教案模板還可以作為評價教師教學水平和教學成果的重要參考依據。以下是小編為大家搜集整理的幾種常見的教案模板,供大家參考和使用。
中職直線與圓的位置關系教案(模板15篇)篇一
教學目標:
1)知識目標:
a、知道直線和圓相交、相切、相離的定義。
b、根據定義來判斷直線和圓的位置關系,會根據直線和圓相切的定義畫出已知圓的切線。
c、根據圓心到直線的距離與圓的半徑之間的數量關系揭示直線和圓的位置。
2)能力目標:
讓學生通過觀察、看圖、填表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數量關系,揭示直線和圓的關系。此外,通過直線與圓的相對運動,培養學生運動變化的辨證唯物主義觀點,通過對研究過程的反思,進一步強化對分類和歸納的思想的認識。
中職直線與圓的位置關系教案(模板15篇)篇二
已知直線都是正數)與圓相切,則以為三邊長的三角形是________三角形.
三、解答題。
當為何值時,直線與圓有兩個公共點?有一個公共點?無公共點?
四、填空題。
若直線與圓相切,則實數的值等于________.
圓心為且與直線相切的圓的方程為________.
直線與圓相切,則實數等于________.
直線與圓相切,則________.
過點作圓的切線,且直線與平行,則與間的距離是________.
過點,作圓的切線,則切線的條數為________條.
過點的圓與直線相切于點,則圓的方程為________.
五、解答題。
過點作圓的切線,求此切線的方程.。
圓與直線相切于點,且與直線也相切,求圓的方程.。
六、填空題。
由直線上的一點向圓引切線,則切線長的最小值為_____________.
七、解答題。
求滿足下列條件的圓的切線方程:
(1)經過點;
(2)斜率為;
(3)過點.。
已知圓的方程為,求過的圓的切線方程.。
八、填空題。
直線被圓截得的弦長等于________.
直線被圓截得的弦長等于________.
直線被圓所截得的弦長為________.
圓截直線所得弦的長度為4,則實數的值是________.
設直線與圓相交于兩點,若,則圓的面積為________.
直線被圓截得的弦長為________.
直線被圓所截得的弦長為________.
圓心坐標為的圓在直線上截得的弦長為,那么這個圓的方程為________.
過點的直線被圓截得的弦長為,則直線的斜率為________.
過原點的直線與圓相交所得弦的長為2,則該直線的方程為________.
九、解答題。
圓心在直線上,圓過點,且截直線所得弦長為,求圓的方程.。
十、填空題。
過點作圓的弦,其中最短弦的長為________.
十一、解答題。
已知圓,直線.
(1)求證:對,直線與圓總有兩個不同的交點;
(2)若直線與圓交于兩點,當時,求的值.。
設圓上的點關于直線的對稱點仍在圓上,且直線被圓截得的弦長為,求圓的方程.。
已知圓,直線.。
證明:不論取什么實數,直線與圓恒交于兩點。
求直線被圓截得的弦長最小時的方程,并求此時的弦長。
十二、填空題。
圓上到直線的距離等于1的點有________個.
在平面直角坐標系中,已知圓上有且僅有四個點到直線的距離為1,則實數的取值范圍是________.
設圓上有且僅有兩個點到直線的距離等于1,則圓半徑的取值范圍是________.
直線與曲線有且只有一個公共點,則b的取值范圍是_________。
若直線與圓恒有兩個交點,則實數的取值范圍為________.
已知點滿足,則的取值范圍是________.
若過點的直線與曲線有公共點,則直線的斜率的取值范圍為。
中職直線與圓的位置關系教案(模板15篇)篇三
尊敬的各位評委,親愛的各位同行,大家好!今天我的說課內容是人教版九年級上冊第二十四章第二節第二課時的直線與圓的位置關系。下面我將以教什么、怎么樣教、為什么這樣教為思路從教材分析、學情分析、教學目標、學法教法、教學過程和板書設計六個方面對本課進行說明。
一、教材分析。
教材的地位和作用。
圓在平面幾何中占有重要地位,它被安排在初中數學第二十四章,屬于一個提高階段。而直線和圓的位置關系又是本章的一個中心內容。從知識體系上看:它有著承上啟下的作用,既是對點與圓的位置關系的延續與提高,又是后面學習切線的性質和判定、圓和圓的位置關系及高中繼續學習幾何知識的基礎。從數學思想方法層面上看:它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比等數學思想方法,有助于提高學生的數學思維品質。
二、學情分析。
在此之前學生已經學習了點和圓的位置關系,對圓有了一定的感性和理性認識,但在某種程度上特別是平面幾何問題上,學生還是依靠事物的具體直觀形象。加之九年級學生好奇心強,活潑好動,注意力易分散,認知水平大都停留在表面現象,對親身體驗的事物容易激發求知的渴望,因此要想方設法,引導學生深入思考、主動探究、主動獲取新知識。
三、教學目標:
根據學生已有的認知基礎及本課的教材的地位、作用,結合數學課程標準我將確定如下的教學目標:
(2)通過觀察、實驗、合作交流等數學活動使學生了解探索問題的一般方法;
陪養學生觀察、分析和概括的能力;
(4)體會事物間的相互滲透,感受數學思維的嚴謹性,并在合作學習中體驗成功的喜悅。
教學的重難點:
中職直線與圓的位置關系教案(模板15篇)篇四
c.掌握直線和圓的位置關系判定的應用,會求已知圓的交線和切線方程。
(2)能力目標
讓學生通過觀察,分析,總結歸納出根據直線與圓的方程來判斷直線與圓的位置關系的方法,培養學生分析問題解決問題的能力,讓學生對坐標法有進一步的了解,并能用參數法、數形結合的方法去分析、解決相應的數學問題,同時訓練學生數學思維,培養學生尋求一題多解的能力。
(3)情感目標
通過學生自己動手實驗和探索,培養學生動手能力和發現問題的能力;通過師生互動,生生互動的教學活動過程,形成學生的體驗性認識,體會成功的愉悅,提高數學學習的興趣,樹立學好數學的信心,培養鍥而不舍的鉆研精神和合作交流的科學態度。
重點:直線和圓的三種位置關系
難點:直線和圓的三種位置關系的性質和判定的應用
教學方法:問題探究式、啟發式引導、參與式探究、互動式討論
學習方法:自主探究、觀察發現、合作交流、歸納總結。
教學手段:借助多媒體動態演示,構建學生探究式學習的教學環境。
1、創設情景、引入新課;
2、引導啟發、探索新知;
3、講練結合、鞏固新知;
4、知識拓展、深化提高;
5、小結新知,畫龍點睛
6、布置作業,復習鞏固;
重新閱讀課本本節相關內容并預習下一節課內容。
直線與圓的位置關系是高考的考點之一,是在學生已有的平面幾何知識基礎上進行教學,以點與圓的位置關系上升為直線與圓的位置關系,從簡單到復雜,從幾何特征到代數問題(坐標法)的教學過程,它應用比較廣泛,同時也為后面圓和圓的位置關系作了鋪墊,對后面的解題及相關數學問題的解決將起到重要的作用,且本節是直線與圓錐曲線位置關系的基礎,故要求學生充分掌握。
針對上述情況,我精心設計教學過程,借助多媒體動態演示直線和圓的位置關系,直觀形象地展示了直線與圓的位置關系,化抽象為具體,以便學生更好的.理解他們之間的關系及其幾何特征,再引導學生把幾何形式的結論轉化為代數形式;教學過程中采用問題探究式、參與式探究、互動式討論等教學方法,為學生自主探究、合作交流構建一個好的平臺;分層次設置例題,讓全體學生都得到提升;講解例題時應用啟發式引導教學方法,不斷訓練學生數學思維,借助圖象分析題意,加深學生對數形結合思想了解;新課結束后,引導學生小結本課內容,培養學生歸納總結的能力。
中職直線與圓的位置關系教案(模板15篇)篇五
1、圓的定義:
到定點的距離等于定長的點的集合。
在圓內、在圓上、在圓外(由點和圓心的距離與圓的半徑大小來確定)。
3、弦、直徑、孤、弓形、半圓、同心圓、等圓、等孤等概念。
等弧一定要強調要在同圓或等圓中;半圓不包括直徑。
4、過三點的圓(三角形的外心)。
經過三角形三個頂點的圓叫三角形外接圓;外接圓的圓心叫三角形的外心;三角形的外心是三條邊中垂線的交點,到三個頂點距離相等;直角三角形外心在斜邊上、銳角三角心外心在三角形內、鈍角三角形外心在三角形外。
5、垂徑定理及其推論:
定理及推論1:直線過圓心、垂直弦、平分弦、平分弦所對的優弧、平分弦所對的劣弧這五要素中用其中兩個要素做條件就能推導出其它三個要素都成立。若用過圓心、平分弦做條件時要強調被平分的弦不是直徑。
推論2:平行弦所夾的弧相等。
6、圓心角、弦、弦心距、弧的關系:
圓心角、弧、弦、弦心距之間的相等關系必須要在同圓或等圓中才能成立;
弧的度數就等于它所對圓心角的度數。
7、圓周角定理及推論:
圓周角的定義:頂點在圓上,角的兩邊都與圓相交。
圓周角的定理:圓周角等于同弧所對圓心角的一半。
推論1、在同圓或等圓中,同弧或等弧所對的圓周角相等,圓周角相等,它所對的弧也相等。
推論2:直徑和半圓所對的'圓周角等于90度,90度的圓周角所對的弦是直徑,所對的弧是半圓。
推論3、三角形一邊的中線等于這一邊的一半時,這個三角形是直角三角形。
8、圓內接四邊形:
定義:四個頂點都在圓上的四邊形。
定理:圓內接四邊形對角互補。
推論:圓內接四邊形的外角等于它的內對角。
相交、相切、相離(由公共點個數或圓心到直線距離和圓的半徑大小來確定)。
10、切線的判定和性質:
定義:與圓只有一個公共點的直線。
判定定理:經過半徑的外端且垂直于半徑的直線是圓的切線。
性質定理:經過切點的半徑必垂直于切線。
推論1:經過切點且垂直于切線的直線必經過圓心。
推論2:經過圓心且垂直于切線的直線必經過切點。
11、三角形內切圓:
定義:與三角形三邊都相切的圓叫三角形內切圓、內切圓的圓心叫三角形內心。內心是三角形三條角平分線的交點,到三角形三邊距離相等。
12、切線長定理:
定理:圓外一點到圓的兩條切線的長相等,這個點與圓心的連線要平分兩條切線的夾角。
(圓內切四邊形對邊相加相等)。
13、弦切角:
定義:一條邊是圓的切線,頂點是切點,另一條邊與圓相交的角;
定理:弦切角等于它所夾弧對的圓周角。
推論:兩個弦切角所夾的弧相等,這兩個弦切角相等。
14、和圓有關的比例線段:
相交弦定理及推論、切割線定理及推論。
中職直線與圓的位置關系教案(模板15篇)篇六
20xx.11.17早上第二節授課班級:初三、1班授課教師:
過程與方法目標:
2.通過例題教學,培養學生靈活運用知識的解決能力。
情感與態度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的關系、關注知識的生成,發展與變化的過程,主動探索,勇于發現。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉化的辯證唯物主義觀點。
利用多媒體放映落日的動畫,初中數學教案《數學教案-直線和圓的位置關系(公開課)》。引導學生從公共點個數和圓心到直線的.距離兩方面體會直線和圓的不同位置關系。
學生看投影并思考問題。
調動學生積極主動參與數學活動中.。
探究新知。
1、通過觀察直線和圓的公共點個數得出直線和圓相離、相交、相切的定義。
布置作業。
1、課本第101頁7.3a組第2、3題。
2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。
中職直線與圓的位置關系教案(模板15篇)篇七
5、過程與方法。
理解直線和圓的三種位置關系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應關系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數判斷直線與圓的位置關系,能用直線和圓的方程解決一些條件下圓的切線問題;領會數形結合的數學思想方法,提高發現問題、分析問題、解決問題的能力。
6、情感態度與價值觀。
通過對本節課知識的探究活動,加深學生對解析法解決幾何問題的認識,從而領悟其中所蘊涵的數學思想,體驗探索中成功的喜悅,激發學習熱情,養成良好的學習習慣和品質。
教法學法為了實現上述教學目標,本節課采取以下教學方法:
(1)恰當的利用多媒體課件,通過學生熟悉的實際生活問題引入課題,拉近數學與現實的距離,激發學生的問題意識和求知欲,調動學生主體參與的積極性。
(2)采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,站在學生思維的最近發展區上啟發誘導。
(3)在整個數學教學過程中,既要體現學生的主體地位,更要強調教師的主導地位,在科學講授的同時教會學生清晰的思維和嚴謹的推理。
在學法上注重以下幾點:
(2)在用代數法解決直線與圓的位置關系時,要能夠明確運算方向,把握關鍵步驟,正確的處理較為復雜數據。
課堂結構設計:
整個教學過程是四步組成,自主學習,合作探究,老師輔導、課堂展示。共分為八個環節,復習、獨立訓練、相互探討、老師參與、形成結論、課堂展示、評價(互評師評)、反思。
教學過程設計:
通過問題情境,激發學生的學習興趣,使學生找到要學的與以學知識之間的聯系;問題串的設置可讓學生主動參與到學習中來;在判斷方法的形成與應用的探究中,師生的相互溝通調動學生的積極性,培養團隊精神;知識的生成和問題的解決,培養學生獨立思考的能力,激發學生的創新思維;通過練習檢測學生對知識的掌握情況;根據學生在課堂小結中的表現和課后作業情況,查缺補漏,以便調控教學。
回顧反思,拓展延伸:
中職直線與圓的位置關系教案(模板15篇)篇八
教學要求:能夠從日常生活實例中抽象出數學中所說的平面理解平面的無限延展性;正確地用圖形和符號表示點、直線、平面以及它們之間的關系;初步掌握文字語言、圖形語言與符號語言三種語言之間的`轉化;理解可以作為推理依據的三條公理.
教學重點:理解三條公理,能用三種語言分別表示.
教學難點:理解三條公理。
教學重點:掌握平行公理與等角定理.
教學難點:理解異面直線的定義與所成角。
教學要求:了解直線與平面的三種位置關系,理解直線在平面外的概念,了解平面與平面的兩種位置關系.
教學重點:掌握線面、面面位置關系的圖形語言與符號語言.
教學難點:理解各種位置關系的概念.
中職直線與圓的位置關系教案(模板15篇)篇九
三、目的分析:
1、知識目標:
2、能力目標:
要使學生體會用代數方法處理幾何問題的思路和“數形結合”的思想方法。
四、教法分析:
1、教學方法:啟發式講授法、演示法、輔導法。
2、教材處理:
(1)例題1(1)(2)用兩種不同的辦法求解,讓學生自己體會這兩種方法。
通過老師引導和讓學生自己探索解決,反饋學生的解決情況。
(2)增加一個過一點求圓的切線方程的題型,幫助學生增加對直線與圓的認識。
3、學法指導:本節課的學法是繼續指導學生把新問題轉化為已有知識解決的化歸思想。
4、教具:多媒體電腦、投影儀、自做多媒體。
五、過程分析:
教學。
環節。
教學內容。
設計意圖。
新課引入。
1、學生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學生回答的基礎上,通過多媒體演示圓與直線的三種位置關系。讓學生感受到數學產生于生活,與生活密切相關,并能使學生更好的直觀感受直線和圓的三種位置關系。然后引入本節課的課題。
2、在上一章,我們在學習了直線的方程后,研究了點和直線、直線與直線的位置關系,本章我們已經學習了圓的方程,現在我們要研究直線與圓以及圓與圓的位置關系。
1數學產生于生活,與生活密切相關。
2、以實際問題引入有利于激發學生學習數學的興趣,有利于擴展學生的視野。
新課講解。
一、知識點撥:
答:把圓心到直線的距離d和半徑r比較大?。?/p>
中職直線與圓的位置關系教案(模板15篇)篇十
并深刻剖析直線是圓的切線的判定條件和直線與圓相切的性質;對重要的結論及時。
(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學。
新課程理念及新基礎教育理念都提倡“把課堂還給學生,讓課堂充滿生命活力”,讓學生真正“動起來”,動不應當是表面的、外在的,而應當使學生的思維處于活躍狀態,積極思考問題,這種內在的、深層的動,更要落實,動靜結合,收放適度,動得有序,動而不亂。課堂教學要的不是熱鬧場面,而是對問題的深入研究和思考。首先要設計好問題,針對不同意見和問題引導學生展開討論、辯論,抓住學生發言中的問題,及時給以矯正。當教師提出問題讓學生探索時,學生自己尋找答案時,要放手讓學生活動,但要避免學生興奮過度或活動過量。今后再教學本節課仍應倡導提高學生的問題意識,以對問題的探究來構筑本節課教學的主題。但是,教師待學生的問題提完后,與學生一道對問題進行歸類,找出學生思維和知識的核心問題,以此組織課堂教學,并相機解決其他問題。仍應放權給學生,給他們想、做、說的機會,讓他們討論、質疑、交流,圍繞某一個問題展開辯論。教師應當給學生時間和權利,讓學生充分進行思考,給學生充分表達自己思維的機會。但是,應關注學生的參與程度,有的學生的參與只是一種表面上的行為參與。要看學生的思維是否活躍,關鍵是學生所回答的問題、提出的問題,是否建立在一定的思維層次上,是否會引起其他學生的積極思考,還是學生的自我需要。也就是說我們要關注學生思維的狀態與學習互動的狀態。
中職直線與圓的位置關系教案(模板15篇)篇十一
一、課程目標分析:
《普通高中數學課程標準》指出:在平面解析幾何初步的教學中,教師應幫助學生經歷如下過程:首先將幾何問題代數化,用代數的語言描述幾何要素及其關系,進而將幾何問題轉化為代數問題;處理代數問題;分析代數結果的幾何含義,最終解決幾何問題。這種思想應貫穿平面解析幾何教學的始終,幫助學生不斷地體會“數形結合”的思想方法。
二、教材分析:
1、教材的地位和作用:
《直線與圓的位置關系》這一節內容出現在必修2的第二章《平面解析幾何初步》的第二節《圓與圓的方程》的第三小節的位置。就整套教材而言,《平面解析幾何初步》一章的教學主要是讓學生體會到用代數方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎。它是前兩節《直線與直線方程》和《圓與圓的方程》的綜合應用,也為后一小節《圓與圓的位置關系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節的重要內容,起著貫穿始終、應用反饋的重要作用,而且是貫徹“用代數方法處理幾何問題”思想和“數形結合”方法的重要的反映內容和工具。在本章中的作用非常重要。
2、教材重點、難點。
中職直線與圓的位置關系教案(模板15篇)篇十二
這節課,我由生活中的情景——日落引入,讓學生發現地平線和太陽位置關系的變化,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發現直線和圓的三種位置關系,給出定義,聯系實際,由學生發現日常生活中存在的直線和圓相交、相切、相離的現象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。通過本節課的教學,我認為成功之處有以下幾點:
1。由日落引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到數學無處不在,無時不有。
2。在探索直線和圓位置關系所對應的數量關系時,讓學生回顧點和圓的位置關系所對應的數量關系,啟發學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節課探索切線的性質打好基礎。
3。新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。
“國培計劃”初中數學——陳曉峰(江西省寧都五中)。
節課的教學,我認為成功之處有以下幾點:
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到生活之中處處有數學。
2.在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節課探索切線的性質打好基礎。
3.新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。
同時,我也感覺到本節課的設計有不妥之處,主要有以下三點:
1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。
2.雖然我在設計本節課時是體現讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發揮小組的特點,讓學生相互啟發討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。
中職直線與圓的位置關系教案(模板15篇)篇十三
重點:的性質和判定.因為它是本單元的基礎(如:“切線的判斷和性質定理”是在它的基礎上研究的),也是高中解析幾何中研究的基礎.
難點:在對性質和判定的研究中,既要有歸納概括能力,又要有轉換思想和能力,所以是本節的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學生較難理解.
3.教法建議。
本節內容需要一個課時.
(2)在中,以“形”歸納“數”,以“數”判斷“形”為主線,開展在組織下,以學生為主體,活動式.
第12頁?。
中職直線與圓的位置關系教案(模板15篇)篇十四
“思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也。”反思意識人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數學知識,體驗數學來源于生活。然后提出問題,引導學生大膽猜想,思考,發現三種位置關系,激發學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數學,“想”數學,體會到數學知識無處不在,應用數學無處不有。這也符合“數學教學應從生活經驗出發”的新課程標準要求。
在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養學生互助、協作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。最后由學生小結這一知識點,我板書在黑板上,培養學生用數學語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數學強調人人學有價值的數學,人人學有用的數學,由于此題要學生回到生活中去運用數學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。
一堂課教學下來,也發現有諸多不妥之處,讓我認識到自己需要繼續努力。歸納主要有以下三點:。
1、教師在課堂應當以引導者的身份出現,把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。
2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。
3、在處理課后練習時,做的不夠細致,這一環節是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內化知識,充分體現”授人以魚不如授人以漁"。
總之,這是我對自己本節課的一些教學反思,或者說是對新課程理念的淺薄認識。
中職直線與圓的位置關系教案(模板15篇)篇十五
本節課研究圓與圓的位置關系,重點是研究兩圓位置關系的判斷方法,并應用這些方法解決有關的實際問題?!秷A與圓的位置關系》在舊教材中比重不大,但是在新課標中,被作為一個獨立的章節,說明新課標對這一章節的要求已經有所提高。教材是在初中平面幾何對圓與圓的位置關系的初步分析的基礎上得到圓與圓的位置關系的判斷方法,北師大版教材中著重強調了根據圓心到直線的距離與圓的半徑的關系進行判斷,對用方程的思想去處理位置關系沒作要求,但用方程的思想來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法,因此,我增加了用方程的思想來分析位置關系,這樣有利于培養學生數形結合、經歷幾何問題代數化等解析幾何思想方法及辯證思維能力,其基本思維方法和解決問題的技巧在今后整個圓錐曲線的學習中有著非常重要的意義。
作為解析幾何的一堂課,判斷圓與圓的位置關系,體現的正是解析幾何的思想:用方程處理幾何問題,用幾何方法研究方程性質。所以我在教材處理上,對判斷兩圓位置關系用了方程的思想和幾何兩種方法,兩種方法貫穿始終,使學生對解析幾何的本質有所了解。
第一,學生學習新知識必須在已有知識和經驗的基礎上自主建構與形成。所以,我一開始便提出了三個問題,即復習此節相關的知識點,通過問題解決,以舊引新,提出新的問題,以類比的方法研究圓與圓的位置關系。配合幾何畫板的動畫演示,啟發學生思考當初是怎樣研究判斷直線與圓的位置關系的方法?這種方法是不是同樣可以運用到研究圓與圓的位置關系上來?能不能用來判斷圓與圓的位置關系?使學生很自然地從直線與圓的位置關系的判斷方法類比到圓與圓的位置關系的判斷方法。
第二,新的課程標準非常重視學生的自主探究,這是學習方式的一次革命,老師的教授過程固然重要,但學生對知識的掌握是在學生自己對知識有體驗、有獨立的思考和探討的基礎上,才能成為可能。所謂“學在講之前,講在關鍵處”,學生先有一個對知識的認識過程,老師再在關鍵處進行講解,使學生真正完成對知識感知、形成和鞏固的過程,才是對知識最好的吸收。
第三,學生的學習是在教師引導下的有目的的學習,從而教學的過程就是在教師控制下的學生自主學習和合作探究學習的過程,這個過程中的關鍵點是怎么樣有效地控制學生自主學習和合作探究學習的時間和空間,在教學的過程中,我較好地處理了學生學習的空間與時間,既留給學生充分思考與探索的時間與空間,又嚴格限定時間,由此培養學生思維的敏捷性,提高課堂效率。
對于問題探究的題型選擇的一些思考:
第二個問題研究是研究一個半徑變化的圓與定圓相切,求題中參數變化的問題,這道題中同樣要注意的是相切的兩種情況,并且對于內切,要充分結合數形結合的思想,判斷出兩圓的半徑大小關系。兩題都有一定難度,處理時必須牢牢掌握知識,靈活運用。
2、時間把握。課前復習是有必要的,是為了學生類比舊知識,聯想新知識,但復習舊知識的時間應該限定在三分鐘以內,復習時間長會導致鞏固練習的時間不足和問題展開不夠充分。
3、限時訓練。限時訓練的目的是為了讓學生更有效率地做題,限定時間過長或是過短都不利于學生提高數學能力,這點還有待研究。