在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文怎么寫才能發揮它最大的作用呢?以下是我為大家搜集的優質范文,僅供參考,一起來看看吧
北師大版圓錐的體積教學設計篇一
本節課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。
數學課程標準中指出:應放手讓學生經歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發展空間觀念,從而提高學生自主解決問題的能力。
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態度與價值觀:培養學生勇于探索的求知精神,感受到數學來源于生活,能積極參與數學活動,自覺養成與人合作交流與獨立思考的良好習慣。
圓錐體積公式的理解,并能運用公式求圓錐的體積。
圓錐體積公式的推導
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發現問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對 于新的知識教學,他們一定能表現出極大的熱情。
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
1課時
一、回顧舊知識
1、你能計算哪些規則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
設計意圖通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
二、創設情景 激發激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
設計意圖以生活中的數學的形式進行設置情景,引疑激趣遷移,激發學生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究 合作學習(探討圓柱與圓錐體積之間的關系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數學專用名詞:等底 等高
設計意圖通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發現了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數據(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當等底等高時,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發了學生的求知欲,培養了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發現了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
四、實踐運用 提升技能
設計意圖通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發展的空間,讓他們有跳起來摘果子的機會,以達到培養能力、發展個性的目的。
五、談談收獲:這節課你學到了什么呢?
六、課堂作業:
1、做在書上作業:練習四 第4、7題
2、坐在作業本上作業:練習四 第3題
北師大版圓錐的體積教學設計篇二
3、培養學生初步的空間觀念和思維能力;讓學生認識“轉化”的思考方法。
一、鋪墊孕伏
1、提問:
(1)圓柱的體積公式是什么?
(2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側面和高.
2、導入:同學們,前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知
1、教師談話:
2、學生分組實驗
學生匯報實驗結果
……
4、引導學生發現:
板書:
5、推導圓錐的體積公式:用字母表示圓錐的體積公式.板書:
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習
圓錐的底面積是5,高是3,體積是()
圓錐的底面積是10,高是9,體積是()
(二)算一算
學生獨立計算,集體訂正.
說說解題方法
三、全課小結
通過本節的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
四、課后反思
1、進一步掌握圓柱和圓錐體積的計算方法,能正確熟練地運用公式計算圓錐的體積。
2、進一步培養學生運用所學知識解決實際問題的能力和動手操作的能力。
一、基本練習
圓錐體積計算公式
相鄰兩個面積單位之間的進率是多少?
相鄰兩個體積單位之間的進率是多少?
二、實際應用
占地面積是求得什么?
三、實踐活動
四、課后反思
北師大版圓錐的體積教學設計篇三
1、情感目標培養學生探索合作精神。
2、知識目標理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式,以及運用公式計算圓錐體積。
3、能力目標培養學生的空間想象力,合作交往能力、創新思維以及動手操作能力。
理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式。
關鍵
公式推導過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關系。
活動一:比大小
活動目的:激發求知欲望。
課件播放:春天到了,萬物復蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應該是第一大!
師:竹林里的`爭論還在繼續著,同學們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!
活動二:議一議
活動目的:通過師生、生生的互動討論、交流、探究,從而發現圓錐的體積和圓柱的體積有關。
1、出示課題
2、找圓錐體和學過的什么體有相似之處
3、猜一猜,圓柱的體積和圓錐的體積的關系。
北師大版圓錐的體積教學設計篇四
1、知識與技能
理解圓錐體積公式的推導過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。
2、過程與方法
通過操作、實驗、觀察等方式,引導學生進行比較、分析、綜合、猜測,在感知的基礎上加以判斷、推理來獲取新知識。
3、情感態度與價值觀
滲透知識是“互相轉化”的辨證思想,養成善于猜測的習慣,在探索合作中感受教學與我的生活的密切聯系,讓學生感受探究成功的快樂。
重點:掌握圓錐的體積計算方法及運用圓錐的體積計算方法解決實際問題。
不同型號的圓柱、圓錐實物、容器;沙子、水、杯子;多媒體課件一套。
(一)創設情境,提出問題
生:我選擇底面最大的;
生:我選擇高是最高的;
生:我選擇介于二者之間的。
師:每個人都認為自己選擇的哪種最合算,那么誰的意見正確呢?
生:只要求出冰淇淋的體積就可以了。
師:冰淇淋是個什么形狀?(圓錐體)
生:你會求嗎?
師:通過這節課的學習,相信這個問題就很容易解答了。下面我們一起來研究圓錐的體積。并板書課題:圓錐的體積。
(二)設疑激趣,探求新知
(學生猜想求圓錐體積的方法。)
生:我們可以利用求不規則物體體積的方法,把它放進一個有水的容器里,求出上升那部分水的體積。
師:如果這樣,你覺得行嗎?
師:大家猜一猜圓錐體可能會轉化成哪一種圖形,你的根據是什么?
小組中大家商量。
生:我們組認為可以將圓錐轉化成長方體或正方體,比如:先用橡皮泥捏一個圓錐體,再把這塊橡皮泥捏成長方體或正方體。
師:此種方法是否可行?
學生進行評價。
生:我們組認為:圓錐體轉化成長方體后,長方體的長、寬、高與圓錐的底面和高之間沒有直接的聯系。如果將圓錐轉化成圓柱,就更容易進行研究。)
師:既然大家都認為圓錐與圓柱的聯系最為密切,請各組先拿出學具袋的圓錐與圓柱,觀察比較他們的底與高的大小關系。
1、各小組進行觀察討論。
2、各小組進行交流,教師做適當的板書。
通過學生的交流出現以下幾種情況:一是圓柱與圓錐等底不等高;二是圓柱與圓錐等高不等底;三是圓柱與圓錐不等底不等高;四是圓柱與圓錐等底等高。
3、師啟發談話:現在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進行研究?能否找到一種既簡便又容易操作且能代表所有圓柱和圓錐關系的一組呢?(小組討論)
4、小組交流,在此環節著重讓學生說出選擇等底等高的圓錐體與圓柱體進行探究的理由。
生:大約是圓柱的一半。
生:……
師:到底誰的意見正確呢?
師:下面請同學們三人一組利用你桌子的學具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關系驗證我們的猜想,不過在實驗前先閱讀實驗要求,(課件演示)只有目標明確,才能更好的合作。開始吧!
要求:1、實驗材料,任選沙、米、水中的一種。
2、實驗方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。
(生進行實驗操作、小組交流)
師:1、誰來匯報一下,你們組是怎樣做實驗的?
2、通過做實驗,你們發現它們有什么關系?
生:我們利用空圓柱裝滿水到入空圓錐,三次倒完。圓柱的體積是等底等高圓錐體積的三倍。
生:我們利用空圓錐裝滿米到入空圓柱,三次倒滿。圓錐的體積是等底等高圓柱的體積的1/3。)
師:同學們得出這個結論非常重要,其他組也是這樣的嗎?生略
師:請看大屏幕,看數學小博士是怎樣做的?(課件演示)
齊讀結論:
(噢!三種冰淇淋的體積原來一樣大)
1、基本練習
(1)判斷對錯,并說明理由。
圓柱的體積相當于圓錐體積的3倍。( )
一個圓柱木料,把它加工成最大的圓錐,削去的部分的體積和圓錐的體積比是( )
一個圓柱和一個圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。( )
(2)計算下面圓錐的體積。(單位:厘米)
s=25.12 h=2.5
r=4, h=6
2、變形練習
出示學校沙堆:我班數學小組的同學利用課余時間測量了那堆沙子,
(1)、你能根據這些信息,用不同的方法計算出這堆沙子的體積嗎?
(2)、找一找這些計算方法有什么共同的特點? v錐=1/3sh
3、拓展練習
活動五:整理歸納,回顧體驗
(通過小結展示學生個性,學生在學習中的自我體驗,使孩子情感態度,價值觀得到升華。)
北師大版圓錐的體積教學設計篇五
課題圓錐的體積
作者及工作單位殷興均達州市宣漢縣南壩鎮第二中心小學
《圓錐的體積》是西師版義務教育課程標準實驗教科書數學六年級下冊的內容。本節課是在學習了圓柱的體積和認識了圓錐的特征的基礎上進行,其教學內容是推導出圓錐體積公式,并能靈活運用公式解決生活中的實際問題。為了加強數學知識與學生生活的聯系,教材用實心圓錐和實心圓柱分別沒入同一個水槽中,觀察水槽中的水位分別上升了多少的實驗,激發學生探究圓錐體積的興趣。
六年級學生經過幾年的數學知識學習已經初步掌握了建立空間概念的方法,有了一定的空間想象能力。學習《圓錐體積》之前,學生已經學會推導圓柱體積公式,認識了圓錐的特征。因為二者形狀的相似性很容易讓學生聯想到這兩種幾何圖形之間的聯系,從而借助轉化思想的經驗,使學生在參與探究的過程中經歷知識的建構過程。但是我校是處于城鎮邊緣的農村學校,學生的基礎較差,接受能力有限,對于本節的學習有一定的難度。
1、理解圓錐的體積的推導和計算方法,并能靈活運用圓錐體積計算公式解決實際有關圓錐體積的實際應用問題。
2、運用實驗法在合作探究中體會等底等高圓柱體積與圓錐體積內在聯系,從而完成圓錐體積公式的推導。
3、體會數學與生活的密切聯系,感受探究成功的快樂。
重點:圓錐體積計算公式的推導,并能運用公式解決實際問題。
難點:在合作探究中體會等底等高圓柱體積與圓錐體積內在聯系。
教學環節
一、復習準備
1、我們已經認識了一些幾何體,哪些幾何形體的體積我們已經學過了?
2、圓錐有什么特點?(同時出示幻燈)
3、在這個圓錐體中,幾號線段是圓錐體的高。
4、引入:看來,同學們對于圓錐體的特征掌握得很好。你們想不想繼續研究圓錐呢?1.長方體、正方體、圓柱。
2.一個頂點;一個側面,展開是一個扇形;一個底面,是圓形;一條高,從頂點到底面圓心的垂直距離。
3.學生手勢出示
4.想復習內容緊扣重點,由實物到圖形,采用對比的方法,不斷加深學生對形體的認識。
二、創設情境
出示等底等高的實心圓錐、實心圓柱和裝有適量水的水槽(標有刻度)
引入新課(板書課題)激發學生興趣,學生認真觀察,躍躍欲試,都想爭取參加實驗。聯系生活實際創設情境,引發學生的好奇心,激發學習興趣。情境創設可以讓學生感受到數學與生活實際密不可分,從而感受用數學能夠解決實際問題的思想,激發學生學習數學的興趣。
三、學習新課
1、猜想體積大小
實心圓錐和實心圓柱的體積有怎樣的關系圓錐體積小于圓柱體積。
圓錐體積可能是圓柱體積的二分之一、三分之一。猜想關系,這個環節,共進行兩次猜想,第一次是猜想體積大小。第二次是讓學生憑借直覺大膽提出猜想,猜想圓錐的體積與圓柱體積的可能關系,同時在猜想中明確探索方向。學生可能猜想二分之一、三分之一等。在形成猜想后,再引導學生“實驗驗證”自己的猜想。
2、理解等底等高
3、猜想關系、實驗驗證
同學們有說二分之一的,有說三分之一的,爭是爭不出結果的,得用實驗來驗證。
誰來匯報一下,你們組是怎樣做實驗的?
你們做實驗的圓柱體和圓錐體在體積大小上有什么倍數關系?分組做實驗。
學生匯報
用等底等高的圓錐和圓柱,通過實驗,讓學生研究出等底等高的圓柱與圓錐之間的關系。再利用課件演示,幫助學生回顧自己的實驗過程,加深學生對實驗過程的體驗。
4、總結公式
我們學過用字母表示數,誰來把這個公式整理一下?(指名發言)
v錐=v柱×1/3=sh×1/3
“sh”表示什么?乘1/3呢?學生嘗試總結圓錐的體積計算公式。通過實驗總結結論,培養學生的歸納概括能力和語言表達能力。
5、全面驗證
是不是任何一個圓錐體的體積都是任何一個圓柱體體積的1/3呢?
(課件演示)等底不等高、等高不等底
為什么你們做實驗的圓錐體積等于圓柱體積的1/3呢?
現在我們得到的這個結論就更完整了。(指名反復敘述公式。)
今后我們求圓錐體體積就用這種方法來計算。(因為是等底等高的圓柱體和圓錐體。)
在教學中,注意調動學生的學習積極性,采用分組觀察,操作,討論等方法,突出了學生的主體作用。注重強調了等底等高圓錐和圓柱的體積才有這樣的倍數關系,突出了重點。
6、圓錐體積公式的實際應用
(2)一個圓錐的底面直徑是20厘米,高是6厘米,它的體積是多少?(只列式不計算)
北師大版圓錐的體積教學設計篇六
1、知識技能目標:
◆使學生探索并初步掌握圓錐體積的計算方法和推導過程;
◆使學生會應用公式計算圓錐的體積并解決一些實際問題。
2、思維能力目標:
◆提高學生實踐操作、觀察比較、抽象概括及邏輯推斷的能力,發展空間觀念。
3、情感態度目標:
◆培養學生的合作意識和探究意識;
◆使學生獲得成功的體驗,體驗數學與生活的聯系。
重點:使學生初步掌握圓錐體積的計算方法并解決一些實際問題
難點:探索圓錐體積方法和推導過程。
教學過程:
1 圓錐有什么特征?指名學生回答。
2 說一說圓柱體積的計算公式。
(1)已知 s、h 求 v
(2)已知 r、h 求 v
(3)已知 d、h 求 v
3 我們已經認識了圓錐又學過圓柱體積的計算公式,那么圓錐的體積又該如何計算呢?今天我們就來學習圓錐體積的計算。
板書課題:圓錐的體積
1、師:請大家回憶一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積的計算公式的推導過程:(學生:圓柱---轉化長方體- 長方體的體積公式----推導圓柱體公式)
〈1〉學生獨立操作
〈2〉教師教具演示鞏固學生的操作效果,cai課件演示
a 屏幕上出示等底、等高
b 等底、不等高
c 等高、不等底
實驗報告單
實驗器材
實驗結果
等底不等高的圓錐、圓柱
等高不等底的圓錐、圓柱
等底等高的圓錐、圓柱
〈3〉引導學生發現:
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的 1/3 (板書 )
用字母表示圓錐的體積公式.v錐=1/3sh
做一做:
填空:
等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的( ),圓錐的體積是圓柱的體積的( )已知圓錐的體積是9立方分米,圓柱的體積是( );如果圓柱的體積是12立方分米,那么圓錐的體積是( )。
(二)運用公式,嘗試練習
1、要求圓錐的體積,必須知道哪兩個條件?為什么要乘 1/3 ?
試一試:
2、思考:求圓錐的體積,還可能出現那些情況?
(如果已知圓錐的高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長),怎樣求圓錐的體積呢?)
練一練
3、求下面的體積。(只列式不計算)
(1)底面半徑是2 厘米,高3厘米。
3.14×22×3
(2)底面直徑是6分米,高6分米 。
3.14×(6 ÷2)2 ×6
(3)底面周長是12.56厘米,高是6厘米
3.14×(12.56 ÷6.28)2 ×6
2、求下面各圓錐的體積如圖(單位厘米)
(1)底面直徑是8分米,高9分米 (2)底面半徑3分米和高7分米
通過公式我們發現計算圓錐的體積所必須的條件可以是底面積和高
a、底面積和高
b、底面半徑和高
c、底面直徑和高
d、底面周長和高
1、判斷:
⑴、圓錐的體積等于圓住體積的1/3。( )
⑵把一個圓柱切成一個圓錐,這個圓錐的體積是圓柱體積的1/3 ( )
⑶圓柱的體積比和它等底等高圓錐的體積大2倍。( )
⑶一個圓柱與一個圓錐的底面積和體積相等,那么圓錐的高是圓柱高的
2、填空
⑴一個圓錐與一個圓柱等底等高,已知圓錐的體積是 18 立方米,圓柱的體積是( )。
⑵一個圓錐與一個圓柱等底等體積,已知圓柱的高是 12 厘米, 圓錐的高是( )。
⑶一個圓錐與一個圓柱等高等體積,已知圓柱的底面積是 314 平方米,圓錐的底面積是( )。
3、拓展練習
工地上有一些沙子,堆起來近似于一個圓錐,通過測量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數保留兩位小數)
(引導學生說出怎樣測量沙堆的底面的周長、直徑、和高。)
用兩根竹竿平行地放在沙堆兩側,測得兩根竹竿間的距離,就是直徑。將一根竹竿過沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。
北師大版圓錐的體積教學設計篇七
1、知識技能目標:
◆使學生探索并初步掌握圓錐體積的計算方法和推導過程;
◆使學生會應用公式計算圓錐的體積并解決一些實際問題。
2、思維能力目標:
◆提高學生實踐操作、觀察比較、抽象概括的能力,發展空間觀念。
3、情感態度目標:
◆使學生在經歷中獲得成功的體驗,體驗數學與生活的聯系。
重點:使學生初步掌握圓錐體積的計算方法并解決一些實際問題
1、多媒體課件。
2、等底等高、等底不等高、等高不等底的圓錐和圓柱共六套,沙、米,實驗報告單;帶有刻度的直尺,繩子等。
(一)創設情境,導入新課
1、故事情景引發猜想
電腦呈現出動畫情境(伴圖配音)。
炎熱的夏天,小明和小強去“廣場超市”的 冷飲專柜買冰淇淋,圓錐形的冰淇淋標價是0.8元,圓柱形的標價2元。于是,他們兩個為買哪一種形狀的冰淇淋爭執起來。同學們,你們能幫他們解決到底買哪種形狀的冰淇淋更合算嗎?(圖中圓柱形和圓錐形的雪糕是等底等高的。)
(學生回答自己的猜想,有說買圓錐形的,有說買圓柱形的)
教師:學完今天的內容后,同學們就能正確解決了!
2、圓錐實物揭示課題
①教師出示一筒 沙,師:將這筒沙倒在桌上,會變成什么形狀?
(學生猜想后教師演示)
②師:在這堂課上,你希望學到哪些知識呢?
(生自主回答,確立學習目標)
③揭題:圓錐的體積
師:好,我們一起努力吧!
(二)自主探索,合作交流
1、直觀引入直覺猜想
(1)教師演示刨鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形。
①教師鼓勵學生大膽猜想。(生說可能的情況)
②師:你們是怎樣理解“相應的”一詞的?說說你的看法。
生說后,師總結:“相應的”,即圓錐與圓柱是等底等高的。(用實物演示給生看)
2、實驗探索發現規律
(1)小組討論填寫材料單,有順序地領取材料
學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、米、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子、米等,等底不等高和等高不等底的圓柱形和圓錐形容器各一個)
(2)小組合作實驗,并填寫實驗報告單。
實驗方法
發現結果
第一次實驗
第二次實驗
第三次實驗
結論:
(3)匯報結果,實物投影展示實驗報告單。
(4)組際交流,得出結論:
結論1:圓錐的體積v等于和它等底等高圓柱體積的三分之一。
結論2:等底不等高的圓錐體與圓柱體,圓錐的體積是圓柱體積的二分之一。
結論3:等高不等底的圓錐體與圓柱體,圓錐的體積是圓柱體積的四分之一。
結論5:圓柱的體積是等底等高的圓錐體積的3倍。
……
師:同學們實驗的結論各不相同,到底哪組的結論對呢?
(各小組紛紛敘述自己小組的實驗過程、結論;說明自己小組的準確性,學生的思維處于高度集中狀態)。
(5)參與處理信息。
圍繞三分之一或3倍關系的情況討論:
(請他們拿出實驗用的器材,自己比劃、驗證這個結論。突出他們小組的圓柱和圓錐是等底等高的)
師:其他小組得出的結論不同,是不是由于實驗過程或結論有錯誤呢?我們也請小組代表說說你們的看法。
(生說明他們的過程和結論都是對的,只是他們的圓錐和圓柱不是即等底又等高的)。
師:總結以上各個小組的看法,我們可以得出什么樣的結論?
生1:圓錐的體積等于和它等底等高圓柱體積的三分之一。
生2:圓柱的體積是等底等高的圓錐體積的3倍。
生3:我認為第一種說法較合理,強調了圓錐體積的求法。
……
師總結并板書:
圓錐的體積等于和它等底等高的圓柱體積的1/3。
3、啟發引導推導公式
師:對于同學們得出的結論,你能否用數學公式來表示呢?
生:因為圓柱的體積計算公式v=sh;所以我們可以用1/3 sh表示圓錐的體積。
師:其他同學呢?你們認為這個同學的方法可以嗎?
生:可以。
師:那我們就用1/3 sh表示圓錐的體積。
計算公式:v= 1/3 sh
師:(1)這里sh表示什么?為什么要乘1/3?
(2)要求圓錐體積需要知道哪兩個條件?
生回答,師做總結
4、簡單應用嘗試解答
(生獨立列式計算全班交流)
(三)鞏固練習,運用拓展
1、試一試
2、練一練
計算下面各圓錐的體積:
3、實踐性練習
師:請你們將做實驗時裝在圓柱容器里的沙(或米)倒出,堆成一個圓錐形沙(米)堆,小組合作測量計算它的體積。
4、開放性練習
一段圓柱形鋼材,底面直徑10厘米,高是15厘米,把它加工成一個圓錐零件。根據以上條件信息,你想提出什么問題?能得出哪些數學結論?(可小組討論)
(四)整理歸納,回顧體驗
1、上了這些課,你有什么收獲?(互說中系統整理)
2、用什么方法獲取的?你認為哪組表現最棒?
3、通過這節課的學習,你有什么新的想法?還有什么問題?
(五)問題解決。(電腦呈現出動畫情境)
小明和小強到底買哪種形狀的冰淇淋更合算呢?
師:誰能幫他們解決這個問題呢?
(學生說出買圓柱形的冰淇淋更合算的理由。)
圓錐的體積
圓錐的體積等于和它等底等高的圓柱體積的1/3。
(1)密切數學與生活的聯系,富有兒童情趣。
從學生熟悉的生活故事引入,為新知識作好鋪墊和準備。又從刨鉛筆直觀引入,引發學生大膽猜想,學生的主動性,探究性得到培養。最后的問題解決回歸于生活,實現了叢生活中來,又服務于生活的指導思想。
(2)在經歷“錯誤”之中歷煉思維
在平時的課堂教學中,學生往往會出現很多錯誤性的東西,比如:錯誤的認識、錯誤的過程、錯誤的結論等。很多老師不是“遇錯即糾”,就是“遇錯即批”,其實大可不必,因為錯誤之中也有可以充分利用的寶貴資源。“授人以魚,不如授之以漁”。學生學習數學不僅要學會題的解法,更要懂得解法的來龍去脈。我們要利用“錯誤”這一資源讓學生思考問題,經歷碰壁,最終找到解決問題的方法,把思考的實際過程展現給學生,讓學生經歷思維的碰撞,真正關注學習的過程,幫助他們理解和掌握數學思維和方法。
(3)學習過程中揭示了一般科學的研究方法:
提出問題——直覺猜想——實驗探索——合作交流——實驗驗證——得出結論——實踐運用。這為以后的探究學習提供了一個基本方法,使學生在自主探索中掌握了知識,同時獲得了最廣泛的數學活動經驗、思想和方法,更發展了學生的反思意識、小組自我評價意識。課堂中,啟發學生提問,猜想,動手測量,注重了解決問題能力的培養,學生體驗到了成功的快樂。
縱觀本節課的設計,運用現代教學理論,以新課程的理念指導教學,較好的處理了主導和主體、知識和能力、過程和結論的關系,充分調動了學生的積極性,引導全體學生動腦、動手、動口參與學習的全過程。整節課教學目標明確,教學層次清楚。結構嚴謹,重點突出。
北師大版圓錐的體積教學設計篇八
(1)掌握錐體的等積定值,錐體的體積公式。
(2) 理解"割補法"求體積的思想,培養學生發現問題,解決問題的能力。
公式的推導過程,即"割補法"求體積。
三棱柱模型、多媒體
1、復習祖暅 原理及柱體的體積公式。
2、等底面積等高的任意兩個錐體的體積。
(類比于柱體體積公式的得出)。首先研究等底面積等高的任意兩個錐體體積之間的關系。
取任意兩個錐體,設它們的底面積都是s,高都是h。
∵s1/s=h12/,
∴s1/s=s2/s,s1=s2。
根據祖日恒 原理,這兩個錐體的體積相等,由此得到下面的定理:
定理,等底面積等高的兩個錐體的體積相等。
3、三棱錐的體積公式
為研究三棱錐的體積,可類比于初中三角形面積的求法。
在初中,學習三角形的面積公式之前,已知有平行四邊形的面積公式,為此,將δabc"補"成和它同底等高的平行四邊形abdc,然后沿其對角線bc,將平行四邊形"分"成兩個三角形,由對稱性,得到的δabc的面積為平行四邊形面積的一半,即為:sδabc=1/2ah,(a其底邊長,h為高)
而今,欲求三棱錐的體積,亦可類比地借助于已知的柱體體積公式。
能否將三棱錐"補"成一個底面積為s,高為h的三棱柱呢?
[可以]以aa'為側棱,以δabc為底面補成一個三棱柱。
也采用"分"的方法,這個三棱柱可分成怎樣的三棱錐呢?
(圖形沒有打印)
[引導學生觀察分析]將三棱柱分割成三個三棱錐,如圖就是三棱錐1,和另兩個三棱錐2、3。
三棱錐1、2的底δaba'、δb'a'b的面積相等,高也相等(頂點都是c)。三棱錐2、3的底δb'cb'、δc'b'c的面積相等,高也相等。(頂點都是a')。
最后,因為和一個三棱錐等底面積等高的任何錐體都和這個三棱錐的體積相等,所以得到下面的定理。
定理:如果一個錐體(棱錐、圓錐)的底面積是s,高是h,那么它的體積是:v錐體=1/3sh。
4、錐體體積公式的應用。
練習1:正四棱錐底面積是s,側面積為q,則其體積為: 。
練習2:圓錐的全面積為14πcm2,側面展開圖的中心角為60°,則其體積為 。
練習3:邊長為a的正方形,以它的一個頂點為圓心,邊長為半徑畫弧,沿弧剪下一個扇形,用這個扇形圍成一個圓錐筒,求它的體積。
5、課堂小結:1°割補法求三棱錐的思想。
2°錐體的體積公式。
北師大版圓錐的體積教學設計篇九
本節課的教學內容是圓錐體積公式的推導,是一節幾何課,新課程標準指出:教學的任務是引導和幫助學生主動去從事觀察、猜想、實驗、驗證、推理與交流等數學活動,從而使學生形成自己對數學知識的理解和有效的學習策略。因此,在設計本節課時,我力求為學生創造一個自主探索與合作交流的環境,使學生能夠從情境中發現數學問題,學生會產生探究問題的需要,然后再通過自己的探索去發現和歸納公式,體驗過程。
(一)教學內容分析:
1、教材內容:
本節教材是在學生已經掌握了圓柱體體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內容。讓學生學好這一部分內容,有利于進一步發展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。
2、研讀完教材后,自己的`幾個問題:
(2)學生對三分之一好理解,怎樣去認識是等底等高的柱、錐。
(4)本節課的教學內容只能挖掘到圓錐的體積嗎?能不能再深入一些?
3、自己的創新認識:
首先,研讀教材后,我認為這幾個問題的根本是一致的都是要把握住“誰在學?怎么學?”首先,在設計本節課時我想不只是讓學生學會一個公式,而是學會一種數學學習的方式,一種數學學習的思想,體驗一種數學學習的過程。
其次,是要提供給同學們一個可操作的空間。
(二)學情分析:
1、學生在前面的學習中對點、線、面、體有一定的基礎知識,同時也獲得了轉化、對應、比較等數學思想。尤其是對于高年級段的同學來講他們獲取知識的渠道十分豐富,自己又有一定探究能力,對于圓錐體積的知識相信是有一定認識的,在進行教學設計前我們應該了解到他們認識到哪兒了?了解學生的起點,為制定教學目標和選擇教學策略做好準備。
2、自己的認識:(結合自己在講課時發現的問題而談)
學生能夠根據以前的學習經驗圓柱和圓錐的底面都是圓形認識到二者之間存在一定聯系,而且又是剛學完圓柱學生認識到這一點看來并不難,難的是等底等高。因此,在教學設計過程中要注意柱、錐間聯系的設計,突破學生對“圓錐的體積是與它等底等高的圓柱體積的三分之一”中的“等底等高”。
(三)教學方式與教學手段分析:
根據本節課的教學內容及特點,在教學設計過程中我選擇了 “操作——實驗”的學習方式。學習任何知識的最佳途徑是由自已去發現,因為這種發現理解最深,也最容易掌握其中的內在規律、性質和聯系。”我認為這也正是我在設計這節課中所要體現的核心內容。第一次學習方式的指導:體現在出示生活情境后,先讓學生進行大膽猜測“買哪個蛋糕更劃算”。本次學習方式的指導是通過學生對生活問題進行猜想,使學生認識到其中所包含的數學問題,并由此引導學生再想一想你有什么解決方法。
(四)技術準備與教學媒體:
在創設情境中利用多媒體出示主題圖,然后要從圖中剝離出圖形來,并演示整個實驗過程。
(一)教學目標:
1、使學生掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。
2、通過操作——實驗的學習方式,使學生體驗圓錐體積公式的推導過程,對實驗過程進行正確歸納得到圓錐的體積公式,能利用公式正確計算,并會解決簡單的實際問題。
3、培養學生的觀察、分析的綜合能力。
(三)教學難點:通過實驗的方法,得到計算圓錐體積的公式。
北師大版圓錐的體積教學設計篇十
并能運用公式正確地計算圓錐的體積,發展學生的空間觀念。
學具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件
教學時間:一課時
教學過程:
一、復習
1、圓錐有什么特征?(課件出示)
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數學學習中的應用。
二、導人新課
出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。
板書課題:圓錐的體積
三、新課
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
學生分組實驗。
匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒滿。
多指名說
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找幾名同學說。
板書:圓錐的體積=1/3 ×圓柱體積
師:圓柱的體積等于什么?
生:等于“底面積×高”。
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積= 1/3 ×底面積×高
師:用字母應該怎樣表示?
然后板書字母公式:v=1/3 sh
師:在這個公式里你覺得哪里最應該注意?
1/3×19×12=76((立方厘米))
答:這個零件體積是76立方厘米。
做一做:課件出示,學生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積v?
3、已知圓錐的底面直徑d和高h,如何求體積v?
4、已知圓錐的底面周長c和高h,如何求體積v?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數保留整千克)
判斷:課件出示,學生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大( )
2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。
3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )
四、教師小結。
這節課我們學習了哪些知識?你還有什么問題嗎?
五、作業。課本練習