教學計劃是教師根據教育要求和學科標準,提前安排學習步驟和教學任務的一份計劃。以下是一些備受好評的教學計劃范文,希望能給大家提供一些思路和參考。
質數和合數教學設計人教版(優秀18篇)篇一
教學難點:正確區分質數、合數。
教學過程:
課前談話:
給教室里的人分類。體會:同樣的事物,依據不問的分類標準,可以有多種小*的分類方法。明確:分類的際準很重要。
說一說,在我們學習的空間,你可以得到那些數?(要求與同學說的盡也不重復)。
給這些自然數分類。根據自然數能不能被2整除,可以分成奇數和偶數兩類。
板書對應的集合圖。
自然數。
把學生列舉的數填寫在對應的集合圈里。
問:看了集合圖,你想說什么么?(學生看圖說自己的想法,復習奇數和偶數的有關知識)。
說明:這是一種有價值的分類方法,在以后的學習中很有用。
問:想不想學一種新的分類方法?關于新的分類方法,你想知道些什么?
今天我們就用找質數的方法來給自然數分類。
復習:什么叫因數?怎樣找一個數所有的因數?
同桌合作.找出列舉的各數的所有的因數。(同時板演)。
引導學生觀察:觀察以上各數所含的數的個數,你能把它們分成幾種情況!
根據學生的回答板書。
自然數。
(因數的個數)。
(只有兩個因數)(有3個或3個以上的約數)。
引導學生思考:只含有兩個因數的,這兩個因數有什么特點?引出質數的概念。
明確:這是一種新的分類方法。看廠集合圈,你想說什么?(學生看圖說自己的想法,鞏固寺數陽臺數的知識)。
猜一猜:奇數有多少個?合數呢?
明確:因為自然數的個數是無限的,所以,奇數,偶數的個數也是無限的。運用新知,解決問題。
出示例1下面各數,哪些是質數?哪些是合數?91ll。
學生獨立完成。問:你是怎么判斷的?
明確:可以找出每個數所有的`因數,再根據質數和合數的意義來判斷;一個數,只有找到1和它本身以外的第三個約束,就能判斷這個數是合數還是質數。不必找出所有的因數來,這樣可以提高判斷的效率。
說明:判斷一個數是不是質數還可以查表。100以內的質數比較常用,看書本上的100以內的質數表。用質數表檢查對例子1的判斷是否正確。
完成練一練。
1、堅持下面各數的因數的個數,指出哪些是質數哪些是合數,再用質數表檢查。
2、出示2到50的數。先劃掉2的倍數,再依次劃掉3、5、7的倍數(但2、3、5、7本身不劃掉。)。
學生操作后,提問:剩下的都是什么數?
告訴學生:古代的數學家就是用這樣的方法來找質數的。
學到這里,一種新的分類方法,你掌握了嗎?學生回答:揭示課題,質數和合數。
討論:質數、合數、奇數、偶數之間是這樣的關系呢?
(略)。
教學反思:
概念的教學往往是枯燥的,一般不是有教師和學生的重復不斷語言就是有很多的練習題訓練。而這一節課教學使學生感到特別興奮。
第一、在概念教學中,師生的這種融洽的、和諧的,而又不失激情的課堂氛圍感染了我。它一改概念教學的枯燥與乏味。讓學生在做中學,源于課本又超越了課本,學生用本冊剛剛學到的數據收集和整理的知識,來動手操作研究這一節課,使得學生的興趣一下子就被調動起來了。
第二、探究、合作、討論、自主學習是新課程標準的基本理念。在概念教學中如何實施這一理念是這一節課的特色,教學中教師通過自己對教材的理解,對學生的了解。精心設計了問題,巧妙地進行引導學生思考、討論探索、總結發現規律。學生通過異質的組合來討論、探究知識,促進相互的學習,提高合作的能力,這對學生一生的發展都的有用的。
第三、大數學觀是小學數學新課程標準的重要理念,這一片段的教學中不僅體現了小學數學知識的綜合性強的特點,而且真正的把數學知識的教學、動手能力、合作能力等人文素養的培養結合在一起。學生的異質組合討論、動手拼一拼、相互商議、個別爭論等都無不體現了教師先進的教育教學理念。
文檔為doc格式。
質數和合數教學設計人教版(優秀18篇)篇二
教學內容:九年義務教育五年制小學數學質數合數。
教學目標:1.培養學生自主探索、獨立思考、合作交流的能力。
2.培養學生敢于探索科學之謎的精神,充分展示數學自身的魅力。
3.理解質數和合數的概念,并能判斷一個數是質數還是合數,會把自然數按約數的個數進行分類。
教學過程:。
活動一:以新聞引入。
活動目的:創設情境,激發學生主動探索的欲望.
活動過程:。
出示:大于4的偶數總能寫成兩個奇素數之和。
師:誰來讀一下.著名的哥德巴赫猜想.生讀.
師:就這樣一句話呀。你讀懂了嗎?你讀懂什麼啦?
生:大于4的偶數能舉個例子嗎?6、8、10……。
奇數:什麼是奇數?
師:哦你們是這樣理解的.看來質數與約數有直接關系。你從那知道的?
教學反思:這樣的教學,使學生懸念頓生,興趣盎然,思維處于欲罷不能的憤悱狀態。此時教師巧妙地把握住時機,導入新課。這樣從新聞入手,激發了全體學生的興趣,使課堂氣氛頓時活躍起來.為本節課的順利實施提供了有效的條件。
活動目的:讓學生自己去經歷觀察、實驗、猜想、證明等數學活動的過程,發展合情推理能力,初步的演繹思維能力及解決問題的能力。
活動過程:。
1、認識質數。
師:看來你們對這個猜想已經初步理解了,我們能試著寫一個符合這個猜想的式子嗎。
生:8=3+53、5是奇數嗎?是質數嗎?
10=11+33、11是奇數嗎?是質數嗎?
14=7+7同意嗎?為什么?
師:都有興趣舉,拿出本來,看誰舉的多。
生:舉例。你舉了幾個.師把最多的式子板書黑板.
師:還有補充嗎?
師:我們按照自己對“哥德巴赫猜想”的理解寫出了這些式子,是否都符合這個猜想呢?
師:符號右邊都是奇數嗎?都是質數嗎?質數有什么共同特點?
生:除了1和它本身不再有其他約數的數叫質數。
師:能舉出一個質數嗎?5是質數,為什麼?17是質數,為什么?
師:都想舉拿出本舉看誰舉得多?四人交流一下。
師:生匯報。這些數都是質數,到底什么是質數。板書:質數。
2、認識合數。
師:9這個數為什么不是質數?我們把這樣的數叫什麼數。
生:合數,為什么?
師:誰能再舉一個合數。什么是合數?板書:合數.
3、今天我們學習了質數和合數.板書課題:質數合數有問題嗎?
出示:5、9為什么?
搶答:3、19、49、63、47、39、121、2、1、31、5730……。
師:2為什么是質數?1為什么不是質數也不是合數?
教學反思:教師在引導學生發現判斷質數、合數方法的過程中,自始至終都沒有以一個“裁判者”的身份出現,而是力求使自己成為學生學習的促進者、參與協商,鼓勵和監控學生的討論和練習過程,但不控制學生的討論結果。同時教師也把自己當作學習者,與學生一道共同完成學習任務。當時的課堂氣氛和諧、民主。收到了良好的效果。
活動三:學生自己選擇要研究的問題進行活動。
活動目的:教師要主動把課堂教學活動的主角位置讓給學生,把課堂教學活動的時間多分給學生使用,把課堂教學活動的內容多留給學生處理解決,教師做好組織、設計、指導或點撥,主導者要讓賢于主體者,采用這一教法,可讓學生認識“自我”,感受到“自我”的價值。愛因斯坦說過:“提出一個問題比解決一個問題更重要。”
活動過程:
1.你還想研究質數合數的那些知識?(學生提出很多)。
如:(1)找最大質數.
(2)如何判斷一個數是質數還是合數.
(3)自然數中是不是除了質數就是合數……。
2.請各小組選一個你們喜歡研究的問題,開始研究吧.
3.匯報研究成果.
教學反思:教師在課后設計了這樣一個環節,你還想研究質數、合數有關的那些知識。這一過程,教師充分讓位還權,放手讓學生去探究,留足學生探究的時間與空間,關注有差異的學生去發現,去完成自己的學習目標,使每個學生都積極參與“做”數學,能在課上研究的問題就在課上處理,留下的問題讓學生向家長、老師、書籍、網絡……學習,這樣設計已經不只局限于使學生理解、掌握知識,更多關注的是培養學生探究知識能力,著眼學生的可持續發展。體現出學生學習的主體參與意識,此環節的處理,雖然耽誤了一些時間,但我想還是值得的.教師應以學生為本,而不應以備好的教案為本.
活動四:回到開頭。
活動目的:教師本著以人的發展為本的教學理念,著眼于學生的可持續發展.
活動過程:。
1.我們學習了質數和合數,對于哥德巴赫猜想中的奇素數你是怎么理解的?點擊課件出示:大于4的偶數總能寫成兩個奇素數之和。
師:是不是所有一個盡可能大的偶數總能寫成兩個奇素數之和呢?能證明嗎?
師:雖然我們現在還不能證明?但是通過這節課我們對哥德巴赫猜想的理解和我們之間的交流。你們是不是已經感受到了數學王國的神秘。
2.著名科學家牛頓曾說過這樣一句話:我之所以取得今天的成績,是因為我站在巨人肩膀上的緣故。同學們其實你們已經站在巨人肩膀上研究問題啦。這使我堅信,在不久的將來,在座的各位通過不懈的努力,將來肯定會有人摘下這顆數學王冠上的明珠,解開“哥德巴赫猜想。
教學反思:當時學生舉手非常踴躍,表現出一種探索的欲望,敢于探索科學之謎的精神,充分展示出了數學自身的魅力。
六、板書:略。
教學反思:。
1.創設情境是落實新課程標準的重要措施。
新課程標準就數學學習方式提出如下建議:數學教學應“從學生的生活經驗和已有知識背景出發,想他們提供充分的從事數學活動和交流的機會,促使他們在自主探索的過程中真正理解和掌握基本的數學知識技能,數學思想和方法,同時獲得廣泛的數學活動經驗。”
有人說:“你拉來一批馬給它喝水,不如讓他感到口渴。”在講“質數、合數”這節課時。我沿著新課程標準的理念設計安排了這樣的導入:“教師敘述,3月20日北京日報第九版有這樣的報道:英美兩家出版社懸賞100萬美元,限期兩年求證歌德巴赫猜想之解,截稿日期就是今天。”……隨著上述情境的不斷展開,學生懸念頓生,興趣盎然,思維處于欲罷不能的憤悱狀態。此時教師巧妙地把握住時機,導入新課。這樣從新聞入手,讓學生感到口渴,學的知識有用,同時也感受到了數學自身的魅力。對數學隨之充滿了無限的興趣,為本節課的順利實施提供了有效的'條件。
2.教師的鼓勵為學生體驗成功搭設了舞臺。
成功與快樂是學習的一種巨大的情緒力量,教師不失時機的積極鼓勵,能使學生產生學好數學的強烈欲望.因此,教師要對學生任何成功的言行都要給予及時、明確和積極的強化。如微笑、點頭、重復和闡述學生的正確答案。至于學生的一些錯誤反應,應該鼓勵學生繼續努力。可以對學生說:“有進步,誰能再補充一下?”在講“質數、合數”這節課,教師在引導學生發現判斷質數、合數方法的過程中,自始至終都沒有以一個“裁判者”的身份出現,而是力求使自己成為學生學習的促進者、參與協商,鼓勵和監控學生的討論和練習過程,但不控制學生的討論結果。同時教師也把自己當作學習者,與學生一道共同完成學習任務。如:“你們的例子都舉對了嗎?同桌互相檢查一下,你們聽明白他的意思了嗎?誰愿意再給大家說一遍?就用他的方法試一試?等,看似簡簡單單的幾句話,教學民主卻隨處可見。”又如“在學生看過歌德巴赫猜想內容后,教師問你懂嗎?學生說“我知道素數”教師及時評價:你還知道素數那,真了不起。你從哪知道的?學生說書上看的。教師評價:從你的言談舉止就看出了你是個愛讀書的學者。等等。由于采用了新課程標準的理念,讓學生充分體驗了成功的喜悅。
3.學生的體驗為探索與創造提供了可持續性發展的條件。
愛因斯坦說過:“提出一個問題比解決一個問題更重要。”在教學“質數、合數”這節課時,教師在課后設計了這樣一個環節,你還想研究質數、合數有關的那些知識。這一過程,教師充分放手讓學生去探究,留足學生探究的時間與空間,關注有差異的學生去發現,去完成自己的學習目標,使每個學生都積極參與“做”數學,能再課上研究的問題就在課上處理,留下的問題讓學生向家長、老師、書籍、網絡……學習,這樣設計已經不只局限于使學生理解、掌握知識,更多關注的是培養學生探究知識能力,著眼學生的可持續發展。在這一過程中,當學生碰到困難時,教師是啟發者,當學生迷路時,教師是指導者,當學生獲得成功時,教師則是鼓勵者。由于學生在數學活動中獲得了成功的體驗,有機會接觸、了解、鉆研自己感興趣的數學問題,最大限度的滿足了每一個學生數學學習的需要,讓不同的人在數學上得到了不同的發展。
本節課中我本著以人的發展為本的教學理念,著眼于學生的可持續發展,注重教學目標的多元化,在價值目標取向上不僅僅局限于學生獲得一般的解決知識技能,更重要的是讓學生在數學學習過程中感受到數學自身的魅力,獲得數學的基本思想,了解數學的價值,體驗問題解決的過程。
質數和合數教學設計人教版(優秀18篇)篇三
教學目標:
(1)經歷“求因數—找規律—探究歸納—應用”等數學活動,發現并掌握質數和合數的特征,并能運用其特征判別質數和合數。
(2)在參與探索的過程中,培養觀察、比較、分析、概括、推理能力,初步滲透分類歸納的數學方法和數學思想。
(3)體驗數學“再創造”的樂趣,培養學生的數學意識和數學品質。
學法指導:幫助學生在觀察,思考中發現和體會。
教學準備:電子白板?多媒體課件教具。
課前預習準備:課前布置學生閱讀課本,熟悉學習內容。
教學過程:
活動一:復習因數與倍數相關知識。
提問:什么是因數和倍數?怎么找出一個數的所有因數?
交流自己的方法。
【設計意圖】引導學生回憶因數和倍數的意義,同時為學習質數與合數進行有效鋪墊。
全班分組探討并寫出1~20各數的因數。
1.觀察各數因數的個數的特點。
2.根據因數個數可以把這些數字分成幾類?
3.師概括:只有1和它本身兩個因數,這樣的的數叫做質數。除了1和它本身還有別的因數,這們的數叫做合數。
先小組交流,再請小組合作到講臺上給大家講解分類方法及依據。
【設計意圖】引導學生通過實際操作尋找1~20每個數字因數個數的不同,理解了質數與合數概念的不同。明白1既不是質數也不是合數。
活動三:尋找100以內所有質數。
1小組探究100以內的質數。
2匯報100以內的質數,說說不同的方法。
匯報時讓學生充分說說劃掉數的方法。
[設計意圖]學生通過所學概念,選擇自己喜歡的方法找出100以內的質數,學生逐步體會到了數學知識形成的過程,也獲得了積極的情感體驗。
活動四:自然數的分類。
1。想一想。
2。說一說。
注意兩種分類方法的依據不同,所以分類不一樣。
【設計意圖】學生已經學習了奇數、偶數、質數、合數等概念,有些概念學生容易混淆,如學生往往把質數和奇數、合數和偶數混同起來,因此通過此項活動幫助學生辨析這些概念。
相關練習:
1p16頁1,2。
2?練習:(1)有的奇數都是質數嗎?(2)所有的偶數都是合數嗎?
3?思維訓練。
有兩個質數,它們的和是小于100的奇數,并且是17的倍數。求這兩個數。
2課堂小結。
這節課你學會了什么?
板書設計。
質數和合數教學設計人教版(優秀18篇)篇四
教學目標:
使學生理解質數與合數的餓意義,掌握判斷質數合數的方法,
教學過程:
一、復習。
約數的概念,找約數的方法。
二、引入新課。
例1寫出下面每一個自然數的全部約數,在根據約數的個數,把這些自然數進行分類。
自然數約數。
11。
21、2。
51、5。
91、3、9。
111、11。
121、2、3、4、6、12。
171、17。
201、2、4、5、10、20。
381、2、19、38。
451、3、5、9、15、45。
(1)找約數。
(2)按照約數的多少進行分類?
(3)討論:1是什么數?
最小的質數是幾?
最小的合數是幾?
三、鞏固練習。
1、練一練。
第一題,練習判斷一個數是質數還是合數。
分析:怎樣去判斷一個自然數是質數還是合數。
2、試一試。
第三題判斷下面各題,正確的在括號里打對,不正確的打錯。
四、總結歸納。
五、布置作業。
質數和合數教學設計人教版(優秀18篇)篇五
一、復習。
約數的概念,找約數的方法。
二、引入新課。
例1寫出下面每一個自然數的全部約數,在根據約數的個數,把這些自然數進行分類。
自然數約數。
11。
21、2。
51、5。
91、3、9。
111、11。
121、2、3、4、6、12。
171、17。
201、2、4、5、10、20。
381、2、19、38。
451、3、5、9、15、45。
(1)找約數。
(2)按照約數的多少進行分類?
(3)討論:1是什么數?
最小的質數是幾?
最小的合數是幾?
三、鞏固練習。
1、練一練。
第一題,練習判斷一個數是質數還是合數。
分析:怎樣去判斷一個自然數是質數還是合數。
2、試一試。
第三題判斷下面各題,正確的在括號里打對,不正確的打錯。
四、總結歸納。
1、使學生弄清奇數與質數,偶數與合數是不同的概念。
五、布置作業。
反思:對于本節課的知識學生還好理解,但當把自然數的另一個分類混合的時候學生的概念就出現了混亂。所以我們的教學不能光著眼于學生會不會做這些題目,而是應該真正的了解把自然數分成1、質數、合數的理由是什么。并懂的與偶數、奇數的分類是不同的理由,也就是兩個不能相等的概念。并滲透一種交叉的概念。
質數和合數教學設計人教版(優秀18篇)篇六
教學內容:
教學目標:
2、培養學生細心觀察、全面概括、準確判斷、自主探索、獨立思考、合作交流的`能力。
教學重點:
能準確判斷一個數是質數還是合數、
教學難點:
找出100以內的質數、
教學過程:
一、復習導入(加深前面知識的理解,為新知作鋪墊)。
下面各數誰是誰的因數,誰是誰的倍數,誰是偶數,誰是奇數。
3和15,4和24,49和7,91和13(指名回答。)。
全班分兩組探討并寫出1——20各數的因數。
1、觀察各數因數的個數的特點。
2、填寫表格。
只有一個因數。
只有1和它本身兩個因數。
除了1和它本身還有別的因數。
3、師概括:只有1和它本身兩個因數,這樣的的數叫做質數。除了1和它本身還有別的因數,這樣的數叫做合數。(板書:質數和合數)。
4、舉例。
你能舉一些質數的例子嗎?
你能舉一些合數的例子嗎?
6、探究“1”是質數還是合數。
剛才我們說了還有一類就是只有一個因數的。想一想:只有一個因數的數除了1還有其它的數嗎?(沒有了)1是質數嗎?為什么?是合數嗎?為什么?(不是,因為它既不符合質數的特點,也不符合合數的特點。)。
引導學生明確:1既不是質數也不是合數。
7、小練習:自然數中除了質數就是合數嗎?
三、給自然數分類。
1、想一想。
生:質數,合數,0。
2、說一說。
知道了什么是質數,什么是合數,那么判斷一個數是質數還是合數,關鍵是看什么?
引導學生明確:關鍵看因數的個數,一個數如果只有1和它本身兩個因數,這個數就是質數;如果有兩個以上因數,這個數就是合數。
四、師生學習教材24頁的例1。
老師:除了用找因數的方法判斷一個數是質數還是合數,還可以用查質數表的方法。
1、師引導學生找出30以內的質數。
提問:這些數里有質數、合數和1,現在要保留30以內的質數,其他的數應該怎么辦?(先劃去1)再劃去什么?(再劃去2以外的偶數)最后劃去什么?(最后劃去3、5的倍數,但3、5本身不劃去)剩下的都是什么數?(剩下的就是30以內的質數。)。
(特殊記憶20以內的質數,因為它常用。)。
2、小組探究100以內的質數。
3、匯報100以內的質數。師生共同整理100以內的質數表。
4、應用100以內質數表:
5、小練習:
(1)所有的奇數都是質數嗎?
(2)所有的偶數都是合數嗎?
五、思維訓練。
有兩個質數,它們的和是小于100的奇數,并且是17的倍數,求這兩個數。
六、課堂小結。
質數和合數教學設計人教版(優秀18篇)篇七
教學目標:
1、掌握質數和合數的概念,并知道它們之間的聯系和區別。
2、能夠判斷一個數是質數還是合數。
教學重難點:質數和合數的概念。根據概念判斷一個數是質數還是合數。
教學準備:教學課件。
教學互動過程:
一、創設情景,引入課題。
1、簡單回顧因數和倍數的知識。
2、讓學生列出1―20各數的因數,小組比一比,看誰列得快。
3、請同學們觀察自己列出的這些數的因數,看看它們因數的個數有什么特點。(小組合作探究、討論、匯報)。
4、讓學生按照匯報情況把這些數進行分類。
5、引出質數和合數的概念:因數只有1和它本身的數叫質數(也叫素數);除1和它本身以外,還有其他因數的數叫合數。(同時板書)。
明確質數和合數的概念,結合剛才的分類進行初步理解。
1、在剛才的分類中,1好象沒有被分到哪一類,那么1是質數還是合數呢?
學生獨立思考,根據概念判斷,踴躍匯報。
3、組織學生做“我說你判斷”的游戲,同桌之間互相說出一個數,請對方根據概念判斷其為質數還是合數。
4、我們已經找出了10以內的質數,那么,大家能找出100以內的質數嗎?
小組討論找100以內的質數的方法,根據找10以內的質數的方法找,發現用這種方法找太慢。
5、對,逐個判斷比較麻煩,是否有什么方法可以很快地找出來?用排除法可以嗎?
6、下面同學們就用排除法來找一找100以內的質數。
小組討論,合作探究,商討尋找質數的方案。
7、同學們的方案真是嚴密呀,一個都不漏掉。現在同學們把課本24頁表格中的自然數用排除法找出質數吧。
按照小組討論的方案依次劃掉不是質數的數,完整劃出100以內自然數中的質數。
三、閱讀材料,知識拓展,進行課堂練習。
1、讓學生閱讀教材第24頁閱讀材料“分解質因數”,了解如何對一個數分解質因數。
學生閱讀材料,明確質因數的概念,知道如何對一個數進行分解質因數:把一個合數分解成幾個質數的積。
2、說出幾個合數,讓學生對這幾個數進行分解質因數:36、42、144、228。
3、讓學生做練習四第1、2、3、題。
(教師巡視,了解學生對知識的掌握情況,個別指導。)。
四、總結。
組織學生說說這節課學到了哪些知識,以及有些什么收獲。
質數和合數教學設計人教版(優秀18篇)篇八
1.使學生理解質數和合數的概念,能正確地判斷一個數是質數還是合數。
2.培養學生觀察、比較、抽象、慨括的能力。
3.培養學生自主探究的精神和獨立思考的能力。
教學難點:正確區分質數、合數。
教學過程:
課前談話:
給教室里的人分類。體會:同樣的事物,依據不問的分類標準,可以有多種小*的分類方法。明確:分類的際準很重要。
一、復習舊知。
說一說,在我們學習的空間,你可以得到那些數?(要求與同學說的盡也不重復)。
給這些自然數分類。根據自然數能不能被2整除,可以分成奇數和偶數兩類。
板書對應的集合圖。
自然數。
(能不能被2整除)。
把學生列舉的數填寫在對應的集合圈里。
問:看了集合圖,你想說什么么?(學生看圖說自己的想法,復習奇數和偶數的有關知識)。
說明:這是一種有價值的分類方法,在以后的學習中很有用。
問:想不想學一種新的分類方法?關于新的分類方法,你想知道些什么?
二、進行新課。
今天我們就用找質數的方法來給自然數分類。
復習:什么叫因數?怎樣找一個數所有的因數?
同桌合作.找出列舉的各數的所有的因數。(同時板演)。
引導學生觀察:觀察以上各數所含的數的個數,你能把它們分成幾種情況!
根據學生的回答板書。
自然數。
(因數的個數)。
(只有兩個因數)(有3個或3個以上的約數)。
引導學生思考:只含有兩個因數的,這兩個因數有什么特點?引出質數的概念。
明確:這是一種新的分類方法。看廠集合圈,你想說什么?(學生看圖說自己的想法,鞏固寺數陽臺數的知識)。
猜一猜:奇數有多少個?合數呢?
明確:因為自然數的個數是無限的,所以,奇數,偶數的個數也是無限的。運用新知,解決問題。
出示例1下面各數,哪些是質數?哪些是合數?
1528315377891ll。
學生獨立完成。
明確:可以找出每個數所有的因數,再根據質數和合數的意義來判斷;一個數,只有找到1和它本身以外的第三個約束,就能判斷這個數是合數還是質數。不必找出所有的因數來,這樣可以提高判斷的效率。
說明:判斷一個數是不是質數還可以查表。100以內的質數比較常用,看書本上的100以內的質數表。用質數表檢查對例子1的判斷是否正確。
完成練一練。
三、練習鞏固。
1、堅持下面各數的因數的個數,指出哪些是質數哪些是合數,再用質數表檢查。
22293549517983。
2、出示2到50的數。先劃掉2的倍數,再依次劃掉3、5、7的倍數(但2、3、5、7本身不劃掉。)。
學生操作后,提問:剩下的都是什么數?
告訴學生:古代的數學家就是用這樣的方法來找質數的。
四、全課總結。
學到這里,一種新的分類方法,你掌握了嗎?學生回答:揭示課題,質數和合數。
討論:質數、合數、奇數、偶數之間是這樣的關系呢?
五、布置作業(略)。
分析:
教學反思:
概念的教學往往是枯燥的,一般不是有教師和學生的重復不斷語言就是有很多的練習題訓練。而這一節課教學使學生感到特別興奮。
第一、在概念教學中,師生的這種融洽的、和諧的,而又不失激情的課堂氛圍感染了我。它一改概念教學的枯燥與乏味。讓學生在做中學,源于課本又超越了課本,學生用本冊剛剛學到的數據收集和整理的'知識,來動手操作研究這一節課,使得學生的興趣一下子就被調動起來了。
第二、探究、合作、討論、自主學習是新課程標準的基本理念。在概念教學中如何實施這一理念是這一節課的特色,教學中教師通過自己對教材的理解,對學生的了解。精心設計了問題,巧妙地進行引導學生思考、討論探索、總結發現規律。學生通過異質的組合來討論、探究知識,促進相互的學習,提高合作的能力,這對學生一生的發展都的有用的。
第三、大數學觀是小學數學新課程標準的重要理念,這一片段的教學中不僅體現了小學數學知識的綜合性強的特點,而且真正的把數學知識的教學、動手能力、合作能力等人文素養的培養結合在一起。學生的異質組合討論、動手拼一拼、相互商議、個別爭論等都無不體現了教師先進的教育教學理念。
將本文的word文檔下載到電腦,方便收藏和打印。
質數和合數教學設計人教版(優秀18篇)篇九
復習質數、合數的特征并利用質數和合數的知識點,把質數和合數知識大膽運用到正方體拼組圖形中。
1、復習質數、合數的特征、復習長方體、正方體的特征。
2、利用質數和合數的知識點,把質數和合數知識大膽運用到小正方體拼組圖形中。引導學生歸納出:小正方體的個數是質數個時,只能拼成一種長方體,而小正方體是合數個時,哪種表面積最大或最小。
3、培養學生的邏輯思維能力與空間想象能力。
如何把質數和合數的知識運用到拼組圖形中,并能歸納出合數個小正方體拼組成的圖形,誰的表面積的大、誰的表面積小。
1、每人20個小正方體。
2、題卡每個小組兩張。。
創設問題:
1、師:比一比:老師寫出1至20,你們說出1至20,看看誰最快?
課件1出示:1、2、3、4、5、6、7、8、9、10、
11、12、13、14、15、16、17、18、19、20…。.
(課堂上,我班學生感覺到不太可思議,太簡單了,于是高高興興的在本子上認真書寫,寫好后還再高興中我就提出新的問題!)。
2、在我們的生活中,你知道這些數的用途嗎?
(當時,課堂氣氛相當活躍,學生七嘴八舌說出許多這些數在生活中的用途。即數學問題的“生活化”,讓數學教學內容向學生的生活實際延伸,讓生活中的數學問題進入數學教學,使學生感受到課堂上學習的數學知識來源于生活,而又運用于生活中。)。
3、問題情境:你能用本學期的知識給這些數分分類嗎?
學生很快就把這1至20分好了類:
(1)是不是2的倍數來分:
奇數:1、3、5、7、9、11、13、15、17、19。
偶數:2、4、6、8、10、12、14、16、18、20。
(2)按約數的個數分:
既不是質數也不是合數的(只有一個約數):1。
質數(兩個約數):2、3、5、7、11、13、17、19。
合數(三個約數):4、6、8、9、10、12、14、15、16、18、20。
4、讓學生給1至20說出它們的因數:
找出質數的所有因數:
2的因數:1、2。
3的因數:1、3。
5的因數:1、5。
7的因數:1、7。
11的因數:1、11。
13的因數:1、13。
17的因數:1、17。
19的因數:1、19。
小結:質數的因數只有1和它本身。
找出合數的所有因數:
4的因數:1、2、4。
6的因數:1、2、3、6。
8的因數:1、2、4、8。
9的因數:1、3、9。
10的因數:1、2、5、10。
12的因數:1、2、3、4、6、12。
14的因數:1、2、7、14。
15的因數:1、3、5、15。
16的因數:1、2、4、8、16。
18的因數:1、2、3、6、9、18。
20的因數:1、2、4、5、10、20。
小結:合數的因數除了1和它本身以外,還有其他的因數。
5、復習長方體與正方體的相關知識點。
(1)讓學生回憶長方體與正方體的知識。
長方體:6個面,面積完全相同;8個頂點;12條棱,相對的棱的長度相等。
正方體:6個面,相對的`面面積完全相同8個頂點;12條棱,長度都相等。
1、問題情境。
學生用練習本完成。
(1)12×1×4+1×1×2=50(平方厘米)。
(2)6×2×2+6×1×2+2×1×2=40(平方厘米)。
看著學生的答題,我試問學生,還有沒有算出與這兩位同學不一樣的表面積?
學生一口同聲的回答:沒有!
2、分析與探究。
師:那我們一起用小正方體來拼一拼,算一算!
課件出示:12×1×4+1×1×2=50(平方厘米)。
6×2×2+6×1×2+2×1×2=40。
4×3×2+4×1×2+3×1×2=383×2×4+2×2×2=32。
教師小結:通過比較發現,12個小正方體可以拼成四種不同的長方體,體積一樣,但表面積各不相同。
3、帶問題合作探究。
師:下面我們分小組合作交流,我給每個同學20個大小一樣的正方體,看看你能拼出哪些不同的長方體。并以五人小組合作記錄在下面的表格,小組合作,并填寫下表:
質數和合數教學設計人教版(優秀18篇)篇十
教學過程:
一、創設情境,引入課題。
我們已經學習了求一個數的因數的方法,你能正確求出1——20各數的因數嗎?
小組比一比,看誰列得快。教師指名匯報。
二、動手操作,制質數表。
(1)找因數。
觀察這些數的因數,如果按因數的個數,你認為可以怎樣分類?
動手給20以內的數按因數的個數進行分類,填書p23。
觀察黑板上的三類數各有什么特點?
師:只有1和它本身兩個因數的數叫做質數(或素數),除了1和它本身還有別的因數的數叫做合數。
結合1——20各數,解釋一下什么是質數?什么是合數?[板書概念]。
問:最小的質數是幾?最小的合數是幾?
1是質數,還是合數呢?[板書:1既不是質數,也不是合數]。
如果把整數按自然數的個數來分類,可以分為幾類?哪幾類?再次強調:1既不是質數,也不是合數。
要判斷一個數是質數還是合數,關鍵是看什么?
你的學號是質數,還是合數?與同桌說一說,并互相判斷對錯。
p23做一做。獨立練習,全班交流檢查。
(2)找質數。
剛才我們已經找出了20以內的質數,那“73”它是不是質數。
要想馬上知道73是什么數還真不容易。如果有質數表可查就方便了。這表從哪來呢?
(教師出示百以內數表)這上面是1到100這100個數,它不是質數表,你們能不能想辦法找出100以內的質數,制成質數表?誰來說說自己的想法?(讓學生充分發表自己的想法。)。
師:對,逐個判斷比較麻煩,是否有什么方法可以很快地找出來?用排除法可以嗎?
因為質數只有1和它本身兩個因數,那么質數的倍數就都是合數,只要在數字表上依次劃出質數的倍數,剩下的就是質數了。
學生根據教師的指導,在教材第24頁用排除法動手制作100以內的質數表,然后再在全班交流。
一起把100以內的質數讀一讀。
附:100以內質數順口溜。
二、三、五、七、一十一。
十三、十七、一十九。
二三九、三一七。
五三九、六一七。
四一三七、七一三九。
八三、八九、九十七。
三、練習鞏固:
完成練習四第1、2題。
四、課題小結:
這節課你在激烈的討論中有什么收獲?
板書設計:
質數和合數教學設計人教版(優秀18篇)篇十一
教學目標:
1、掌握質數和合數的概念,并知道它們之間的聯系和區別。
2、能夠判斷一個數是質數還是合數。
教學重難點:質數和合數的概念。根據概念判斷一個數是質數還是合數。
教學準備:教學課件。
教學互動過程:
一、創設情景,引入課題。
1、簡單回顧因數和倍數的知識。
2、讓學生列出1—20各數的因數,小組比一比,看誰列得快。
3、請同學們觀察自己列出的這些數的因數,看看它們因數的個數有什么特點。(小組合作探究、討論、匯報)。
4、讓學生按照匯報情況把這些數進行分類。
5、引出質數和合數的概念:因數只有1和它本身的數叫質數(也叫素數);除1和它本身以外,還有其他因數的數叫合數。(同時板書)。
明確質數和合數的概念,結合剛才的分類進行初步理解。
1、在剛才的分類中,1好象沒有被分到哪一類,那么1是質數還是合數呢?
學生獨立思考,根據概念判斷,踴躍匯報。
3、組織學生做“我說你判斷”的游戲,同桌之間互相說出一個數,請對方根據概念判斷其為質數還是合數。
4、我們已經找出了10以內的質數,那么,大家能找出100以內的質數嗎?
小組討論找100以內的質數的方法,根據找10以內的質數的方法找,發現用這種方法找太慢。
5、對,逐個判斷比較麻煩,是否有什么方法可以很快地找出來?用排除法可以嗎?
6、下面同學們就用排除法來找一找100以內的質數。
小組討論,合作探究,商討尋找質數的方案。
7、同學們的方案真是嚴密呀,一個都不漏掉。現在同學們把課本24頁表格中的自然數用排除法找出質數吧。
按照小組討論的方案依次劃掉不是質數的數,完整劃出100以內自然數中的質數。
三、閱讀材料,知識拓展,進行課堂練習。
1、讓學生閱讀教材第24頁閱讀材料“分解質因數”,了解如何對一個數分解質因數。
學生閱讀材料,明確質因數的概念,知道如何對一個數進行分解質因數:把一個合數分解成幾個質數的積。
2、說出幾個合數,讓學生對這幾個數進行分解質因數:36、42、144、228。
3、讓學生做練習四第1、2、3、題。
(教師巡視,了解學生對知識的掌握情況,個別指導。)。
四、總結。
組織學生說說這節課學到了哪些知識,以及有些什么收獲。
板書設計:
因數只有1和它本身的數叫質數(也叫素數)。
除1和它本身以外,還有其他因數的數叫合數。
規定:1不是質數,也不是合數。
10以內的自然數:2、3、5、7是質數;4、6、8、9、10是合數。
質數和合數教學設計人教版(優秀18篇)篇十二
教學目標:
1、使學生理解質數、合數的意義,會判斷一個數是質數還是合數。
2、培養學生觀察、比較、概括和判斷能力。
3、通過質數與合數兩個概念的教學,向學生滲透“對立統一”的辯證唯物主義的觀點。
教學重點:理解質數和合數的意義。
教學難點:判斷一個數是質數還是合數的方法。
教學過程:
課前談話:
給教室里的人分類。體會:同樣的事物,依據不同的分類標準,可以有多種不同的分類方法。明確:分類的標準很重要。
一、復習舊知。
說一說,在我們學習的空間,你可以得到哪些數?(要求與同學說的盡量不重復)。
給這些自然數分類。根據自然數能不能被2整除,可以分成奇數和偶數兩類。
板書對應的集合圖。
自然數。
(能不能被2整除)。
把學生列舉的數填寫在對應的集合圈里。
問:看了集合圖,你想說什么么?(學生看圖說自己的想法,復習奇數和偶數的有關知識)。
說明:這是一種有價值的分類方法,在以后的學習中很有用。
問:想不想學一種新的分類方法?關于新的分類方法,你想知道些什么?
二、進行新課。
今天我們就用找約數的方法來給自然數分類。
復習:什么叫約數?怎樣找一個數所有的約數?
同桌合作,找出列舉的各數的所有的約數。(同時板演)。
引導學生觀察:觀察以上各數所含約數的個數,你能把它們分成幾種情況!
根據學生的回答板書。
自然數。
(約數的個數)。
(只有兩個約數)(有3個或3個以上的約數)。
引導學生思考:只含有兩個約數的,這兩個約數有什么特點?引出約數的概念。
明確:這是一種新的分類方法。看了集合圈,你想說什么?(學生看圖說自己的想法,鞏固奇數和合數的知識)。
猜一猜:奇數有多少個?合數呢?
明確:因為自然數的個數是無限的,所以,奇數和偶數的個數也是無限的。運用新知,解決問題。
出示例1下面各數,哪些是質數?哪些是合數?
152831537789111。
學生獨立完成。
問:你是怎么判斷的?
明確:可以找出每個數所有的約數,再根據質數和合數的意義來判斷;一個數,只有找到1和它本身以外的第三個約數,就能判斷這個數是合數還是質數。不必找出所有的約數來,這樣可以提高判斷的效率。
說明:判斷一個數是不是質數還可以查表。100以內的質數比較常用,看書本上的100以內的質數表。用質數表檢查對例1的判斷是否正確。
完成練一練。
三、練習鞏固。
1、檢查下面各數的約數的個數,指出哪些是質數哪些是合數,再用質數表檢查。
22293549517983。
2、出示2到50的數。先劃掉2的倍數,再依次劃掉3、5、7的倍數(但2、3、5、7本身不劃掉。)。
學生操作后,提問:剩下的都是什么數?
告訴學生:古代的數學家就是用這樣的方法來找質數的。
四、全課總結。
學到這里,一種新的分類方法,你掌握了嗎?學生回答;相機揭示課題,質數和合數。
討論:質數、合數、奇數、偶數之間是怎樣的關系呢?
五、布置作業(略)。
質數和合數教學設計人教版(優秀18篇)篇十三
教學內容:九年義務教育五年制小學數學質數合數。
教學目標?:1.培養學生自主探索、獨立思考、合作交流的能力。
2.培養學生敢于探索科學之謎的精神,充分展示數學自身的魅力。
3.理解質數和合數的概念,并能判斷一個數是質數還是合數,會把自然數按約數的個數進行分類。
教學過程?:。
活動一:以新聞引入。
活動目的:創設情境,激發學生主動探索的欲望.
活動過程?:。
出示:大于4的偶數總能寫成兩個奇素數之和。
師:誰來讀一下.著名的哥德巴赫猜想.生讀.
師:就這樣一句話呀。你讀懂了嗎?你讀懂什麼啦?
生:大于4的偶數能舉個例子嗎???????6、8、10……。
奇數:什麼是奇數????。
素數(質數):什么樣的數是質數?
師:哦你們是這樣理解的.看來質數與約數有直接關系。你從那知道的?
教學反思:這樣的教學,使學生懸念頓生,興趣盎然,思維處于欲罷不能的憤悱狀態。此時教師巧妙地把握住時機,導入??新課。這樣從新聞入手,激發了全體學生的興趣,使課堂氣氛頓時活躍起來.為本節課的順利實施提供了有效的條件。
活動目的:讓學生自己去經歷觀察、實驗、猜想、證明等數學活動的過程,發展合情推理能力,初步的演繹思維能力及解決問題的能力。
活動過程?:。
1、認識質數。
師:看來你們對這個猜想已經初步理解了,我們能試著寫一個符合這個猜想的式子嗎。
生:8=3+5??3、5是奇數嗎?是質數嗎?
10=11+3?3、11是奇數嗎?是質數嗎?
14=7+7?同意嗎?為什么?
師:都有興趣舉,拿出本來,看誰舉的多。
生:舉例。你舉了幾個.師把最多的式子板書黑板.
師:還有補充嗎?
師:符號右邊都是奇數嗎?都是質數嗎?質數有什么共同特點?
生:除了1和它本身不再有其他約數的數叫質數。
師:能舉出一個質數嗎?5是質數,為什麼?17是質數,為什么?
師:都想舉拿出本舉看誰舉得多?四人交流一下。
師:生匯報。這些數都是質數,到底什么是質數。板書:質數。
師:9這個數為什么不是質數?我們把這樣的數叫什麼數。
生:合數,為什么?
師:誰能再舉一個合數。什么是合數?板書:合數.
4、判斷數字卡片是質數還是合數?
出示:5、9為什么?
搶答:3、19、49、63、47、39、121、2、1、31、5730……。
師:2為什么是質數?1為什么不是質數也不是合數?
教學反思:教師在引導學生發現判斷質數、合數方法的過程中,自始至終都沒有以一個“裁判者”的身份出現,而是力求使自己成為學生學習的促進者、參與協商,鼓勵和監控學生的討論和練習過程,但不控制學生的討論結果。同時教師也把自己當作學習者,與學生一道共同完成學習任務。當時的課堂氣氛和諧、民主。收到了良好的效果。
活動三:學生自己選擇要研究的問題進行活動。
活動目的:教師要主動把課堂教學活動的主角位置讓給學生,把課堂教學活動的時間多分給學生使用,把課堂教學活動的內容多留給學生處理解決,教師做好組織、設計、指導或點撥,主導者要讓賢于主體者,采用這一教法,可讓學生認識“自我”,感受到“自我”的價值。愛因斯坦說過:“提出一個問題比解決一個問題更重要。”
活動過程?:
1.你還想研究質數合數的那些知識?(學生提出很多)。
如:(1)找最大質數.
(2)如何判斷一個數是質數還是合數.
(3)自然數中是不是除了質數就是合數……。
2.請各小組選一個你們喜歡研究的問題,開始研究吧.
3.匯報研究成果.
活動四:回到開頭。
活動目的:教師本著以人的發展為本的教學理念,著眼于學生的可持續發展.
活動過程?:。
1.我們學習了質數和合數,對于哥德巴赫猜想中的奇素數你是怎么理解的?點擊課件出示:大于4的偶數總能寫成兩個奇素數之和。
師:是不是所有一個盡可能大的偶數總能寫成兩個奇素數之和呢?能證明嗎?
師:雖然我們現在還不能證明?但是通過這節課我們對哥德巴赫猜想的理解和我們之間的交流。你們是不是已經感受到了數學王國的神秘。
2.著名科學家牛頓曾說過這樣一句話:我之所以取得今天的成績,是因為我站在巨人肩膀上的緣故。同學們其實你們已經站在巨人肩膀上研究問題啦。這使我堅信,在不久的將來,在座的各位通過不懈的努力,將來肯定會有人摘下這顆數學王冠上的明珠,解開“哥德巴赫猜想。
教學反思:當時學生舉手非常踴躍,表現出一種探索的欲望,敢于探索科學之謎的精神,充分展示出了數學自身的魅力。
六、板書:略。
教學反思:。
1.創設情境是落實新課程標準的重要措施。
新課程標準就數學學習方式提出如下建議:數學教學應“從學生的生活經驗和已有知識背景出發,想他們提供充分的從事數學活動和交流的機會,促使他們在自主探索的過程中真正理解和掌握基本的數學知識技能,數學思想和方法,同時獲得廣泛的數學活動經驗。”
有人說:“你拉來一批馬給它喝水,不如讓他感到口渴。”在講“質數、合數”這節課時。我沿著新課程標準的理念設計安排了這樣的導入??:“教師敘述,2002年3月20日北京日報第九版有這樣的報道:英美兩家出版社懸賞100萬美元,限期兩年求證歌德巴赫猜想之解,截稿日期就是今天。”……隨著上述情境的不斷展開,學生懸念頓生,興趣盎然,思維處于欲罷不能的憤悱狀態。此時教師巧妙地把握住時機,導入??新課。這樣從新聞入手,讓學生感到口渴,學的知識有用,同時也感受到了數學自身的魅力。對數學隨之充滿了無限的興趣,為本節課的順利實施提供了有效的條件。
2.教師的鼓勵為學生體驗成功搭設了舞臺。
成功與快樂是學習的一種巨大的情緒力量,教師不失時機的積極鼓勵,能使學生產生學好數學的強烈欲望.因此,教師要對學生任何成功的言行都要給予及時、明確和積極的強化。如微笑、點頭、重復和闡述學生的正確答案。至于學生的一些錯誤反應,應該鼓勵學生繼續努力。可以對學生說:“有進步,誰能再補充一下?”在講“質數、合數”這節課,教師在引導學生發現判斷質數、合數方法的過程中,自始至終都沒有以一個“裁判者”的身份出現,而是力求使自己成為學生學習的促進者、參與協商,鼓勵和監控學生的討論和練習過程,但不控制學生的討論結果。同時教師也把自己當作學習者,與學生一道共同完成學習任務。如:“你們的例子都舉對了嗎?同桌互相檢查一下,你們聽明白他的意思了嗎?誰愿意再給大家說一遍?就用他的方法試一試?等,看似簡簡單單的幾句話,教學民主卻隨處可見。”又如“在學生看過歌德巴赫猜想內容后,教師問你懂嗎?學生說“我知道素數”教師及時評價:你還知道素數那,真了不起。你從哪知道的?學生說書上看的。教師評價:從你的言談舉止就看出了你是個愛讀書的學者。等等。由于采用了新課程標準的理念,讓學生充分體驗了成功的喜悅。
3.學生的體驗為探索與創造提供了可持續性發展的條件。
愛因斯坦說過:“提出一個問題比解決一個問題更重要。”在教學“質數、合數”這節課時,教師在課后設計了這樣一個環節,你還想研究質數、合數有關的那些知識。這一過程,教師充分放手讓學生去探究,留足學生探究的時間與空間,關注有差異的學生去發現,去完成自己的學習目標,使每個學生都積極參與“做”數學,能再課上研究的問題就在課上處理,留下的問題讓學生向家長、老師、書籍、網絡……學習,這樣設計已經不只局限于使學生理解、掌握知識,更多關注的是培養學生探究知識能力,著眼學生的可持續發展。在這一過程中,當學生碰到困難時,教師是啟發者,當學生迷路時,教師是指導者,當學生獲得成功時,教師則是鼓勵者。由于學生在數學活動中獲得了成功的體驗,有機會接觸、了解、鉆研自己感興趣的數學問題,最大限度的滿足了每一個學生數學學習的需要,讓不同的人在數學上得到了不同的發展。
本節課中我本著以人的發展為本的教學理念,著眼于學生的可持續發展,注重教學目標?的多元化,在價值目標取向上不僅僅局限于學生獲得一般的解決知識技能,更重要的是讓學生在數學學習過程中感受到數學自身的魅力,獲得數學的基本思想,了解數學的價值,體驗問題解決的過程。
質數和合數教學設計人教版(優秀18篇)篇十四
一、教學內容:
二、數學目標。
2.會用質數表判斷一個大于1的自然數是質數還是合數,熟記20以內的全部質數。
3.知道1既不是質數,也不是合數。
4.知道自然數按因數的個數分類可以分為質數、合數和1.
三、教學重難點:
1.掌握質數。合數的概念。
2.正確地判斷一個數是質數還是合數。
四、教學方法:
觀察發現、啟發。
五、教學過程:
(一)復習舊知。
1.找出1~20奇數,偶數。
奇數:135791113151719。
偶數:2468101214161820。
2.分類:
提問:自然數可以分為哪兩類?是按照什么標準分的?(2的倍數分的)。
(二)探究新知。
a:1.導入課題:
自然數可以按照能被2整除分為奇數,偶數兩類。那么自然數還有沒有其他的分法。今天這節課,我們就一起來研究“質數與合數”
2.提問:
看了這一課題后,你們想通過這節課的學習學會些什么內容呢?
歸納問題(板書)。
1)怎樣的數叫質數,怎樣的數叫合數?
2)自然數除了質數、合數外還有哪一類?
3)用什么方法判斷一個數是質數還是合數?
b.學習質數,合數。
1.寫出1~20各數的因數。
數字。
因數。
個數。
數字。
因數。
個數。
1
1
1
11。
1、11。
2
2
1、2。
2
12。
1、2、3、4、6、12。
6
3
1、3。
2
13。
1、13。
2
4
1、2、4。
3
14。
1、2、7、14。
4
5
1、5。
2
15。
1、3、5、15。
4
6
1、2、3、6。
4
16。
1、2、4、8、16、
5
7
1、7。
2
17。
1、17。
2
8
1、2、4、8。
4
18。
1、2、3、6、9、18。
6
9
1、3、9。
3
19。
1、19。
2
10。
1、2、5、10。
4
20。
1、2、4、5、10、20。
6
2、觀察思考。
這些數的因數的個數不一樣多,你能把這些數按因數的個數進行分類嗎?
學生討論,分類。
3、學生完成表格。
4、觀察比較,歸納概念。
(1)觀察2.,3,5,7,11,13,17,19這幾個數的因數有什么特點?
(每個數的因數只有1和它本身二個)像這樣數叫做質數。
質數概念:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數)。
除了有1和它本身這兩個因數還有其他的因數。
合數概念:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。
5、探究1是質數?是合數?
想一想:只有一個因數的數除了1還有其他的數嗎?
1是質數嗎?為什么?是合數嗎?為什么?
都不是,因為它既不符合質數的特點,也不符合合數的特點。
c、給自然數分類。
(1)按照是不是2的倍數,可以把自然數分為奇數和偶數。
如果按照因數個數的多少,自然數又可以分為哪幾類?
(2)判斷。
2)。做一做。《書》p23.
判斷下列各數中哪些是質數,哪些是合數。
1722293537879396。
提問:你是怎么判斷的,又正確又快?是不是要把這個數的所有因數都查完?
只要看這個數除了1和它本身還有沒有別的因數,就可以了。
d、教學例1。
1.找質數方法。(20以內質數)。
應用剛才的方法說說20以內自然數中有哪些質數?
(1)找質數。
(2)熟記20以內的質數(2,3,5,7,11,13,17,19,)。
1不是質數,也不是和合數,其余都是和數。
(3)你還有什么發現?
奇數中質數多,偶數中只有一個質數2。
提問:為什么偶數中只有一個質數2呢?
因為偶數都是2的倍數,除2外,其他偶數都有因數2,都是合數。那3的倍數呢?5的倍數呢?7的倍數呢?。。。。
2.探究例1。
1)討論方法:師:用什么方法來找,可以做到又快又準確?
2)學生討論。
3)交流。
4)匯報。
5)出示質數表。
先去掉1。
除2外所有偶數。
除3外3的倍數。
除5外5的倍數。
除7外7的倍數。
2,3,5,7,11,13,17,19,23,29,31,37,41,43,。
47,53,59,61,67,71,79,83,89,91,97,。
(三)、鞏固練習。(p25.1.2.)。
下面的說法還正確嗎?說說你叫的理由。
(1)所有的奇數都是質數。()。
(2)所有的偶數都是合數。()。
(3)在1,2,3,4,5,…中,除了質數以外都是合數。()。
(4)兩個質數的和是偶數。(2+3=5)()。
(四)、課堂小結:
(五)、作業設計:
六、板書設計:
只有1和它本身的兩個因數質數(或素數)。
除了1和它本身還有別的因數合數。
自然數1不是質數,也不是合數。
自然數按照因數的個數可分為:1質數合數。
質數和合數教學設計人教版(優秀18篇)篇十五
1、掌握質數和合數的概念,并知道它們之間的聯系和區別。
2、能夠判斷一個數是質數還是合數。
質數和合數的概念。根據概念判斷一個數是質數還是合數。
教學課件。
一、創設情景,引入課題。
1、簡單回顧因數和倍數的知識。
2、讓學生列出1—20各數的因數,小組比一比,看誰列得快。
3、請同學們觀察自己列出的這些數的因數,看看它們因數的個數有什么特點。(小組合作探究、討論、匯報)。
4、讓學生按照匯報情況把這些數進行分類。
5、引出質數和合數的概念:因數只有1和它本身的數叫質數(也叫素數);除1和它本身以外,還有其他因數的數叫合數。(同時板書)。
明確質數和合數的概念,結合剛才的分類進行初步理解。
1、在剛才的分類中,1好象沒有被分到哪一類,那么1是質數還是合數呢?
學生獨立思考,根據概念判斷,踴躍匯報。
3、組織學生做“我說你判斷”的游戲,同桌之間互相說出一個數,請對方根據概念判斷其為質數還是合數。
4、我們已經找出了10以內的質數,那么,大家能找出100以內的質數嗎?
小組討論找100以內的質數的方法,根據找10以內的質數的方法找,發現用這種方法找太慢。
5、對,逐個判斷比較麻煩,是否有什么方法可以很快地找出來?用排除法可以嗎?
6、下面同學們就用排除法來找一找100以內的質數。
小組討論,合作探究,商討尋找質數的方案。
7、同學們的方案真是嚴密呀,一個都不漏掉。現在同學們把課本24頁表格中的自然數用排除法找出質數吧。
按照小組討論的方案依次劃掉不是質數的數,完整劃出100以內自然數中的質數。
三、閱讀材料,知識拓展,進行課堂練習。
1、讓學生閱讀教材第24頁閱讀材料“分解質因數”,了解如何對一個數分解質因數。
學生閱讀材料,明確質因數的概念,知道如何對一個數進行分解質因數:把一個合數分解成幾個質數的積。
2、說出幾個合數,讓學生對這幾個數進行分解質因數:36、42、144、228。
3、讓學生做練習四第1、2、3、題。
(教師巡視,了解學生對知識的掌握情況,個別指導。)。
四、總結。
組織學生說說這節課學到了哪些知識,以及有些什么收獲。
板書設計:
因數只有1和它本身的數叫質數(也叫素數)。
除1和它本身以外,還有其他因數的數叫合數。
規定:1不是質數,也不是合數。
10以內的自然數:2、3、5、7是質數;4、6、8、9、10是合數。
質數和合數教學設計人教版(優秀18篇)篇十六
教學目標:1.理解質數和合數的概念,并能判斷一個數是質數還是合數,,會把自然數按因數的個數進行分類.
2.培養學生細心觀察、全面概括、準確判斷、自主探索、獨立思考、合作交流的能力。
教學重點:?能準確判斷一個數是質數還是合數.
教學難點:?找出100以內的質數.
教學過程:。
一、復習導入(加深前面知識的理解,為新知作鋪墊)。
下面各數誰是誰的因數,誰是誰的倍數,誰是偶數,誰是奇數.
3和15???4和24??49和7?91和13??(指名回答。)。
全班分兩組探討并寫出1--20各數的因數。
1、觀察各數因數的個數的特點。
2、填寫表格。
只有一個因數。
只有1和它本身兩個因數。
除了1和它本身還有別的因數。
3、師概括:只有1和它本身兩個因數,這樣的的數叫做質數。除了1和它本身還有別的因數,這樣的數叫做合數。(板書:質數和合數)。
4、舉例。
你能舉一些質數的例子嗎?
你能舉一些合數的例子嗎?
剛才我們說了還有一類就是只有一個因數的。想一想:只有一個因數的數除了1還有其它的數嗎?(沒有了)1是質數嗎?為什么?是合數嗎?為什么?(不是,因為它既不符合質數的特點,也不符合合數的特點。)。
引導學生明確:1既不是質數也不是合數。
7、小練習:自然數中除了質數就是合數嗎?
三、給自然數分類。
1、想一想。
2、說一說。
知道了什么是質數,什么是合數,那么判斷一個數是質數還是合數,關鍵是看什么?
引導學生明確:關鍵看因數的個數,一個數如果只有1和它本身兩個因數,這個數就是質數;如果有兩個以上因數,這個數就是合數。
四、師生學習教材24頁的例1。
老師:除了用找因數的方法判斷一個數是質數還是合數,還可以用查質數表的方法。
1、師引導學生找出30以內的質數。
提問:這些數里有質數、合數和1,現在要保留30以內的質數,其他的數應該怎么辦?(先劃去1)再劃去什么?(再劃去2以外的偶數)最后劃去什么?(最后劃去3、5的倍數,但3、5本身不劃去)剩下的都是什么數?(剩下的就是30以內的質數。)。
(特殊記憶20以內的質數,因為它常用。)。
2、小組探究100以內的質數。
3、匯報100以內的質數。師生共同整理100以內的質數表。
4、應用100以內質數表:
5、小練習:(1)所有的奇數都是質數嗎?(2)所有的偶數都是合數嗎?
五、思維訓練。
有兩個質數,它們的和是小于100的奇數,并且是17的倍數,求這兩個數。
六、課堂小結。
質數和合數教學設計人教版(優秀18篇)篇十七
一、課前談話:
學生回答(好)。
師:從左邊起第一位同學為1號,向右依次為2號、3號…下面請同學們把自己的學號報一下,我對數字很感興趣,看誰能讓我先記住。
學生依次報學號。
師:我也是這個集體中的一員了,我就是?號了。
二、復習導入:
學生回答,(強調:其它學生要認真傾聽,看他們說得對不對.)根據回答中學生報的質數進行提問:它能被誰整除?板書,引導:還有哪位同學的學號也是這種情況,只能被1和這個數本身整除?(學生回答,教師相應板書10個左右質數)。
三、探索新知。
1、總結概念。
師:那么這兩組數都是什么數呢?請同學們看數學書59頁的內容,看誰是一個會學習的孩子!
學生看書。
師:好了,我看了同學們看書很認真,那么通過看書你知道了這些數是什么數嗎?(指著第一組數)。
學生回答質數的概念。(如果不完整,引導:書上是怎么告訴我們的?)。
師:同學們回答得很準確,像這樣只有1和它本身兩個約數,這樣的數叫質數(又叫素數)。(教師相應畫上橢圓,出示課題:質數。并貼出質數的概念。)。
師:那通過看書你知道這些數又是什么數呢?(指著第二組數)。
學生回答合數概念。
師:同學們回答得真完整。像這樣如果除了1和它本身還有別的約數,這樣的數叫做合數。(教師相應畫上橢圓,出示課題:合數。并貼出合數的概念。)。
師:這就是這節課我們要研究的內容。(手指課題)。
下面我們把這兩個概念齊讀一下。
學生齊讀。
師:現在我再向大家介紹一下我自己!我是39號,39除了1和它本身兩個約數以外,還有別的約數,所以39是合數。你們也想這樣向同學們介紹一下你自己嗎?其他同學要認真聽!聽聽他們介紹得對不對。(4、5個同學介紹)還有同學想介紹,那就請同桌兩人互相介紹介紹吧!
2、游戲促學:
師:好了,咱們大家的學習興致可真高!下面我們來做個游戲,學號是1——20的同學請注意,學號是質數的同學請起立,按從小到大的順序報一下自己的學號。學號是最小的質數的學生請說一句話!
師:學號是合數的同學請起立,按從小到大的順序報一下自己的學號。最小的合數請說一句話!
師:1——20號的同學,誰一次也沒有站起來?你為什么不站呢?
學生回答。
說明:是的,1只有一個約數,所以它既不是質數,也不是合數。
3、認識質數表。
師:判斷一個數究竟是質數還是合數,除了根據概念去判斷以外,還可以查看質數表。(出示100以內質數表)。
師:這是一張100以內的質數表,在這里出現有是100以內的什么數?(質數)沒有出現的呢?(合數和1)。
師:現在請你將這些質數讀一讀,然后找出20以內的幾個質數,并將它們記住。
學生讀背。
師:20以內的質數誰背下來了?
學生回答。
師:你們可真聰明,記得這么快!現在我們又多了一個判斷質數的方法,當我們運用概念判斷有困難時,別忘了可以借助質數表。
師:剛才我們了解了質數與合數的特征,關于質數和合數方面的知識還有很多,誰愿意把你知道的向同學們介紹一下?(個別的問問從哪查到的)。
質數和合數教學設計人教版(優秀18篇)篇十八
教師出示一組數:
1、2、5、8、9、12、17。
師:這些數根據能不能被2整除,可以怎么分類?
生:可以分成奇數和偶數兩類。其中1、5、9、17是奇數,2、8、12是偶數。
師:自然數還有一種分類方法,是按照一個數約數的個數來分類的。先請同學說出這些數每個數的約數。
生1:1的約數是1。
生2:2的約數是1,2。
學生回答后,教師出示卡片(可移動)并貼在黑板上。
1(1)2(1,2)……。
二、進行新課。
(一)教學例1。
1.引導學生自學例1,然后讓學生分小組討論思考題。
師:自然數按照約數的個數怎么分類呢?請同學們帶著思考題來學習書上的例1。
出示思考題:
(1)按照一個數約數的多少,可以分為哪幾種情況?
(2)一個數只有1和它本身兩個約數的,這樣的數叫做什么數?
(3)一個數除了1和它本身,還有別的約數的,這樣的數叫做什么數?
(4)1是質數還是合數?為什么?
2.回答思考題。
(1)回答思考題(1)。
師:按照每個數約數的多少,可以分為哪幾種情況?
生:可以分為三種情況。一種是只有一個約數的,一種是有兩個約數的,還有一種是有兩個以上約數的。
師:誰能把以上的數,按照約數的多少進行分類?
學生移動卡片:
2(1,2)8(1,8,2,4) 1(1)。
5(1,5)9(1,9,3)。
17(1,17) 12(1,12,3,4,2,6)。
(2)回答思考題(2)。
師:像2、5、17這樣,只有1和它本身兩個約數的數叫做什么數?生:像2、5、17這樣的數叫做質數,也叫做素數。
教師板書:質數(素數)。
師:質數有幾個約數?
生:質數有兩個約數。
師:哪兩個約數?
生:1和它本身。(教師板書)。
師:自然數中,除了2、5、17外,還有別的質數嗎?
生:有。
師:你能舉出一個例子來嗎?
(三位學生先后回答出:3、7、11,教師板書)。
(3)回答思考題(3)。
師:像8、9、12這樣,除了1和它本身,還有別的約數的數叫做什么數?
生:像8、9、12這樣,除了1和它本身,還有別的約數的數叫做合數。
(教師板書:合數)。
(三位學生先后回答出:4、6、100,教師板書)。
師:一個數除了1和它本身,還有別的約數的,這樣的數叫做合數。
師:自然數中,除了黑板上的這些質數和合數外,還有嗎?
生:還有很多。
(教師在質數、合數的例子下面寫上省略號)。
(4)回答思考題(4)。
師:1是質數還是合數?為什么?
生:1既不是質數,也不是合數。因為1只有1一個約數。
師:能不能說,自然數中,不是質數就是合數呢?
生1:能。
生2:不能。因為自然數中的1既不是質數也不是合數。
師:那么,自然數按照約數的個數來分類,應分成幾類?
生:分為三類。一類是質數,一類是合數,還有一類是1。
教師根據學生的回答,板書: