面積×高。()。
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米()。
四、教師小結。
這節課我們學習了哪些知識?你還有什么問題嗎?
五、作業。課本練習九中7、8題。
圓錐的體積教學方案(實用13篇)篇十
并能運用公式正確地計算圓錐的體積,發展學生的空間觀念。
教學難點:圓錐的體積應用。
學具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件。
教學時間:一課時。
教學過程:。
一、復習。
1、圓錐有什么特征?(課件出示)。
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數學學習中的應用。
二、導人新課。
出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。
三、新課。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的.圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
學生分組實驗。
匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒滿。
多指名說。
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找幾名同學說。
師:圓柱的體積等于什么?
生:等于“底面積×高”。
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積=1/3×底面積×高。
師:用字母應該怎樣表示?
然后板書字母公式:v=1/3sh。
師:在這個公式里你覺得哪里最應該注意?
1/3×19×12=76((立方厘米))。
答:這個零件體積是76立方厘米。
做一做:課件出示,學生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積v?
3、已知圓錐的底面直徑d和高h,如何求體積v?
4、已知圓錐的底面周長c和高h,如何求體積v?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數保留整千克)。
判斷:課件出示,學生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大()。
2、圓錐的體積等于和它等底等高的圓柱體積的()。
3、正方體、長方體、圓錐體的體積都等于底面積×高。()。
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米()。
四、教師小結。
這節課我們學習了哪些知識?你還有什么問題嗎?
五、作業。課本練習。
圓錐的體積教學方案(實用13篇)篇十一
圓錐的體積是在學生掌握了圓柱的特征及圓柱的體積等有關知識的基礎上進行教學的。
1。讓學生經歷圓錐體積計算公式的推導過程,弄清來龍去脈。在教學中,我讓學生在課前自己先制作出等底等高的圓柱和圓錐型容器教具,讓學生通過倒水,發現在等底等高的圓柱和圓錐中,用圓錐容器裝水倒入等底等高的圓柱容器中,剛好倒三次,即圓錐的體積是與它等底等高圓柱體積的三分之一,由此通過公式可以得出:
v圓錐=1/3圓柱=1/3sh(知道底面積和高)。
=1/3πr2h(知道半徑和高)。
=1/3π(d*2)2h(知道直徑和高)。
=1/3π(c*2*π)2h(知道周長和高)。
2。加強學生的實踐,培養學生的動手操作能力與自主解決問題的能力。在教學中,我讓學生自己制作學具,目的是讓學生通過自己的親身實踐,親自動手,親身體會圓柱與圓錐體積之間的關系,這樣利于培養學生自主探索,與同學之間合作學習,共同解決問題的能力。學生在此項活動中,不僅收獲了知識的來龍去脈,還體會到了與同學合作,共享成果的幸福喜悅。
沒有在制作學具時候,制作出等底不等高的圓柱和圓錐型容器教具,然后挑一組學生實驗,得不出圓錐的體積是與它等底等高圓柱體積的三分之一的結論。所以,缺乏對比性,如果加入這個教具的話,更能讓學生深知等底等高的重要性。
圓錐的體積教學方案(實用13篇)篇十二
本節課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。
本節內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養學生抽象的邏輯思維能力,激發學生的想象力.
數學課程標準中指出:應放手讓學生經歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發展空間觀念,從而提高學生自主解決問題的能力。
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態度與價值觀:培養學生勇于探索的求知精神,感受到數學來源于生活,能積極參與數學活動,自覺養成與人合作交流與獨立思考的良好習慣。
圓錐體積公式的理解,并能運用公式求圓錐的體積。
圓錐體積公式的推導
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發現問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對 于新的知識教學,他們一定能表現出極大的熱情。
試驗探究法 小組合作學習法
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
1課時
一、回顧舊知識
1、你能計算哪些規則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
設計意圖通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
二、創設情景 激發激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
設計意圖以生活中的數學的形式進行設置情景,引疑激趣遷移,激發學生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究 合作學習(探討圓柱與圓錐體積之間的關系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數學專用名詞:等底 等高
設計意圖通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發現了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數據(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當等底等高時,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發了學生的求知欲,培養了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發現了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
四、實踐運用 提升技能
2、口答題:題目內容見多媒體展示獨立思考---抽生匯報---學生評議
設計意圖通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發展的空間,讓他們有跳起來摘果子的機會,以達到培養能力、發展個性的目的。
五、談談收獲:這節課你學到了什么呢?
六、課堂作業:
1、做在書上作業:練習四 第4、7題
2、坐在作業本上作業:練習四 第3題
圓錐的體積教學方案(實用13篇)篇十三
圓錐的體積是在學生直觀認識圓錐的特征,會算圓的面積,以及長方體、正方體、圓柱體的體積的基礎上安排教學的。因此,我有針對性地設計、制作了本節課的輔助教學課件,既突出重點、突破難點,又激發學生的學習興趣,優化教學過程,提高課堂教學質量。
由于圓錐體的體積是在學生學過圓柱體的體積的基礎上安排教學的,為了讓學生回憶圓柱體的體積計算公式,以便為知識的遷移和新知識的學習做好鋪墊,我制作了一張圖文并茂的圖文片向學生展示了一個圓柱體圖形,并在圖形下面用醒目的文字向學生提出問題:這是什么形體?它的體積應怎樣計算?這樣一張集文字、圖形、聲音于一體的圖文片,很容易引起學生注意,營造學習氣氛。
數學來源于生活,我取材于生活以創設情境,使教學過程與生活實際密聯系起來,我制作了一張圖文并茂的圖文片向學生展示了曬谷場上一堆圓錐形的谷子,并在顯眼的位置向學生巧設問題:這堆谷成什么形體?你們能求出這堆谷的體積嗎?這樣,激發了學生的求知欲望,把學生引入到新課探索的活動中。
圓錐體積的推導,是本節課的教學難點,為了讓學生直觀感知圓錐的體積與它等底等高的圓柱的體積的關系。首先讓學生用工具做實驗,初步感知,再呈現我制作的圖文片向學生演示:用圓錐裝滿水倒入和它等底等高的圓柱里的過程。并在動畫下面巧設問題:用圓錐裝滿水倒入和它等底等高的空圓柱里,倒幾次正好倒滿?每次水的高度是圓柱高度的幾分之幾?有層次的教學設計,豐富多彩的教學活動,充分體現以教師為主導,以學生為主體的教與學的雙邊活動。學生通過認真操作實驗,觀察思考,都明白了圓錐的體積等于和它等底等高的圓柱體積的1/3,從而推導出圓錐體積的計算公式。
為了提高學生解決實際問題的能力,我把課本上的例1制成一張圖文片,配上悠閑的樂曲,讓學生嘗試解答。試做時,我則進行巡視,如有問題,個別輔導,接著指名回答。這樣,能夠把較多的時間留給學生,培養學生的自學能力,使他們從中體驗到學習的成功的樂趣。
本節課《圓錐的體積》以談話法、實驗法為主,討論法、練習法為輔,實現教學目標。教學中,既充分發揮學生的主體作用,調動學生積極主動地參與教學的全過程。小學階段學習的幾何知識是直觀幾何。小學生學習幾何知識不是靠嚴格的論證,而主要是通過觀察、操作。根據課題的特點,主要采取讓學生做實驗的方法主動獲取知識,而且在教學中我注重如何有效的引導學生探究。
例如,在上課開始,我是讓學生回憶圓柱體積公式的推導過程,
讓學生猜測圓錐的體積也可以借助我們已經學過的圖形來驗證,培養學生的遷移類推能力。到學生猜測出用圓柱的體積來幫助研究圓錐時,再進一步讓學生猜測圓柱與圓錐之間的關系,激起學生的學習興趣,然后馬上讓學生自己以小組為單位去驗證自己的猜測是否正確,讓每個學生都經歷一次探究學習的過程。每個學生都經歷了“猜想估計---設計實驗驗證---發現算法”的自主探究學習的過程,按自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。
在探究圓錐體積計算方法的學習過程中,學生不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數學知識,獲得更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發現自身的價值。而且在探究出圓錐體積公式的基礎上,再讓他們想辦法計算出他們小組實驗用的圓錐的體積,又一次給了學生探究的空間,使他們對不光能得出圓錐的體積公式,而且知道怎么應用它。
充分發揮了學生的個性潛能。在學習中充分發揮學生的潛能,讓他們按自己的觀察進行猜測估計,按自己的設想操作學習,對自己學習情況進行總結,反思,在全體學生思維火花的相互碰撞中,出現了驗證等底等高的圓錐體和圓柱體體積的方法。涌現出了對圓錐體體積計算公式中“1/3”的不同理解,實現了學習策略的多樣化,豐富了學生的學習資源。