教學工作計劃是教師進行教學設計的基礎,能夠幫助教師培養良好的教學習慣和規范的教學流程。教學工作計劃可以根據不同學科和年級的要求進行調整和參考。
專業勾股定理數學教案(匯總20篇)篇一
隨著社會的發展,新課程改革的不斷深入,數學課已不僅是一些數學知識的學習,更重要的是體現知識的認知發展過程。教育的目的是培養具有獨立思考能力、具有實踐精神和創新能力的人。一堂好課應該是學生最大限度參與的課。《數學課程標準》中指出學生的數學學習應當是現實的、有意義的、富有挑戰性的,內容要有利與學生主動進行觀察、實驗、猜想、驗證、推理與交流。內容的呈現應采取不同的表達方式,以滿足多樣化的學習需求。數學活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。
本節知識是在學生掌握了直角三角形的三個性質:直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎上展開的。勾股定理是直角三角形的一個非常重要的性質,它揭示了一個直角三角形三邊的數量關系,可解決直角三角形的許多有關的計算,是初三解直角三角形的主要依據之一,中考中的四邊形和圓等綜合題中也經常出現。貫穿了整個幾何學習,更是數形結合的重要典范。更重要的是學生在探索定理的過程中,無論是課前準備和課上交流以及課下活動都讓學生充分感受到學習、思考的重要性,與人合作的重要性以及數學在實際生活中的重要作用,是進行愛國教育的重要題材!
本節課的教育對象是初二下的學生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網上作業也頗感興趣,并能制作簡單課件。形成了一定的數學學習習慣。
專業勾股定理數學教案(匯總20篇)篇二
教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導。”因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
專業勾股定理數學教案(匯總20篇)篇三
師生行為學生分組討論,交流總結;教師引導學生回憶.。
師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
生:有一個內角是90°,那么這個三角形就為直角三角形.。
生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形.。
二、講授新課。
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
活動3下面的三組數分別是一個三角形的三邊長?
專業勾股定理數學教案(匯總20篇)篇四
一、學情分析:
知識技能基礎:學生在小學已經學過分數的乘除法,掌握了分數的乘除法法則,在學習分式的乘除法法則時可通過與分數的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結果的化簡奠定基礎。
能力基礎:在過去的數學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
二、教學目標:
知識目標:1、分式的乘除運算法則。
2、會進行簡單的分式的乘除法運算。
能力目標:1、類比分數的乘除運算法則,探索分式的乘除運算法則。
2、能解決一些與分式有關的簡單的實際問題。
情感目標:1、通過師生討論、交流,培養學生合作探究的意識和能力。
2、培養學生的創新意識和應用意識。
三、教學重點、難點。
重點:分式乘除法的法則及應用。
難點:分子、分母是多項式的分式的乘除法的運算。
三、教學過程:
第一環節復習舊知識。
復習小學學的分數乘除法法則,
活動目的:
復習小學學過的分數的乘除法運算,為學習分式乘除法的法則做準備。
第二環節引入新課。
活動內容。
你能總結分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:。
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動目的:
讓學生觀察運算,通過小組討論交流,并與分數的乘除法的法則類比,讓學生自己總結出分式的乘除法的法則。
第三環節知識運用。
活動內容。
例題1:。
(1)(2)例題2。
(1)(2)活動目的:
通過例題講解,使學生會根據法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關的簡單的實際問題,增強學生代數推理的能力與應用意識。需要給學生強調的是分式運算的結果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結果要化簡。
第四環節走進中考。
(2012.漳州)第五環節課時小結。
活動內容:
1.分式的乘除法的法則。
2.分式運算的結果通常要化成最簡分式或整式.
3.學會類比的數學方法。
第六環節當堂檢測。
文檔為doc格式。
專業勾股定理數學教案(匯總20篇)篇五
從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。
從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;
勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中【情感態度】方面,以我國數學文化為主線,激發學生熱愛祖國悠久文化的情感。
(二)重點與難點。
為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
專業勾股定理數學教案(匯總20篇)篇六
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理;利用勾股定理的逆定理判定一個三角形是不是直角三角形。
【過程與方法】。
通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
【情感態度與價值觀】。
通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
二、教學重難點。
【重點】。
【難點】。
三、教學過程。
(一)導入新課。
復習回顧出勾股定理。
師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設和結論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數量關系。
追問1:你能把勾股定理的題設與結論交換得到一個新的命題嗎?
師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題。
(四)小結作業。
作業:總結一下判定一個三角形是直角三角形的方法。
專業勾股定理數學教案(匯總20篇)篇七
1、知識與技能目標:探索并理解直角三角形的三邊之間的數量關系,通過探究能夠發現直角三角形中兩個直角邊的平方和等于斜邊的平方和。
2、過程與方法目標:經歷用測量和數格子的辦法探索勾股定理的過程,進一步發展學生的合情推理能力。
3、情感態度與價值觀目標:通過本節課的學習,培養主動探究的習慣,并進一步體會數學與現實生活的緊密聯系。
專業勾股定理數學教案(匯總20篇)篇八
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區別與聯系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
【過程與方法】。
經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態度與價值觀】。
體會事物之間的聯系,感受幾何的魅力。
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的逆定理的證明。
(一)導入新課。
復習勾股定理,分清其題設和結論。
提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知。
請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確。
出示數據2.5cm,6cm,6.5cm,請學生計算驗證數據滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數據,如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
專業勾股定理數學教案(匯總20篇)篇九
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。
3、情感、態度與價值觀目標:了解中國古代的數學成就,激發學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養探索熱情和鉆研精神;同時體驗數學的美感,從而了解數學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數形圖,1955年希臘發行的一枚紀念郵票,美麗的勾股樹,國際數學大會會標等。通過圖形欣賞,感受數學之美,感受勾股定理的文化價值。
專業勾股定理數學教案(匯總20篇)篇十
在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發展合情推理,體會數形結合、從特殊到一般等數學思想。
通過對我國古代研究勾股定理的成就介紹,培養學生的民族自豪感。
1、創設情境。
師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發現直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
設計意圖:本節課是本章的起始課,重視引言教學,從國際數學家大會的會徽說起,設置懸念,引入課題。
觀看洋蔥數學中關于勾股定理引入的視頻,讓我們一起走進神奇的數學世界。
追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?
師生活動:教師引導學生發現正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論。
問題3:數學研究遵循從特殊到一般的數學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數量關系也同樣成立。
師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。
專業勾股定理數學教案(匯總20篇)篇十一
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。
3、情感、態度與價值觀目標:了解中國古代的數學成就,激發學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養探索熱情和鉆研精神;同時體驗數學的美感,從而了解數學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數形圖,1955年希臘發行的一枚紀念郵票,美麗的勾股樹,20國際數學大會會標等。通過圖形欣賞,感受數學之美,感受勾股定理的文化價值。
專業勾股定理數學教案(匯總20篇)篇十二
本節將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學生在學習七年級上第一章時對生活中的立體圖形已經有了一定的認識,并從事過相應的實踐活動,因而學生已經具備解決本課問題所需的知識基礎和活動經驗基礎.
二、教學任務分析。
本節是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節.具體內容是運用勾股定理及其逆定理解決簡單的實際問題.當然,在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發展學生合作交流的能力.
本節課的教學目標是:
1.通過觀察圖形,探索圖形間的關系,發展學生的空間觀念.
2.在將實際問題抽象成數學問題的過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.
3.在利用勾股定理解決實際問題的過程中,體驗數學學習的實用性.
利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節課的重點也是難點.
四、教法學法。
1.教學方法。
引導—探究—歸納。
本節課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現本節課的教學目標,我力求以下三個方面對學生進行引導:
(1)從創設問題情景入手,通過知識再現,孕育教學過程;。
(2)從學生活動出發,順勢教學過程;。
(3)利用探索研究手段,通過思維深入,領悟教學過程.
2.課前準備。
教具:教材、電腦、多媒體課件.
學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具.
五、教學過程分析。
本節課設計了七個環節.第一環節:情境引入;第二環節:合作探究;第三環節:做一做;第四環節:小試牛刀;第五環節:舉一反三;第六環節:交流小結;第七環節:布置作業.
專業勾股定理數學教案(匯總20篇)篇十三
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2、通過實例應用勾股定理,培養學生的知識應用技能.
一、學前準備:
1、閱讀課本第46頁到第47頁,完成下列問題:。
2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)。
二、合作探究:
(一)自學、相信自己:
(二)思索、交流:
(三)應用、探究:
(四)鞏固練習:
1、如圖,64、400分別為所在正方形的面積,則圖中字。
母a所代表的正方形面積是_________。
三.學習體會:
本節課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應用此定理解決問題時,應注意只有直角三角形的三邊才有這樣的關系,如果不是直角三角形應該構造直角三角形來解決。
2②圖。
四.自我測試:
五.自我提高:
專業勾股定理數學教案(匯總20篇)篇十四
教學目標1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
2.會綜合運用平行四邊形的判定方法和性質來解決問題。
教學重點:平行四邊形的判定方法及應用。
教學難點:平行四邊形的判定定理與性質定理的靈活應用。
引
二.探。
閱讀教材p44至p45。
利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考并探討:
(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(4)能否將你的探索結論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
證一證。
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
證明:(畫出圖形)。
三.結。
兩組對邊分別相等的四邊形是平行四邊形。
對角線互相平分的四邊形是平行四邊形。
四.用。
專業勾股定理數學教案(匯總20篇)篇十五
1、知識目標:
(2)會應用勾股定理的逆定理判定一個三角形是否為直角三角形;
(3)知道什么叫勾股數,記住一些覺見的勾股數.
2、能力目標:
(1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;
(2)通過勾股定理及以前的知識聯合起來綜合運用,提高綜合運用知識的能力.
3、情感目標:
(1)通過自主學習的發展體驗獲取數學知識的感受;
(2)通過知識的縱橫遷移感受數學的辯證特征.。
教學用具:直尺,微機。
教學方法:以學生為主體的討論探索法。
專業勾股定理數學教案(匯總20篇)篇十六
教學目標:
1、知識目標:
(2)學會利用勾股定理進行計算、證明與作圖;
(3)了解有關勾股定理的歷史。
2、能力目標:
(1)在定理的證明中培養學生的拼圖能力;
(2)通過問題的解決,提高學生的運算能力。
3、情感目標:
(1)通過自主學習的發展體驗獲取數學知識的感受;
(2)通過有關勾股定理的歷史講解,對學生進行德育教育。
教學難點:通過有關勾股定理的歷史講解,對學生進行德育教育。
教學用具:直尺,微機。
教學方法:以學生為主體的討論探索法。
教學過程:
1、新課背景知識復習。
(1)三角形的三邊關系。
(2)問題:(投影顯示)。
直角三角形的三邊關系,除了滿足一般關系外,還有另外的特殊關系嗎?
2、定理的獲得。
讓學生用文字語言將上述問題表述出來。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
強調說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊。
(2)學生根據上述學習,提出自己的問題(待定)。
3、定理的證明方法。
方法一:將四個全等的直角三角形拼成如圖1所示的正方形。
方法二:將四個全等的直角三角形拼成如圖2所示的正方形。
方法三:“總統”法、如圖所示將兩個直角三角形拼成直角梯形。
以上證明方法都由學生先分組討論獲得,教師只做指導、最后總結說明。
4、定理與逆定理的應用。
5、課堂小結:
已知直角三角形的兩邊求第三邊。
已知直角三角形的一邊,求另兩邊的關系。
6、布置作業:
a、書面作業p130#1、2、3。
b、上交作業p132#1、3。
專業勾股定理數學教案(匯總20篇)篇十七
思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)。
專業勾股定理數學教案(匯總20篇)篇十八
學會觀察圖形,勇于探索圖形間的關系,培養學生的空間觀念。
2、過程與方法。
(1)經歷一般規律的探索過程,發展學生的抽象思維能力。
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想。
3、情感態度與價值觀。
(1)通過有趣的問題提高學習數學的興趣。
(2)在解決實際問題的過程中,體驗數學學習的實用性。
教學重點:
探索、發現事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
教學難點:
利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。
教學準備:
多媒體。
教學過程:
第一環節:創設情境,引入新課(3分鐘,學生觀察、猜想)。
情景:
第二環節:合作探究(15分鐘,學生分組合作探究)。
學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算。
第三環節:做一做(7分鐘,學生合作探究)。
教材23頁。
李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務嗎?
第四環節:鞏固練習(10分鐘,學生獨立完成)。
2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
第五環節課堂小結(3分鐘,師生問答)。
內容:如何利用勾股定理及逆定理解決最短路程問題?
第六環節:布置作業(2分鐘,學生分別記錄)。
作業:1.課本習題1.5第1,2,3題.。
要求:a組(學優生):1、2、3。
b組(中等生):1、2。
c組(后三分之一生):1。
專業勾股定理數學教案(匯總20篇)篇十九
1、在一個比例里,兩個外項的積是最小的質數,一個內項是0.5,另一個內項是()。
2、甲數×=乙數×60%,甲:乙=(:)???3、0.75:化成最簡整數比是()。
4、一幅地圖的線段比例尺是它表示實際距離是圖上距離的()倍。
5、在的圖紙上,一個正方形的面積為16平方厘米,它的實際面積是()?6、甲數的是甲乙兩數和的,甲乙兩數的比是()。
7、一個比例式,兩個外項的和是37,差是13,比值是,這個比例式是()。
8、一車水果重1.8噸,按2:3:5的比例分配給甲、乙、丙三個水果店,乙水果店分得這批水果的()。
9、星期天,小麗看一本書用了2小時15分,小紅同樣一本書用了2.15小時,小麗和小紅看書用的時間比是()。
10、兩地相距80千米,畫在比例尺是1:400000的地圖上,應畫()厘米。
11、一杯糖水,糖比水是1:4,喝去杯糖水后,又用水加滿,這時糖與水的比是()。
12、甲數比乙數多,甲數與乙數的比是()。
13、甲、乙、丙三個數的平均數是15,甲、乙、丙三個數的比是2:3:4,甲數是()。
14、一個比例的兩個內項互為倒數,一個外項是,另一個外項是()。
15、圓柱的高一定,圓柱的底面積與體積()比例。
16、東風小學六年級人數是五年級人數的,五年級與六年級人數的比是()。
17、學校購到一批書,按2:3:5借給四、五、六三個年級。四年級借到這批書的()%。
18、一個零件長2米,在設計圖上這個零件長4厘米,這幅設計圖的比例尺是()。
19、把3克鹽放入12克水中,鹽與鹽水重量的最簡整數比是()。
20、把(5平方米):(50平方分米)化成最簡整數比是(),它們的比值是()。
21、甲數除以乙數的商是1.5,甲數與乙數的最簡整數比是()。
22、昆明到西雙版納的實際距離是1200千米,在一幅地圖上量得兩地之間的距離是6厘米。在這幅地圖上量得瀘西到麗江的圖上距離是4厘米。瀘西到麗江的實際距離是()千米。
23、若圖上距離的2厘米表示實際距離的80千米,則這幅圖的比例尺是()。
24、六年級同學共同訂閱《蜜蜂報》。報紙的總價和所訂份數成()比例。
25、同樣多的作業,李莉12分鐘,王祥15分鐘,李莉與王祥的最簡單的速度比是()。
26、在比例尺是的平面圖上,量得教室的長是4.5厘米,教室的實際長是(??)米。
27、達標課上,六(2)班的達標人數與未達標人數的比是24:1,這個班學生的達標率是()。
28、一只青蛙四條腿,兩只眼睛一張嘴;兩只青蛙八條腿,四只眼睛兩張嘴;三只青蛙……”,兒歌中青蛙的只數與對應的腿數成()比例關系。
29、甲數的等于乙數的,甲乙兩個數的最簡單的整數比是(),比值是()。
30、一個長方形操場,長110米,寬90米。把它畫在比例尺是的圖紙上,長畫()厘米,寬畫()厘米。
31、如果=,與成()比例32、如果a×5=b×8,那么a:b=()。
33、三個數的平均數是40,三個數的比是1:2:3,最大數是()。
34、甲數與乙數的比是5:8,甲數比乙數少()%,乙數比甲數多。
二、判斷題。
1、小麥的出粉率一定,小麥的總重量和面粉的重量成正比例關系。()。
2、因為甲數:乙數=25:23,所以甲數=25,乙數=23。?()。
3、車輪的直徑一定,車輪轉動的周數和所行路程成正比例。()。
4、如果a與b成反比例,b與c也成反比例,那么a與c成正比例。??()。
5、如果a×3=b×5,那么a:b=5:3。???()。
6、y=8x,表示x和y成正比例。?()。
7、半徑與直徑的比是1:2。????()。
8、甲地到乙地,甲車要6小時,乙車要8小時,甲車和乙車的速度比是3:4。()。
9、如果=(,都不為0),那么和成正比例。??()。
10、一項工程,甲獨做6天完成,乙獨做4天完成,乙甲的工效比是3:2。()。
11、比例尺是1:500,表示圖上1厘米代表實際距離的500厘米???()。
12、從學校到文化宮,甲用9分鐘,乙用10分鐘,甲和乙每分鐘行的路程比是9:10。()。
13、山羊和綿羊頭數的比是4:5,表示山羊比綿羊少。()。
14、長方形的長和寬成反比例???()。
15、兩個數相除的商又叫做兩個數的比?(???)。
16、長方形的面積一定,長方形的長和寬成反比例???()。
17、長方體的體積一定,底面積和高成反比例?()。
三、選擇題。
1、一塊長方形的周長是28米,它的長和寬的比是4:3,這塊地的面積是()平方米。
a、192b、48c、28。
2、一幅圖紙的比例尺是20:1,表示圖上距離是實際的()。
a、b、20c、20倍。
3、一個圓柱和一個圓錐體積相等,已知圓錐體和圓柱的高的比是9:1,圓柱體底面積和圓錐體底面積的比是()。
a、9:1b、3:1c、6:1。
4、成反比例的量是()。
a、a和b互為倒數b、圓柱的高一定,體積和底面積。
c、被減數一定,減數與差d、除數一定,商和被除數。
5、如果=那么和()。
a、成正比例b、成反比例c、不成比例。
6、一幅地圖的比例尺是1:100000。下面說法不正確的是()。
a、圖上1厘米的距離相當于地面實際距離的100000米。
b、把實際距離縮小100000倍后,再畫在圖紙上。
c、圖上距離相當于實際的.。
7、做一批零件,甲需要4小時,乙需要3小時,甲與乙的速度比是()。
a、4:3b、5:4c、3:4。
8、六年級(1)班有科技書和故事書共40本,它們的比可能是()。
a、5:1b、4:1c、2:5。
9、互為倒數的兩個數()。
a、成正比例b、成反比例c、不成比例。
10、下列各組比能與:組成比例的是()。
a、5:6b、6:5c、:
11、把10克糖溶解在100克水中,糖與糖水的比是()。
a、10:1b、1:10c、1:11d、11:1。
12、一個圓的直徑與周長的比是()。
a、1:2b、1:c、2:
13、一批產品,合格產品與不合格產品的比是4:1,這批產品的不合格率是()。
a、25%b、20%c、10%。
14、在同一個圓里,周長與直徑()。
a、成正比例b、成反比例c、不成比例。
15、一個三角形內角度數的比是7:2:1,這個三角形是()。
a、鈍角三角形b、銳角三角形c、直角三角形。
16、一條長5米的線段畫在比例尺是1:100的圖中,要比畫在比例尺只是1:1000的圖中()。
a、長b、短c、一樣長。
17、表示與成正比例關系的式子是()。
a、?=6b、=6c、=+6。
18、在一幅云南地圖上用4厘米的線段表示實際距離160千米,這幅地圖的比例尺是()。
a、b、c、
19、路程一定,速度和時間()。
a、成正比例b、成反比例c、不成比例。
20、在100克水中放入10克鹽,那么鹽與鹽水的質量比是()。
a、1:10b、10:1c、1:11。
21、(?瀘模二)的5倍與的3倍的比是1:2,那么與的比是()。
a、3:10b、10:3c、3:5。
22、一項工程,甲隊獨做要8天完成,乙隊獨做要6天完成。甲隊和乙隊的工作效率比是()。
a、8:6b、4:3c、:d、:
23、在比例尺是1:1000000的地圖上,圖上距離為10厘米的兩地,實際距離是()千米。
a、100000b、100c、1000d、10000。
24、車輪直徑一定,所行駛的路程和車輪轉數()。
a、成正比例b、成反比例c、不成比例。
25、在含糖25%的糖水中,糖與水的比是()。
a、1:4b、3:1c、1:3。
26、10克糖溶解在100克水中,糖和糖水重量的比是()。
a、11:1b、1:11c、
27、兩個圓的直徑比是1:2,周長比是()。
a、1:2b、1:4c、1:8。
28、距離一定,時間和速度()。
a、不成比例b、成正比例c、成反比例。
四、求未知數。
6.5:=3.25:4。
13:7=。
五、應用題。
3、蓋一幢職工宿舍。計劃使用6米長的水管240根。后來改用8米長的水管,共需要多少根?(用兩種方法解答)。
4、做一批零件,如果每天做200個,15天可以做完,現在要在12天完成,平均每天做多少個?(用兩種方法解答)。
5、甲地到乙地的公路長392千米。一輛汽車3小時行了168千米。照這樣計算,行完全還需要幾小時?(用兩種方法解答)。
7、金光電子廠要生產一批零件,原計劃每天生產180個,12天完成。實際的生產效率是原計劃的120%,實際多少天可以完成?(用兩種方法解答)。
8、一輛汽車4小時行140千米,照這樣計算,7小時行多少千米?行駛315千米需要幾小時?(用兩種方法解答)。
10、(?瀘模二)鐵路工人修鐵路,用每根長9米的新鐵軌替換原來每根6米的舊鐵軌,共換下舊鐵軌240根,換上的新鐵軌有多少根?(用兩種方法解答)。
11、瀘西縣水泥廠5天生產水泥320噸。照這樣計算,要生產6600噸水泥,需要多少天完成?(用兩種方法解答)。
12、某工程隊修一條路,12天共修780米,還剩下325米沒有修。照這樣速度,修完這條公路,共需要多少天?(用兩種方法解答)。
13、甲乙兩個小組要在6小時內加工1560個零件。已知甲小組每小時加工120個零件,乙每小時加工零件多少個?(用兩種方法解答)。
14、50千克花生仁可以榨油19千克。要榨200千克花生油需多少千克花生仁?(用兩種方法解答)。
專業勾股定理數學教案(匯總20篇)篇二十
本節課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學生思維能力的目的.具體說明如下:
(1)讓學生主動提出問題。
(2)讓學生自己解決問題。
(3)通過實際問題的解決,培養學生的數學意識.。