教案模板是教師傳授知識、培養學生能力和進行評價的重要工具。在下文中,你將找到一些經過實踐檢驗的教案模板,它們是一些優秀教師多年教學經驗的總結。
五年級第四單元分數的基本性質說課稿大全(15篇)篇一
教學目標:
1.讓學生通過經歷預測猜想實驗分析合情推理探究創造的過程,理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2.根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。
3.培養學生觀察、分析和抽象概括的能力,滲透事物是互相聯系、發展變化的辯證唯物主義觀點。體驗到數學驗證的思想,培養敢于質疑、學會分析的能力。
教學重點:
教學難點:
讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
教學過程:
一、故事情景引入。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數)你們同意嗎?奶奶的話剛講完,小紅就嘟著嘴叫了起來:奶奶你不公平!分給小兵的多,分給我的少!小明連忙叫著:奶奶不公平,奶奶偏心!只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現在同桌之間討論一下。
討論完了請舉手。
生甲:我覺得不公平,小紅分得多。
生乙:我覺得小明分得多。
生丙:我覺得公平,他們三個分得一樣多。
師:看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節課同學們就會明白了。
二、新授。
師:下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)。
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:三張圓片一樣大。
1.師:下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了。
首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)。
2.師:分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)。
下面請哪位同學說一說,你是怎么分的?
生:把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。
生:把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。
師:那九分之三又是怎么得到的呢?大家一起說。
生:把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。
圖1。
(學生說的同時,教師操作,分完后把圓片貼在黑板上。)。
3.師:同學們,觀察這些圓的陰影部分,你有什么發現?
小結:原來三個圓的陰影部分是同樣大的'。
師:現在再來評判一下,奶奶分月餅公平嗎?為什么?(請幾名學生回答)。
生:奶奶分月餅是公平的,因為他們三個分得的月餅一樣多。
生甲:通過圖上看起來,這三個分數應該是一樣大的。
生乙:這三個分數是相等的。
師:剛才的試驗證明,它們的大小是相等的。(板書,打上等號)。
4.研究分數的基本規律。
師:我們仔細觀察這一組分數,它的什么變了,什么沒變?
生甲:三個分數的分子分母都變了,大小沒變。
師:那它的分子分母發生了怎樣的變化呢?讓我們從左往右看。
第一個分數從左往右看,跟第二個分數比,發生了什么變化?
生乙:它的分子分母都同時擴大了兩倍。
師:跟第三個分數比,它又發生了什么變化?(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規律。(邊講邊板書)。
學生發言。
小結:像分數的分子分母發生的這種有規律的變化,就是我們這節課學習的新知識。(板題)。
五年級第四單元分數的基本性質說課稿大全(15篇)篇二
1.使學生理解和掌握分數的基本性質,能應用“性質”解決一些簡單問題。
2.培養學生觀察、分析、思考和抽象、概括的能力。
3.滲透“形式與實質”的辯證唯物主義觀點,使學生受到思想教育。
教學過程。
一、談話我們已經學習了分數的意義,認識了真分數、假分數和帶分數,掌握了假分數與帶分數、整數的互化方法。今天我們繼續學習分數的有關知識。
二、導入新課例1.用分數表示下面各圖中的陰影部分,并比較它們的大小。
1、分別出示每一個圓,讓學生說出表示陰影部分的分數。
(1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
(2)同樣大的.圓,陰影部分占圓的幾分之幾?
(3)同樣大的圓,陰影部分用分數表示是多少?
2、觀察比較陰影部分的大小:
(1)從4幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等。)。
(2)陰影部分的大小相等,可以用等號連接起來。
3、分析、推導出表示陰影部分的分數的大小也相等:
(1)4幅圖中陰影部分的大小相等。那么,表示這4幅圖的4個分數的大小怎么樣呢?(這4個分數的大小也相等)。
(2)它們的大小相等,也可以用等號連接起來(把4個分數用等號連起來)。
4、觀察、分析相等的分數之間有什么關系?
(1)觀察轉化成,的分子、分母發生了什么變化?(的分子、分母都乘上了2或的分子、分母都擴大了2倍。)。
(2)觀察例2.比較的大小。
1、出示圖:我們在三條同樣的數軸上分別表示這三個分數。
2、觀察數軸上三個點的位置,比較三個分數的大小:從數軸上可以看出:
3、觀察、分析形式不同而大小相等的三個分數之間有什么聯系和變化規律,
1、觀察前面兩道例題,你們從中發現了什么變化規律?“分數的分子分母都乘上或都除以相同的數(零除外),分數的大小不變。”
2、為什么要“零除外”?
3、教師小結:這就是今天這節課我們學習的內容:“分數的基本性質”(板書:“基本性質”)。
4、誰再說一遍什么叫分數的基本性質?教師板書字母公式:
1、請同學們回憶,分數的基本性質和我們以前學過的哪一個知識相類似?(和除法中商不變的性質相類似。)。
(1)商不變的性質是什么?(除法中,被除數和除數都乘上或都除以相同的數(零除外),商的大小不變。)。
(2)應用商不變的性質可以進行除法簡便運算,可以解決小數除法的運算。2、分數基本性質的應用:我們學習分數的基本性質目的是加深對分數的認識,更主要的是應用這一知識去解決一些有關分數的問題。例3把和化成分母是12而大小不變的分數。
板書:
教師提問:
(1)?為什么?依據什么道理?(,因為分母2乘上6等于12,要使分數的大小不變,分子1也要乘上6.所以,)。
(2)這個“6”是怎么想出來的?(這樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)。
(3)?為什么?依據的什么道理?(,因為分母24除以2等于12,要使分數的大小不變,分子10也得除以2,所以,)。
(4)這個“2”是怎么想出來的?(這樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是10÷2=5)。
五年級第四單元分數的基本性質說課稿大全(15篇)篇三
《分數的基本性質》一課是五年級下冊的一個內容。學習本內容之前,學生已清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。本課在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習約分、通分、分數計算的基礎。
二、學情分析。
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。
三、教學目標。
依據新的《數學課程標準》,為了更好地體現數學學習對學生在數學思考、解決問題以及情感與態度等方面的要求。根據本節課的具體內容并結合學生的實際情況,我制定了以下教學目標:
1.使學生理解與掌握分數的基本性質,能運用它改變分數的分母與分子,而使分數的大小不變。
2.培養學生觀察、比較、分析、概括等方面的能力。
3、通過實踐活動,鼓勵學生動手進行科學的驗證,培養其勇于探索,勇于創新的.意識。
四、教學重點、難點。
教學重點:
理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點。
學生通過猜想和動手驗證,抽象概括出分數的基本性質。
五、教法學法的選擇。
教法:本著“以學生發展為本”、“以學定教”的思想,按照學生學習的認知規律,在探究分數的基本性質過程中,主要采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。
學法:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
六、教學過程的設計。
為了全面、準確地引導學生探索發現分數的基本性質,實現教學目標,我努力抓住學生的思維生長點組織教學,設計了“1.創設情境——引發思考2.引出新知——動手實踐3.初步感知——引導觀察4.發現規律——鞏固練習5.課堂小結——加深理解”五個環節。
一、創設情境,引發思考。
1、上課開始我引入了故事:有一天媽媽給淘氣做了一個香噴噴的大蛋糕,藍貓看見了也想吃。淘氣說:我只有一個蛋糕,要不我分給你一些吧,我有三種分法,請你選擇一種:
第一種:把蛋糕平均分成2份,送給你其中的一份,也就是這個蛋糕的1/2;
第二種:把蛋糕平均分成4份,送給你其中的2份,也就是這個蛋糕的2/4;
第三種:把蛋糕平均分成8份,送給你其中的4份,也就是這個蛋糕的4/8。
選擇哪一種分法吃到的蛋糕最多呢?
同學們,如果你是藍貓,你會選擇哪一種呢?
先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。
分為3個層次借助長方形紙條來理解。通過觀察、舉例、驗證,初步理解和總結(分數的分子和分母同時乘或除以相同的數分數的大小不變。)——總結完善分數的基本性質。
1、借助長方形紙條理解。
這里分成兩份層次(1)借助直觀圖理解(2)分析分數理解。
(1)借助直觀圖理解。
(2)借助分數理解。
在學生清楚的知道了三個分數為什么會相等后,從圖在回到抽象的三個分數上,說一說,他們的分子、分母是怎樣變化的。說明白后,明確分的份數就是分母,取得分數就是分子,在板書上改為“分母擴大了兩倍、四倍,分子也相應擴大了兩倍、四倍,分數大小不變”
2、通過觀察、舉例、驗證,初步理解和總結(分數的分子和分母同時乘或除以相同的數分數的大小不變。)。
總結規律是在大量的直觀的數據或練習的基礎上實現的。為了給學生便于學生總結,我設計了“你還能舉出一個和3/6大小相等的分數嗎?你是怎樣想的?如果想讓分子是9,分母是?想讓分母是18,分子呢?”一方面學生利用了分數的基本性質做了一些基礎的題,另一方面在敘述你是怎樣想的時候,其實也是對分數基本性質的概括。這樣當“用一句話總結你的發現”的時候,在語言敘述上就沒有什么障礙了。
3、關于“同時”“相同的數““0除外”的理解。
兩種預設,在總結出“分數的分子、分母同時乘或除以相同的數,分數的大小不變。”讓學生說說自己的理解,如果有有學生提出就上提出的學生說一說,如果沒有主動提出,就通過做個練習題,“2/3哪樣列式行嗎?為什么?”。讓學生說一說通過做這兩個題你有什么想提醒大家的。
四、鞏固練習。
根據本節課的內容,在練習上我設計三個不同層次的練習,首先是針對大多數的基礎性練習,如填空、判斷。其次是稍有變動的,需要結合分數與除法關系完成的變式練習。
最后為了滿足優等生的需要還涉及了以下練習。
5/9的分母加9,分子加幾,分數的大小不變。
1/2==2/4=4/8。
分數的分子和分母同時乘或者除以相同的數(0除外),分數大小不變。
文檔為doc格式。
五年級第四單元分數的基本性質說課稿大全(15篇)篇四
根據對教材內容的分析,考慮到五年級學生已有的認知水平和生活經驗,結合數學學科的特點以及數學課程標準的要求,我制定了如下的教學目標:
為完成本節課的教學目標,我在自己的教學過程中努力構建和諧的課堂,主要通過以下幾個方面入手來組織教學的。
第一個環節,情境導入,理解單位“1”,感悟分數意義。
教學中,一開始,由故事引入“平均分”“分數”兩個概念,提出“生活中這樣的分數有許多,書上也有這樣的例子。然后讓學生自學課本說清分數的產生。
接下來,讓學生用學具在折、畫表示一個分數的實際操作中回憶、復習已有的知識,讓每個學生多種方法創造分數。讓學生上臺展示成果,體現了“做數學”的。過程。同時,學生在相互傾聽、相互補充的過程中,能夠不斷豐富自己對分數的直觀感受。
然后老師反問學生,究竟什么是分數呢,學生再次自學課本,充分利用教材,培養學生的自學能力,把學習的主動權交給學生,然后小組交流,看懂了什么,還有什么不懂的地方,讓學生在自學、討論、交流的過程中實現對知識的意義建構,再次體現“做數學”的活動,體現學生主體地位,使每個學生盡可能的參與學習的全過程。教師只是引導學生抓住重點內容,先得出一個完整的“分數的意義”的概念,然后針對某些疑點、難點展開研究,逐步建立完整清晰的概念,培養學生探索精神和有序思維能力。
第二個環節,認識分數單位,加深分數意義。
這個環節是讓學生在感受分數單位的特點后,先總結再自學課本,從而掌握分數單位。
第三個環節:生活應用,鞏固分數意義。
練習設計力求做到由易到難、由淺入深,既鞏固新知,又發展思維,體現了層次性、針對性、實效性。如:達標練習中的“用分數表示涂色部分”,而且也注意到了練習的梯度,培養學生的發散思維,通過這個練習加深了對單位:“1”的理解,進而內化分數的意義,也為后面學習用分數知識解決實際問題作了準備如:“拓展延伸”這一環節中“選分數涂色”,我的意圖是讓學生選分數,涂色表示分數,使學生的思維從單個物體的平均分跨越到多個物體的平均分。讓不同情況的學生進行展示。
整個環節,讓學生在動手操作、動腦思考、動口說理的過程中全面理解了單位“1”的含義。本節課設計的這些開放性練習題,可以使學生主動學習的空間得以擴展,給不同層次的同學展示的機會,使他們感受到成功的喜悅,從而增強學生的自信心,以收到良好的教學效果。
第四個環節的提升,是逆向思維的練習。
同樣的一個同學可以表示不同的分數,猜測單位“1”是多少,在比較中讓學生進一步理解:從而使學生對分數意義的理解水到渠成。
第五個環節:課堂小結。
學習數學實質上就是“做數學”。老師給學生提供了豐富的學習資料,讓學生采用不同形式和方法“做分數”,很自然地使學生體驗、感受分數形成的過程。分數意義的探索完全在學生自己實踐、合作、思考下獲得。學生“學習的主人”色彩體現的淋漓盡致。讓學生充分的交流,適時的抽象、歸納、概括、引導、總結,在讓學生充分展示自我的同時,教師很恰當地體現了自己指導者在教學過程中的作用。師生之間的互動,使學生深刻的理解和掌握了抽象的分數的意義。體現了“在活動中學習數學”的現代思想。
五年級第四單元分數的基本性質說課稿大全(15篇)篇五
大家好!今天,我很高興能站在這里,向大家展示我的說課。我的說課內容是《分數的基本性質》。我將從以下這些方面來進行說明。
《分數的基本性質》是人教版九年義務教育小學數學第十冊中的內容。本節課內容是在分數的意義,以及分數與除法關系的基礎上進行教學的。是后面進一步學習約分、通分以及分數運算的重要依據,因此本節內容將起著舉足輕重的作用。
根據教材內容及學生的認知水平,我制定了以下教學目標:
2、培養學生觀察、比較、分析、概括等方面的能力。
為了使學生成為課堂的主人,我巧妙的扮演著引導著、組織者的角色。設計了情景設疑、觀察發現、小組合作的教學方法。
新課程標準提倡:過程重于結果。有效的數學活動不能單純的依靠模仿與記憶。因此我引導學生去動手操作,自主探究,游戲比賽等形式來組織教學。
結合五年級學生的理解能力和年齡特征,我將本課的教學,設計了四個環節。
(一)創設情境、引發猜想(課件)。
首先、我為學生帶來了一個猴王分餅的故事:猴山上的猴子們都愛吃猴王做的餅。一天,猴王做了三張同樣大的餅。猴王把第一張餅平均切成了兩塊,給了猴1一塊。(課件)猴2看見了,眼饞的說:“猴王,猴王,我要兩塊。”猴王笑瞇瞇的說:“別急,別急,給你兩塊。”只見猴王把第二張餅平均分成了四塊,給了猴2兩塊。(課件)猴3更貪心:“我要六塊,我要六塊。”猴王想了想,把第三張餅拿出來,平均切成了十二塊,果真給了猴3六塊。
“同學們,你們聽完故事后,覺得哪知猴子分得餅最多?”
一上課,先聽一段故事,學生們自然非常樂意,并會立即被吸引,積極的思考故事中的問題。通過這樣的故事設疑,馬上激起了學生探求新知的欲望。
(二)動手操作、初步感知(課件)。
我讓學生把準備好的三張圓片,拿出來代替猴王做的餅,分別按照折,畫,涂的步驟,表示出每只猴子所得的餅,并用分數表示涂色部分。在這個過程中,學生必然會對那三個圖形進行觀察和比較,從中有所發現。(課件)通過多媒體的直觀演示,學生更加確定,三只猴子分的餅確實一樣多,有了實物的直觀對比,學生不難理解,三個分數大小相等。可是為何分數的分子、分母不同,大小卻相等?在此處,又設下懸疑,充分調動了學生的好奇心。這一情境的設置,主要是讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,營造出良好的學習開端。接著,我因勢利導,安排下一環節:
(三)比較歸納、揭示規律(課件)。
(1)我板書這組分數后,請學生觀察:從左往右看,分子是怎么變的?分母是怎樣變的?此時我將主動權全都交給了學生,先獨立思考,然后在四人小組中交流討論,最后匯報結果。有的小組認為分子加了1,分母加了2等。我都笑而不答。而是鼓勵學生逐一去驗證各種猜想是否具有規律性。使學生在探索中發現,在發現中成長。直到有些學生發現分數的分子分母同時乘了2和3時,我及時給予了肯定和表揚。此時,為了突破本節課的重難點,我設計了一道填空題,可以很好的引導學生概括出這一發現,并讓多名學生說一說。這樣的設計,既培養了學生的概括能力,并為進一步學習增強了信心。在此基礎上,我再布置一個任務:你再從右往左看,又有什么規律?有了前面的經驗,這時學生很快得出:分數的分子、分母同時除以一個相同的數,分數的大小也不變。
(2)就在學生享受成功的喜悅時,我拋出了一個問題:分數的分子分母如果同時乘或除以0,會是什么結果?學生頓時領悟:要0除外。
(3)最后,我建議學生用一句話來歸納這兩個發現,師生共同完善規律。此時我才板書課題,并告訴學生這一規律就叫分數的基本性質,使學生明確了本節課的教學內容。
(4)現在,學生明白了聰明的猴王原來是利用分數的基本性質來分餅的。即滿足了猴子們的要求,又分的那么公平。(課件)如果猴4想要八塊怎么辦?如此設計,既首尾呼應,又培養了學生靈活解決實際問題的能力。
課堂的高潮之后,我啟發學生還可以用商不變的性質來說明分數的基本性質,溝通新舊知識的聯系。
(四)多層聯系、鞏固深化。
練習的設計是鞏固新知最有效的方法。我盡量給枯燥的練習賦予豐富多彩的形式。因此我精心設計的整套練習都是以游戲加比賽的方式來進行。(課件)首先,我安排男、女生以搶答的形式,來填空,重點要讓學生說出解題依據。接著,我又設計了師生互動的游戲:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在兩個小組搶摘蘋果的游戲中結束本節課的教學活動。
說說我的板書設計,它遵循了目的性原則、概括性原則、直觀性原則,能幫助學生把整堂課的學習內容融入大腦。
總結:我在整堂課的設計中努力體現“趣”“實”“活”三個字。以猴王分餅為主線,貫穿全文。由情景導入到動手操作,自主探究,最后歸納規律,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,領略成功的喜悅。新課程標準的要求得到了完美體現。
我的說課到此結束,謝謝大家。
五年級第四單元分數的基本性質說課稿大全(15篇)篇六
本節內容屬于概念教學。《分數基本性質》在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎,還是約分、通分的依據。
學生已經清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本節課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子、分母變了,分數的大小卻沒變。學生在這種“變”與“不變”中發現規律,掌握新知識。
綜合分析課程標準要求及學生實際,我確定本節教學目標如下:
1、理解和掌握分數的基本性質,并且會運用分數的基本性質把不同的分數化成分母(或分子)相同而大小不變的分數。
2、初步養成觀察、比較、抽象概括的邏輯思維能力,并在自主探究中正確認識和理解變與不變的辯證關系。
3、受到數學思想的熏陶,養成樂于探究的學習態度。
教學重點:理解掌握分數的基本性質,它是約分、通分的依據。
教學難點:讓學生自主探索、發現和歸納分數的基本性質,以及應用它解決相關的問題。
根據本節課的教學目標,考慮到學生已有的知識、生活經驗和認知特點,結合教材內容,本課我主要采用猜想驗證與探索發現的教學模式。在分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過觀察、比較,提出問題并且解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用,激發學生學習興趣,同時讓學生獲得成功體驗。
本節課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創設問題情境,揭示本節課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數基本性質。
第三部分:合作探究,發現規律。主要的是學生找出規律,并且利用規律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并且進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發現規律”可以細化為三個環節:
環節一:動手操作,進行比較
這一環節是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數表示涂色部分,并且比較大小。此環節的設計主要是培養學生的比較能力。
環節二:呈現問題,引導觀察
這一環節主要呈現給學生這樣一個問題,“第一環節中的分數的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環節的設計主要是培養學生的觀察能力。
環節三:交流匯報,得出規律
這一環節主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數的基本性質----分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。此環節的設計主要是培養學生的抽象概括能力。
應該強調的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
五年級第四單元分數的基本性質說課稿大全(15篇)篇七
新課標中指出“小學數學教學必須從學生的生活實際出發,設計富有情趣和意義的活動,使他們從周圍熟悉的事物中學習數學,運用數學。”其實就是讓學生帶著已有的生活經驗、認知經驗進入課堂,參與學習。在認知經驗中,學生已經理解了除法的意義與基本性質、分數的意義與基本性質,以及分數與除法的關系等知識,掌握了分數乘、除法的計算方法,會解答分數乘、除法實際問題且理解了比的意義。有了這些知識的儲備,學生只要進行知識的遷移、類比就可以自主探究出比的基本性質。學生理解并掌握比的基本性質,不但能加深對商不變性質、分數的基本性質、比的意義、比和分數、比和除法等知識的理解與掌握,而且也為以后學習比的應用,比例知識,正、反比例打好基礎。
二、教材處理。
根據教材的編排和學生已有的知識經驗,我對本段教材的教學作出以下兩點處理:
原教材聯系比和除法、分數關系,通過“想一想”啟發學生找出比中有什么樣的規律?然后概括比的基本性質。我認為這樣的編排是一種純數理之間的推理,是符號之間的運算,欠缺生活氣息,難以激發學生的探究熱情。為此,我創設了一個生活情境,讓學生在解決生活問題的過程中激發探究欲望,不著痕跡地完成了“比的基本性質”的探究過程。
2、例1的教學。
例題由兩道題組成。
第(1)題采用“神州五號”的題材。此素材有利于滲透情感價值觀的教育,且蘊含了相似變換的數學思想,是非常好的編排。
第(2)題給出的兩個比,我認為過于單調,且沒能涵蓋比的各種呈現形式,為體現課堂的動態生成,教學資源的豐富性,我采用了開放性的教學內容,讓學生在學習第(1)題的基礎上自主舉例練習化簡整數與分數、分數與分數、整數與小數、小數與小數、分數與小數等各種比。
以上兩點處理均基于數學教育的生活化、數學資源的多元化的現代數學教育教學理念進行個性處理的,并以此提升學生在課堂教學中的主體地位,體現課堂教學的動態生成。
三、教學目標。
2、能力目標:運用比的基本性質,讓學生通過嘗試來化簡并探討出不同類型比的多種化簡方法,從而培養學生的應用能力和創新能力。
3、情感目標:感受生活中處處有數學,數學就在我們身邊。培養學生積極、自主的學習探究興趣,使每個學生都嘗到成功的喜悅。
四、教學策略。
1、堅持“發展為本”,促進學生個性發展,并在時間和空間諸方面為學生提供發展的充分條件,以培養學生的實踐能力、探索能力和創新精神為目標。在教學過程中,注意引導學生怎樣有序觀察、怎樣概括結論,通過一系列活動,培養學生動手、動口、動腦的能力,使學生的觀察能力、抽象概括能力逐步提高,教會學生學習。使學生通過自己的努力有所感受,有所感悟,有所發現,有所創新。
2、小學生學習的數學應該是生活中的數學,是學生“自己的數學”。讓學生在生活情境中“尋”數學,在實踐操作中“做”數學,在現實生活中“用”數學。
3、“學以致用”是學習的出發點和歸宿點,也是學習數學的終結所在。讓學生感到數學的有趣和可學,我們還應注重將數學知識提升應用到生活中,提高學生處理問題的實際能力,讓學生真正做到會學習、會創造、會生活的一代新人,讓數學課堂真正成為學生活動的、創造的課堂。
五、教學程序設計。
(一)創設生活情境,以激發學生的探索欲望。
10克果珍;第二杯200毫升的水,20克果珍;第三杯400毫升的水,40克果珍.同時我也以此在講臺上做了這個實驗,同學們會興致盎然,想盡各種辦法幫助小明。
(設計意圖是:因為每一個學生都是熱情的,都是樂于助人的,尤其是愿意幫助同學解決問題,因此一聽說幫助同學,學生會產生極大的興趣,興趣就是學生思維的原動力,只要有興趣,就會產生創造性的源泉。另外小明的困難又是學生熟悉的生活情境,這有利于學生憑借生活經驗主動探索,實現生活經驗數學化,同時又感受到“數學源于生活”。)。
同學們幫助小明解決問題,有的利用商不變性質,有的利用分數的基本性質。學生在師生互動中說出商不變性質,分數的基本性質的內容。(屏幕出示文字內容。)我接著詢問在分數的基本性質里,有哪些關鍵詞?在商不變的性質里,有哪些關鍵詞?缺少他們行嗎?為什么?通過類比讓學生想到比的基本性質,從而引出課題。
(設計意圖是:先通過學生回憶已學舊知,進而猜想比的基本性質從而引出課題,放飛了學生思維,讓他們自主地依據已有知識經驗,在觀察、合作、猜想、交流中展開合理的想象與多角度思考。)。
接下來,讓學生觀察商不變性質與分數的基本性質,猜一猜,想一想,比的基本性質應該是怎樣的呢?小組討論,學生根據討論結果發表意見,師生共同總結比的基本性質的內容。最后強調學習了比的基本性質,哪些詞語是很重要,提醒同學們注意“同時、相同、0除外”這些關鍵詞。
(設計意圖是:讓學生體會到充分利用已有知識自學新知的學習方法,進一步弄清了比、除法、分數之間的聯系與區別。然后通過引導學生用語言描述,共同完善比的基本性質,使學生在這一過程中,領悟了利用舊知學習新知的學習方法,溝通了知識間的聯系,又培養了學生初步的類比推理能力。)。
(三)理解最簡整數比。
通過類比讓學生明白利用商不變性質,我們可以進行除法的簡算;根據分數的基本性質,我們可以把分數約分成最簡分數。同樣應用比的基本性質,可以把比化成最簡單的整數比。小組討論怎么理解“最簡單的整數比”這個概念?然后達成共識:
(1)是一個比;
(2)前項、后項必須是整數,不能是分數或小數;
(3)前項與后項互質。
(設計意圖是“最簡單的整數比”是本節課教學的難點,所以先類比然后讓學生討論最后對這個概念產生共識的方法,讓學生在獨立思考、互動交流中自發地嘗試利用已有的知識來解讀新概念。)。
(四)教學例1。
1、教學第(1)題。
(1)出示例1的第(1)題。
(2)讓學生閱讀例題,說說圖片中的事件,并按要求列出兩個比,然后嘗試運用比的基本性質把兩個比化成兩個最簡單的整數比。
(3)師生點評,小結。
(1)要求:分小組進行探究活動,每小組分別舉出整數與分數、分數與分數、整數與小數、小數與小數、分數與小數的一個例,并在小組內完成探究練習。
(2)小組匯報探究成果。
(3)簡單小結各種比的化簡辦法。
(這樣的設計充分體現了學生的主體地位,把課堂交給學生,讓課堂教學資源多元化,讓學生在提出問題、解決問題中提升學習能力,在探究活動中體會到學習數學的樂趣)。
(五)應用與拓展。
1、完成教材46頁的“做一做”。
2、游戲:小蝸牛找家。
3、判斷。
(1)比的前項和后項都乘5,比值不變。()。
(2)比的前項擴大2倍,要使比值不變,后項應除以2。()。
(3)2:12化成最簡整數比是3:48。()。
4、完成教材48頁第6題。
(設計意圖:層次性訓練中,提高學生知識技能,發展學生個性。第1、2題是基礎性練習,讓學生鞏固比的基本性質的應用。第3題是判斷題,設計目的是加深學生對比的基本性質的理解。第四題使用討論形式,通過全班的辯論,提高了學生解決問題的能力。)。
五年級第四單元分數的基本性質說課稿大全(15篇)篇八
各位老師:
下午好!
《分數基本性質》是北師大版小學數學第九冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續學習分數與小數互化、分數乘除法四則混合運算打好基礎。
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發現規律,掌握新知識。
1.知識目標:經歷探索分數基本性質的過程,理解并掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
2.能力目標:培養學生觀察、比較、抽象、概括等初步的邏輯思維能力,并且能夠正確認識和理解變與不變的辨證關系。
3.情感目標:經歷觀察、操作和討論等數學學習活動使學生進一步體驗數學學習的樂趣。通過學生的成功體驗,培養學生熱愛數學的情感。
能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數理解分數基本性質的含義,掌握分數基本性質的推導過程。
根據本節課的教學內容和教學目標采用講授法,小組合作學習。
準備大小相等的圓形紙片,水彩筆等。
一、故事設疑,揭示課題。
我將以唐僧師徒分餅的故事創設問題情景。八戒吃第一塊餅的1/4,沙和尚吃第二塊餅的2/8,悟空吃第三塊餅的4/16,他們誰吃的多呢?以此引入新課,激發學生思考的興趣,積極參與到課堂教學中來。并在這個環節設計學生動手折、畫、標等活動,折出1/4,2/8,4/16,用彩筆在折的圓上涂出1/4,2/8,4/16,再用鉛筆標出分數。在動手做的過程中初步理解分數基本性質。
二、合作探索,尋找規律。
請同學們觀察1/4,2/8,4/16;3/4,6/8,12/16這兩組分數,分子分母有什么變化,分數又有什么變化?組織討論交流匯報。如果沒有概括出“把0除外”就設計一組練習:分子分母同乘0,完善結論;如果概括出來了,就順勢進行驗證。推導出分數基本性質-----分數的分子分母都乘或除以相同的數(0除外),分數的大小不變。
三、鞏固練習。
練習題的設計有簡單到復雜,例:分數的分子乘5,要使分數的大小不變,分母();2/3=??()/186/21=2/()等這樣的題,進行練習。
四、梳理知識,溝通聯系。
小結分數基本性質,請同學們回憶“商不變性質”。------在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
然后比較這兩個性質的聯系。這樣設計主要是為了共建知識之間的聯系,有助于學生靈活遷移應用,觸類旁通。
五、多層練習,鞏固深化。
1.(1)把5/6和1/4化為分母為12而大小不變的分數。
(2)把2/3和3/4化為分子為6而大小不變的分數。
2.考考你:1/4的分子加上3,要使分數的大小不變,分母應加上()。
六、全課小結。
作為一位優秀的人民教師,時常需要用到說課稿,借助說課稿我們可以快速提升自己的教學能力。我們該怎么去寫說課稿呢?以下是小編為大家收集的五......
作為一位不辭辛勞的人民教師,時常需要用到說課稿,說課稿有助于順利而有效地開展教學活動。如何把說課稿做到重點突出呢?下面是小編收集整理的......
9篇作為一名優秀的教育工作者,時常需要編寫說課稿,寫說課稿能有效幫助我們總結和提升講課技巧。那么寫說課稿需要注意哪些問題呢?下面是小編......
五年級第四單元分數的基本性質說課稿大全(15篇)篇九
《分數基本性質》是北師大版五年級數學上冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續學習分數與小數互化、分數乘除法四則混合運算打好基礎。
學情分析。
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發現規律,掌握新知識。
教學目標。
2、能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3、經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣,會用分數基本性質解決實際問題。
教學重點和難點。
教學過程。
一、復習中猜想。
1、這幾天的學習我們一直在和分數打交道,通過學習我們知道分數和除法之間有著密切的聯系,那我們今天的學習就從一道除法算式開始。出示除法算式2÷5,請學生不計算說出與它結果相等的不同的除法算式。(教師選幾組板書)并請學生說說是根據什么寫的。(商不變的性質)引導學生回憶商不變的性質。學生回答后出示:在除法里,被除數和除數同時擴大或縮小相同的倍數,商不變。
2、引導學生說說分數與除法的關系,再把除法算式寫成分數。
二、探究中驗證。
1、有了猜想我們就要驗證。請同學們拿出三張同樣大小的折好的正方形或長方形紙,讓學生用分數表示涂色部分。(分別是1/2、2/4、4/8)。
5、學生匯報討論情況。(教師啟發點撥并結合學生的回答在黑板上板書思維示意圖)。
6、教師運用課件演示分數的分子和分母變化規律再次驗證猜想,加深學生的感知與發現。
7、質疑:請同學們看書,書中的表述和我們猜想的表述一樣嗎?哪不一樣?(點撥倍數與數的區別)。
課件出示三組式子請同學判斷是否正確,進一步理解為什么要0除外。
三、鞏固運用。
1、認識了分數的這一規律,你能運用這一規律解決問題嗎?
生獨立完成,集體訂正,并交流有什么好辦法填的又快又準?
2、把分母不同的分數化成指定分母而大小不變的分數。
學生嘗試獨立完成,集體訂正。
思考并交流:當我們把兩個不同分母的分數化成分母相同的分數之后,我們就可以把這兩個分數()。(幫助學生認識學習分數基本性質的作用)。
3、解決實際問題。
4、先想想,再說說。
(1)、把3/8的分母擴大4倍,分子(),分數的大小不變?
(2)、把12/16的分子除以4,分母(),分數的大小不變?
(3)、把2/5的分子加上6,分母加上(),分數的大小不變?
(第三小題讓學生先猜想再驗證,從中發現分數的分子和分母同時加上一個數,分數的大小改變。減去同理)。
5、總結:經過聯系我們可以證明我們的猜想是正確的,我們的這一猜想就是分數的基本性質。教師板書課題。學生齊讀課題及性質。
四、總結中評價。
這節課你有哪些收獲?你還有什么問題?
將本文的word文檔下載到電腦,方便收藏和打印。
五年級第四單元分數的基本性質說課稿大全(15篇)篇十
分數基本性質這節課的教學,我讓學生在故事中感悟,激發了他們的學習興趣。在數學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發現數學問題,這是多么美好的事情!這樣的設計真是激發了學生的興趣,學生帶著愉快的心情展開了學習。課堂的故事導入就是引導學生以數學的視角來分析問題解決問題,從而讓學生感受學習數學的價值。
本節課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據自己的已有經驗感受,用自己的思維方式,自由開放地去探索去發現去創造。在學生通過聽故事看圖片,感受到三個分數相等后,讓學生猜想這三個分數是否真的相等,并聯想學過的知識或借助學具,怎樣證明你的聯想是正確的。學生想出了多種方法證明這三個分數也是相等的.,體現了學生思維惡的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養成。
課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數學上都會有不同的發展。
-->。
五年級第四單元分數的基本性質說課稿大全(15篇)篇十一
《分數的基本性質》在分數教學中占有重要的地位,在小學數學學習中起著承前啟后的作用。它既以分數的意義、分數的大小比較為基礎,又與整數除法及商不變的性質有著內在的聯系,更分數的約分、通分的依據,也進一步學習分數加減法計算、比的基本性質的基礎。因此,分數的基本性質該單元的教學重點之一。
學生在三年級上學期已經初步認識了分數,以及同分母分數的大小。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。五年級學生已經養成了合作學習的習慣,并且已經具有了一定的分析和解決問題的能力,再加上他們所具有的一定的生活經驗,因此能夠在教師的引導下完成“質疑——探索——釋疑——應用”這一完整的學習過程。
依據新的《數學課程標準》,為了更好地體現數學學習對學生在數學思考、解決問題以及情感與態度等方面的要求。根據本節課的具體內容并結合學生的實際情況,我制定了以下教學目標:
知識與技能:讓學生親身經歷“分數基本性質”抽象概括的過程,理解和掌握分數的基本性質,并能初步運用分數的基本性質解決簡單的數學問題。
過程與方法:讓學生經歷發現問題、探究問題、解決問題的全過程,在觀察、猜想、驗證等探索活動中,培養學生觀察--探索--抽象--概括的能力以及合情推理能力,體驗解決問題策略的多樣性。
情感與態度:使學生在分數基本性質的探究活動中,獲得成功的體驗,建立自信心,感受到數學的嚴謹性,及滲透事物相互聯系、發展變化的辯證唯物主義觀點。
教學重點:理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點:讓學生經歷自主探索,發現和歸納分數的基本性質,并會應用分數的基本性質解決相關問題。
教學準備:三張同樣大小的長方形紙張,彩色筆。
樹立以“以學生發展為本”、“以學定教”的思想,為實現教學目標,有效地突出重點、突破難點,我遵循學生的認知規律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。創設了一種“情境導入、動手體驗、自主探索”的課堂教學形式,以“自主探究”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,自主探究法,合作交流的學習方式,讓學生通過獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
為了全面、準確地引導學生探索發現分數的基本性質,實現教學目標,我努力抓住學生的思維生長點組織教學,設計了以下五步教學環節:
1、創境設疑:回顧舊知,引發思考。
2、自主探究:動手實踐,發現規律。
3、交流歸納:揭示規律,鞏固深化。
4、分層精練:多層練習,多元評價。
5、感悟延伸:課堂小結,加深理解。
第一環節:創境設疑。
結合六一兒童節的到來,創設分蛋糕的情景,媽媽分得公平嗎?課始便迅速地抓住了學生的好奇心,使課堂教學有了一個好的開始。鼓勵學生當小法官,則極大地調動了學生的積極性,使他們在心理上產生懸念,進一步激發學生的學習興趣,為后面的學習做好了鋪墊。這樣設計也從學生已有的經驗和情感出發,找準新知的最佳切入點,為學生后面的聯想和猜想巧設“孕伏”。
第二環節:自主探究。
通過折紙、涂色的動手操作活動,使學生親身經歷并獲得非常具體、真切的感知,為探究分子、分母的變化規律提供認知基礎。教師通過五個有層次的問題,分層質疑,分層提問,分層評價,盡量地關注到了每一個層次的學生,引導學生逐步在自主探索、合作互助的學習方式中初步理解并能簡單概括出分數的基本性質,并及時強調了0除外的意義,使學生體驗到解決問題策略的多樣性,發展學生的實踐能力和創新精神,培養學生的合作意識。
第三環節:交流歸納。
在這一環節,教師引導學生在觀察與分析、探索與思考分數的基本性質的基礎上不斷生成新問題,通過質疑,借助知識的遷移,溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。這樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間相互聯系”的辨證唯物主義觀點,培養學生觀察--探索--抽象--概括的能力。
第四環節:分層精練。
這個環節讓學生對分數的基本性質再一次的體驗,感受,研究,同時也整節課的亮點之一,練習分層,評價分層,通過分層練習,關注到每一個層次的學生,讓每一個學生都有發展。教師結合本班學生的學習特點,設計了由淺入深,由易到難的練習,基本練習讓90%的同學體驗到了學習的快樂,綜合練習讓80%的同學品嘗到了成功的喜悅,拓展練習則留到課后,讓學生在自主探究中、討論交流中、知識的沉淀中進一步加深對知識的理解和掌握。
第五環節:感悟延伸。
通過小結、反思,查漏補缺,學生在交流收獲、互相幫助的過程中,使學生對知識有個系統的回顧和認識,從而進一步培養學生的知識概括能力。
總之,本節課教學堅持了“學生探索的主體”這一教學原則,面向全體學生,充分的引導學生動手實驗,自主探索,質疑延伸,合作交流,讓每一個學生在探索的過程中感受數學和日常生活的緊密聯系,體驗學習數學的快樂,培養了創新精神和實踐能力。
文檔為doc格式。
五年級第四單元分數的基本性質說課稿大全(15篇)篇十二
本節課教學,我讓學生在故事中感悟,激發了他們的學習興趣。在數學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發現數學問題,這是多么美好的事情!這樣的設計真是激發了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數學的視角來分析問題、解決問題,從而讓學生感受學習數學的價值。
本節課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據自己的已有經驗、感受,用自己的思維方式,自由、開放地去探索、去發現、去創造。
在學生通過聽故事、看圖片,感受到1/2=2/4=4/8相等后,讓學生猜想1/2、2/4、4/8這三個分數是否真的相等,并聯想學過的知識或借助學具,怎樣證明你的聯想是正確的。學生想出了多種方法證明這三個分數也是相等的',體現了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養成。
課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數學上都會有不同的發展。
五年級第四單元分數的基本性質說課稿大全(15篇)篇十三
一、復習舊知,橫跨溫舊引新的橋梁。
在備課時,我就深知分數基本性質和商不變的規律有著密切的聯系。所以在上課伊始,我就讓學生復習商不變的規律,在課件中展示,并由學生齊讀。為了更好的達到溫習舊知的目的,我又設計了兩道習題,學生在此基礎上加深了商不變的規律的印象,為引新起到了很好地鋪墊和橋梁的作用。
二、創設情境,激發學生興趣。
本節課創設了一個故事情境:阿凡提在一次施行途中,遇到了一件事。一父親把土地分給三個兒子。大兒子分到田地的1/3,二兒子分到了田地的2/6,三兒子分到了田地的3/9。大兒子和二兒子嫌少,同父親爭執了起來。阿凡提聽后大笑,說了幾句話,他們馬上停止了爭執。隨后問:“阿凡提大笑?他說了些什么?”引生猜測。學生在新奇有趣的故事情境中充滿了好奇心,很快將思維轉到比較1/3,2/6,3/9的大小上來。教師創設懸念:學完了本節課,你就知道了。學生抱著解決問題的態度學習新知識,收到了很好的效果。
三、手腦并用,在實踐中深入感知分數。
教師讓學生用一個長方形紙,對折再對折,即平均分成4份,給其中的3份涂色,并用分數表示出來。學生在動手的同時也在動腦,得出分數3/4,因勢利導,在兩次對折的基礎上再對折,那么陰影部分的面積是多少?(6/8)再次對折呢?(12/16)……揮手一指:長方形的紙有沒有變化?(沒有)陰影部分的面積有沒有變化?(沒有)那么得到了什么結論?學生很容易得出:3/4=6/8=12/16,引導學生觀察分子、分母的變化,經過總結得出分子和分母同時擴大(或縮小)相同的倍數,分數的大小不變。學生對此進行鞏固后,再引導學生說出:0除外。在此過程中,學生在動手實踐的過程中動腦思考,很快地突破了重難點,取得很好的效果。
四、鞏固練習,圍繞中心。
在設計練習的過程中,聯系生活實際,我設計了判斷題、填空題等,緊緊圍繞著教學目標,采取多種形式呈現,學生在此過程中興趣盎然,在快樂的氛圍中鞏固了新知,起到了加深理解的作用。
五、總結升華,結束本課。
最后,教師問:通過本節課的學習,你學習了哪些知識,有哪些收獲?在學生回答的過程中師生進行補充,學生更加深刻地認識了分數的基本性質,為今后的學習應用打下堅實的基礎。
五年級第四單元分數的基本性質說課稿大全(15篇)篇十四
有一些同學知道,還有一些同學不知道。不過沒有關系,等我們學習了今天的內容之后,我相信在座的每一位同學都能夠回答。你們有信心嗎?恩,好,那我們就開始上課了!
1、出示例1的四幅圖。
我們先來看一道題目。分別用分數表示每個圖里的涂色部分。
(1)誰來說第一個?
全部答完后問:這里的1/3誰來說說它表示什么含義呢?3/9呢?
(2)師:這里有個1/2,你能說一個和1/2相等的分數嗎?
2/4、4/8、8/16......還有吧,是不是還可以說出好多好多啊?
先別急,先來看看有哪些實驗要求。
咱們這個實驗的目的上一什么?驗證什么?
咱們實驗的方法有哪些呢?
實驗有什么要求?操作有序什么意思呢?要聽從小組長的安排。
1、實驗目的:驗證猜想。
2、方法:折一折、分一分、畫一畫、算一算......
3、要求:小組合作,明確分工,操作有序。
我們要來比一比,哪個小組做的實驗既快又好。一會兒,我們把他的作品展示一下。好,開始!
學生操作,老師巡視指導。
集體交流結果。
咱們剛才通過做實驗,發現這些分數的大小怎樣?也就是分數的大小不變。這些分數的大小相等,可是它們的分子、分母變了吧!怎么回事呢?這里面有什么規律呢?你發現了什么?能不能告訴老師。
把你的發現先和同桌交流交流。
生1:我發現由到,分子被擴大了2倍,分母也被擴大了2倍,所以它們是相等的。
師:還有誰想說說你的發現?
生2:我發現由到,分子被擴大了3倍,分母也被擴大了3倍,所以它們的大小相等。
師:換一組數據來說說自己的發現?
生:由到,分子、分母都被縮小了3倍,它們的大小不變。
師:為什么要0除外?
生:一個分數的分子和分母同時乘或除以一個相同的數(0除外),它們的大小不變。
我們一齊讀一遍。
師:這個分數的基本性質跟咱們以前學的什么知識有點相似啊?
除法中商不變的性質你還記得嗎?
同學們想想看,這兩個性質之間有什么關系呢?
根據分數與除法的關系,被除數相當于分數的分子,除數相當于分數的分母,在除法當中有商不變的性質,那在分數中也有它的基本性質。
師:好,那現在你知道阿凡提為什么會笑嗎?他又說了哪些話呢?
師:2/6到3/9分子分母怎樣變化的?分子和分母同時乘了1.5,呢也就是說這里相同的數不僅可以指整數,還可以指小數。
好,那下面咱們就用今天學的知識來做幾道題,好不好?
1、把書翻到61頁,練一練第一題,請你涂一涂填一填。我看誰的動作最快。
集體交流。
2、下面我們來填空補缺想理由。(出示練一練第二題)。
他們這樣填是根據什么?
3、出示練習十一第二題。
獨立完成,集體訂正。
練習十一第三題。
今天這節課,你學到了什么?
五年級第四單元分數的基本性質說課稿大全(15篇)篇十五
這節課教學,我先設計了唐僧師徒四人的故事,孫悟空、沙和尚、豬八戒三人每人分得一張餅的1/2、2/4、4/8,我讓學生在故事中感悟,激發了他們的學習興趣。在數學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發現數學問題,這是多么美好的事情。這樣的設計真是激發了學生的.學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數學的視角來分析問題、解決問題,從而讓學生感受學習數學的價值。
這節課教學我讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據自己的已有經驗、感受,用自己的思維方式,自由、開放地去探索、去發現、去創造。在學生通過聽故事、看圖片,感受到1/2=2/4=4/8相等后,讓學生猜想1/2、2/4、4/8這三個分數是否真的相等,并聯想學過的知識或借助學具,怎樣證明你的聯想是正確的。學生想出了多種方法證明這三個分數也是相等的,體現了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養成。