教學工作計劃可以幫助教師與家長和學生進行有效的溝通和交流,共同促進學生的成長與發展。如果您還在為如何制定一份科學合理的教學工作計劃而犯愁,不妨參考以下范文。
三角形內角和數學教案(通用20篇)篇一
1.讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2.讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。
3.使學生體驗成功的喜悅,激發學生主動學習數學的興趣。
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180°。
讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。
多媒體課件、學具。
一、激趣引入。
師:我們已經認識了什么是三角形,誰能說出三角形有什么特點?
生1:三角形是由三條線段圍成的圖形。
生2:三角形有三個角……。
師:請看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。(這里,有必要向學生直觀介紹“內角”。)。
(二)設疑,激發學生探究新知的心理。
師:請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)。
生:能。
師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)。
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:只能畫長方形。
師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。
師:問題出現在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來研究吧!
(揭示矛盾,巧妙引入新知的探究)。
二、動手操作,探究新知。
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數。(課件閃動其中的一塊三角板)。
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。
師:也就是這個三角形各角的度數。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個內角的度數合起來就叫三角形的內角和。
師:(課件演示另一塊三角板的各角的度數。)這個呢?它的內角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個三角形內角和的計算中,你發現什么?
生2:這兩個三角形都是直角三角形,并且是特殊的三角形。
1.猜一猜。
師:猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……。
(1)小組合作、進行探究。
師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內角的度數,再加起來。
師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!
師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)。
(2)小組匯報結果。
師:請各小組匯報探究結果。
生1:180°。
生2:175°。
生3:182°。
……。
(三)繼續探究。
師:沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。
三角形內角和數學教案(通用20篇)篇二
1、掌握三角形內角和是180°,并能應用這一規律解決一些實際問題。
2、讓學生經歷“猜想、動手操作、直觀感知、探索、歸納、應用”等知識形成的過程,掌握“轉化”的數學思想方法,培養學生動手實踐能力,發展學生的空間思維能力。
3、在活動中,讓學生體驗主動探究數學規律的樂趣,體驗數學的價值,激發學生學習數學的熱情,同時使學生養成獨立思考的好習慣。
讓學生經歷“三角形內角和是180度”這一知識的形成、發展和應用的全過程。
三角形內角和的探索與驗證。
量角器 各種類型的三角形(硬的紙板) 三角板
一、設疑激趣,導入新課
師:今天老師給大家帶來了一位朋友(課件)出示三角形,
師:對于三角形你有哪些認識與了解。
生:三角形有銳角三角形、直角三角形、鈍角三角形
生:由三條線段圍成的平面圖形叫三角形。
師:介紹內角、內角和
三角形中每兩條邊組成的角叫做三角形的內角。
師:三角形有幾個內角。
生:三個。
師:這三個角的和,就叫做三角形的內角和。你知道三角形內角和是多少度?
生1:我通過直角三角板知道的
生3:我預習了,三角形內角和就是180度)
師:是不是向他們說的一樣,所有的三角形內角和都是180度呢?
二、自主探索,進行驗證
師:你打算怎樣驗證呢?
生1用量角器量出每個角的度數,再加一加看看是不是180度 生2:把三角形撕下來
生3:把三個角順次畫下來也可以
生4:拼一拼的方法
師:好!同學們想出了這么多辦法,下面就用你喜歡的方法驗證 師:cai多媒體課件展示操作要求:
合作探究:
1、每四人一組,每組至少選兩個三角形,用你喜歡的方法驗證
2、看那個小組驗證的方法新、方法多
師:在巡視,并進行個別操作指導
三、交流探索的方法和結果
孩子們探索的方法可能有三個:
生1:一是用量角器量各個角,然后再算出三角形中三個角的度數和,用這種方法求的結果可能是180度也可能比180度小一些,也可能比180度大一些。
生2:二是用轉化法,把三角形中三個角剪下來,拼在一起成為一個平角,由此得出三角形中三個角的和是180度。
生3:三是折一折,把三個角折在一起,折在一起成為一個平角,由此得出三角形中三個角的和是180度。
四、歸納總結,體驗成功
師:孩子們,三角形中三個角的度數和到底是多少度呢?
生:180度。
五、拓展應用
1、基礎練習
2、等邊三角形、等腰三角形、直角三角形
六、課堂小結
談一談自己的學習收獲。
三角形內角和數學教案(通用20篇)篇三
遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。《數學課程標準》指出,讓學生學習有價值的數學,讓學生帶著問題、帶著自己的思想、自己的思維進入數學課堂,對于學生的數學學習有著重要作用。因此,我嘗試著將數學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養學生提出問題、分析問題和解決問題的探究能力。
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180。
學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。四年級的學生已經初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。
1、使學生經歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規律解決一些簡單的問題。
2、使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數學思考能力。
三角形內角和數學教案(通用20篇)篇四
“三角形內角和”是人教版數學四年級下冊的一節探索與發現課,讓學生在學習了三角形的特征、高以及三角形分類的基礎上,進一步研究三角形三個角的關系。本節課學生對知識點的掌握還不錯,但是,這一節課還有很多不足之處,需要加以改進:
1、教學設計不錯,環節緊湊,思路清晰。
2、重視操作過程,時間把握得好。本節課用了大量的時間來讓學生做小組實驗,從而讓他們自己感知三角形內角和是180°,印象深刻。
3、能注意前后照應,解決了前面的疑問。在講授新課前,設置一個疑問“為什么同一個三角形不能有兩個直角?”以此來吸引學生,找出三角形內角和的特性。在掌握了三角形內角和是180°后,再次把問題提出來,讓學生解決。
4、板書巧妙,一步步引入課題。先是讓學生復習“三角形”的定義,接著簡單說明什么是“三角形內角”,最后再講授三角形三個內角度數的和叫做“三角形內角和”。
5、課堂紀律好,氣氛活躍,學生踴躍積極。學生在小組活動時,活躍而有序,上課時能認真聽講,積極舉手。同時,實行小組評價更是發揮了學生的主動性。
6、求三角形內角和的方法,一個比一個直觀、生動。從量一量、算一算,到剪一剪、折一折,讓學生更容易感受到三角形內角和是180°。
7、練習題設計得比較好,特別是判斷題,都是學生平時容易出錯的題目,在課堂上用比較直觀的課件顯示出來,讓學生的印象深刻。組合題也很有靈活性,先是找出能組成三角形的度數,然后根據度數判斷出是什么三角形。
8、能尊重學生的意見,有的小組沒有在算一算的時候,沒有得出180°的結果,老師能夠分析其中的原因。
1、在老師給出“畫有2個內角是直角的三角形”的任務時,學生明顯是畫不出來。但是教師也可以把學生失敗的作品展示出來,照應之后的講解。而不能一帶而過。
2、如果量一量的方法,不能讓人信服,要在后面打個“?”,等到解決疑問后,再去掉。
3、在進行剪一剪、折一折的活動時,老師應該先用板書上的三角形來示范一次,告訴學生應該怎么做。因為有些學生折不出來。拼的時候,也有出錯。
4、把三角形拼成平角后,要用直尺或者是量角器測量一下,看看得出的圖形是不是平角,要用嚴謹的態度對待,不能光用眼睛來判斷。
5、老師注意提醒學生讀題的時候要規范,要讀出度數單位,這很好。但是,在做題練習時,應該請一兩個學生在黑板上做,這樣也便于教師提醒學生,在書寫時,也要注意寫上度數單位,強調格式。
三角形內角和數學教案(通用20篇)篇五
人教版義務教育課程標準試驗教科書數學四年級下冊第67頁。
遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。《數學課程標準》指出,讓學生學習有價值的數學,讓學生帶著問題、帶著自己的思想、自己的思維進入數學課堂,對于學生的數學學習有著重要作用。因此,我嘗試著將數學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養學生提出問題、分析問題和解決問題的探究能力。
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180。
學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。四年級的學生已經初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。
1、使學生經歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規律解決一些簡單的問題。
2、使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數學思考能力。
三角形內角和數學教案(通用20篇)篇六
l教學目標:
知識與技能目標:
1.會用平行線的性質與平角的定義證明三角形內角和等于180o;。
2.能用三角形內角和等于180o進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉化思想在解決問題中的應用.
過程與方法目標:
2.掌握三角形內角和定理,并初步學會利用輔助線證題,同時培養學生觀察、猜想和論證能力..
情感態度與價值觀目標:
1.通過操作、交流、探究、表述、推理等活動,培養學生的合作精神,體會數學知識內在的聯系與嚴謹性,鼓勵學生大膽提出疑問,培養學生良好的學習習慣.
l重點:
難點:
l教學流程:
一、情境引入。
內角三兄弟之爭。
在一個直角三角形里住著三個內角,平時,它們三兄弟非常團結可是有一天,老二突然不高興,發起脾氣來,它指著老大說:“你憑什么度數最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起了……”“為什么?”老二很納悶.
同學們,你們知道其中的道理嗎?
目的:通過對話激發學生的求知欲;讓學生通過小組討論:其中的道理.
三角形內角和數學教案(通用20篇)篇七
義務教育課程標準試驗教科書《數學》(人教版)四年級下冊第85頁。
設計思路。
遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。學生對三角尺上每個角的度數比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內角的和是180°,引發學生的猜想:其它三角形的內角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發現:各類三角形的三個內角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動潛移默化地向學生滲透了“轉化”數學思想,為后繼學習奠定了必要的基礎。最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數學信息的出現從比較顯現到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水平發展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內角的度數,說出另外一個內角。有唯一的答案。訓練多次后,只給出三角形一個內角,說出其它兩個內角,答案不唯一,可以得出無數個答案。讓學生在游戲中消除疲倦激發興趣,拓展學生思維。兼顧到智力水平發展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創設問題情境,讓學生去實驗、去發現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發展空間觀念和推理能力。
教學目標。
1.讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2.讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。
3.使學生體驗成功的喜悅,激發學生主動學習數學的興趣。
教材分析。
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180°。
教學重點。
讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。
教學準備。
多媒體課件、學具。
教學過程。
一、激趣引入。
師:我們已經認識了什么是三角形,誰能說出三角形有什么特點?
生1:三角形是由三條線段圍成的圖形。
師:請看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。(這里,有必要向學生直觀介紹“內角”。)。
(二)設疑,激發學生探究新知的心理。
師:請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)。
生:能。
師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)。
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:只能畫長方形。
師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。
師:問題出現在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來研究吧!
(揭示矛盾,巧妙引入新知的探究)。
二、動手操作,探究新知。
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數。(課件閃動其中的一塊三角板)。
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。
師:也就是這個三角形各角的度數。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個內角的度數合起來就叫三角形的內角和。
師:(課件演示另一塊三角板的各角的度數。)這個呢?它的內角和是多少度呢?
生:90°+45°+45°=180°。
生2:這兩個三角形都是直角三角形,并且是特殊的三角形。
1.猜一猜。
師:猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……。
(1)小組合作、進行探究。
師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內角的度數,再加起來。
師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!
師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)。
(2)小組匯報結果。
師:請各小組匯報探究結果。
生1:180°。
生2:175°。
生3:182°。
……。
(三)繼續探究。
師:沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。
三角形內角和數學教案(通用20篇)篇八
通過猜想、驗證,了解三角形的內角和是180度。在學習的.過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導學生說出90度、60度、30度。
出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。
提問:請同學們任選一個三角尺,算出他們三個角一共多少度?
學生計算后指名回答。
師:三角尺三個角的和是180度。
提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。
學生小組活動,教師了解學生情況,個別同學加以輔導。
全班交流:讓學生分別說出三個角的度數以及它們的和。
提問:你發現了什么?
:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。
要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。
教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以。
計算的結果為準。
完成想想做做的題目。
三角形內角和數學教案(通用20篇)篇九
《三角形的內角和》教材是先讓學生通過計算三角尺得個內角的度數和,激發學生好奇心,進而引發學生猜想:其他三角形的內角和也是180度嗎?再通過組織操作活動驗證猜想,得出結論。根據這樣的教材安排,本課的重點也就應放在“三角形內角和是180度”的探索上,讓學生在探索中深入理解得出過程。針對教材的如此安排,我也設計了如下的開放的課堂預設:
1、要知道我們猜測的是否正確,你有什么辦法驗證呢?
先獨立思考,有想法了在小組里交流。
生一:我們組根據剛才三角板的內角和是三個角的度數加起來得出的,所以,我們就用量角器量出了三個角的度數,再加起來。
學生說出了測量的度數相加,雖然不是很精確180度,量的過程中有點誤差,得到了在180度左右。
生二:我們組是把銳角三角形的三個角跟書上一樣去折,折在一起發現正好是個平角,所以我們發現銳角三角形內角和也是180度。(及時表揚了能主動預習的好習慣。)。
生三:我們組把鈍角三角形跟剛才一組一樣,折在一起,發現也能拼成一個平角,所以鈍角三角形的內角和也是180度。
生四:我們組研究的是直角三角形,跟上面兩組的同學一樣折在一起,三個角拼起來也是一個平角,所以直角三角形的內角和也是180度。
生五:我們也是折的,但我們沒有把三個角折在一起,而是把兩個小的角折到直角那里發現兩個銳角合起來正好與直角三角形的直角重合,圖形也就成了一個長方形,兩個銳角的和是90度再加個直角也就是180度。
也有同學提出了采用了減下角再拼的方法。
以上這個小片段,雖然在孩子們表述中沒這么流利,完整,但卻是他們最真實的發現,這堂課上下來,感覺收獲很大。
自己感覺這節課的設計上把握了學生學習起點與心理,遵循了教材讓學生先猜想再驗證的思路,從學生已有的知識背景出發,為他們提供了重復粉從事數學活動的時間和交流機會。學生思考著,討論著,交流著,感悟著,在這一過程中,學生不僅掌握了知識,尋求到了解決問題的方法,更重要的是在交流中,學生的語言表達能力也得到了很大的增強。
三角形內角和數學教案(通用20篇)篇十
通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。
三角形的內角和
課前準備
電腦課件、學具卡片
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導學生說出90度、60度、30度。
出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。
提問:請同學們任選一個三角尺,算出他們三個角一共多少度?
學生計算后指名回答。
師:三角尺三個角的和是180度。
提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上
任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。
學生小組活動,教師了解學生情況,個別同學加以輔導。
全班交流:讓學生分別說出三個角的度數以及它們的和。
提問:你發現了什么?
:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。
要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。
教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以
計算的結果為準。
完成想想做做的題目。
學生獨立計算,交流算法。要求學生用量角器量出結果,和計算的結果想比較。
指導學生看圖,弄清拼成的三角形的三個內角指的是哪三個角。計算三角形三個角的內角和,幫助學生進一步理解:三角形三個內角的和是180度。
通過操作、計算,使學生認識到:不管三角形的大小怎樣變化,它的內角和是不會變化的。
引導學生運用三角形的分類及三角形內角和的有關知識解決有關問題,重點培養學生靈活運用知識解決問題的能力。
三角形內角和數學教案(通用20篇)篇十一
1、知識與技能:
(2)運用三角形的內角和知識解決實際問題和拓展性問題。
2、過程與方法:
(1)通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的和等于180°。
(2)知道三角形兩個角的度數,能求出第三個角的度數。
(3)發展學生動手操作、觀察比較和抽象概括的能力。
3、情感態度與價值觀:
讓學生體驗數學活動的探索樂趣,通過教學中的活動體會數學的轉化思想。
教學課件、各種三角形。
1、猜謎語:。
形狀似座山,穩定性能堅。三竿首尾連,學問不簡單。
(打一圖形名稱)。
2、猜三角形。
3、引出課題。
師:為什么不會出現兩個直角?今天我們就再次走進數學王國,探討三角形的內角和的奧秘。(板書課題)。
2、猜一猜。
3、驗證。
4、學生匯報。
(1)測量。
(2)剪拼。
a、學生上臺演示。
b、請大家三人小組合作,用剪拼的方法驗證其它三角形。
c、師演示。
(3)折拼。
師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。
(5)數學小知識。
5、鞏固知識。
教師:為什么不是360°?
師:接下來,利用三角形的內角和我們來解決一些相關的問題吧!
1、看圖,求未知角的度數。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數嗎?
(1)我三邊相等。
(2)我是等腰三角形,我的頂角是96°。
(3)我有一個銳角是40°。
4、求四邊形、五邊形內角和。
師:這節課你有什么收獲?
三角形內角和數學教案(通用20篇)篇十二
通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。
教學重難點。
三角形的內角和課前準備電腦課件、學具卡片。
教學活動。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導學生說出90度、60度、30度。
出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。
提問:請同學們任選一個三角尺,算出他們三個角一共多少度?
學生計算后指名回答。
二、自主探索,解決問題。
提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。
學生小組活動,教師了解學生情況,個別同學加以輔導。
全班交流:讓學生分別說出三個角的度數以及它們的和。
提問:你發現了什么?
:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。
三、試一試。
要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。
教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以。
計算的結果為準。
四、鞏固提高。
完成想想做做的題目。
三角形內角和數學教案(通用20篇)篇十三
讓學生整體感知三角形內角和的知識,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數學知識背景,滲透數學知識之間的聯系,有效地避免了新知識的"橫空出現"。
提出問題:長方形內角和是360°,那么三角形內角和是多少呢?
(1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內角的度數加起來算一算,看看得出的三角形的內角和是多少度。
(2)撕―拼:利用平角是180°這一特點,啟發學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。
(3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。
(4)畫:根據長方形的內角和來驗證三角形內角和是180°。
一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。
利用已經學過的知識構建新的數學知識,這不僅有助于學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內角和規律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯系起來,并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯系。在整個探索過程中,學生積極思考并大膽發言,他們的創造性思維得到了充分發揮。
觀察:指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了,但角的大小沒有變。
結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。
實驗:教師先在黑板上固定小棒,然后用活動角與小棒組成一個三角形,教師手拿活動角的頂點處,往下壓,形成一個新的三角形,活動角在變大,而另外兩個角在變小。這樣多次變化,活動角越來越大,而另外兩個角越來越小。最后,當活動角的兩條邊與小棒重合時。
結論:活動角就是一個平角180°,另外兩個角都是0°。
小學生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯系起來,通過讓學生觀察利用"角的大小與邊的長短無關"的舊知識來理解說明。
對于利用精巧的小教具的演示,讓學生通過觀察,交流,想象,充分感受三角形三個角之間的聯系和變化,感悟三角形內角和不變的原因。
習題是溝通知識聯系的有效手段。在本節課的四個層次的練習中,能充分注意溝通知識之間的內在聯系,使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知,構建自己的認知結構,從而發展思維,提高綜合運用知識解決問題的能力。
第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數。
第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征,較好地溝通了知識之間的聯系。
第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的變化情況,進一步理解三角形內角和的知識。
第四題是對三角形內角和知識的進一步拓展,引導學生進一步研究多邊形的內角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內角和與三角形內角和聯系起來,并逐步發現多邊形內角和的規律,以此促進學生對多邊形內角和知識的整體構建。
三角形內角和數學教案(通用20篇)篇十四
(1)知識與技能:
掌握三角形內角和定理的證明過程,并能根據這個定理解決實際問題。
(2)過程與方法:
通過學生猜想動手實驗,互相交流,師生合作等活動探索三角形內角和為180度,發展學生的推理能力和語言表達能力。對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。逐漸由實驗過渡到論證。
通過一題多解、一題多變等,初步體會思維的多向性,引導學生的個性化發展。
(3)情感態度與價值觀:
通過猜想、推理等數學活動,感受數學活動充滿著探索以及數學結論的確定性,提高學生的學習數學的興趣。使學生主動探索,敢于實驗,勇于發現,合作交流。
三角形內角和數學教案(通用20篇)篇十五
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180。
三角形內角和數學教案(通用20篇)篇十六
這節課中,我本著以學生的發展為本的教學理念,讓學生主動探索,互動學習,充分運用教、學具,讓學生動手操作,展示知識的形成,發展和應用的全過程。
一、創設問題情境,讓學生主動參與。
《數學課程標準》指出:"學生的數學學習內容應當是現實的,有意義富有挑戰性的,這些內容主要有利于學生主動地進行觀察、猜測、驗證、交流等數學活動。”上課開始,我就講故事的情景引入,提出:拿的是有原來一個角的那塊玻璃還是有原來兩個角的那塊玻璃?他們之間到底有著怎樣的關系?等問題,富有挑戰性,充滿了濃濃的吸引力,激發了學生主動學習欲望,學生有了學習動力,從而提高學習效率。
二、經歷探究過程,/xdth/jxfs/謝謝您的支持和鼓勵!
《數學課程標準》指出:“有效的數學學習活動不能單純地依賴與記憶,動手實踐自主探索和合作交流是學生學習數學的重要方式”。要讓學生逐步探究發現三角形三個內角的和是180°。本節課我安排了兩個環節:先讓學生畫一畫:銳角三角形、直角三角形、鈍角三角形;量一量:銳角三角形、直角三角形、鈍角三角形,誰的內角和大?算一算:三角形三個內角的和各是多少度。生匯報:銳角三角形是180°;直角三角形是180°度;鈍角三角形是180°,比較是不是各種形狀、大小不同的三角形內角和都是180°呢?比較發現三角形的三個內角和大約是180°。再讓學生把三角形的三個內角分別剪下來,再拼一拼或折一折。發現三個角可以拼(折)成一個平角,學生從已有的知識出發,從而推理出三角形的內角和是180°。讓學生在自主探究,合作交流中經歷,猜想、驗證、結論這一個過程,體驗探究學習的樂趣。
三、注重練習設計,把課堂向生活延伸。
練習的設計注意了梯度,既有基本練習,也有發展性練習。盡量體現因材施教,讓每一位學生都有收獲,體驗成功的喜悅。第一個練習用水果寶寶來遮住三角形其中一個角求出這個角的度數。學生根據三角形的內角和180°很快就求出了被遮住的角度數。第二個練習是在第一個練習題的基礎上增加難度,也是利用三角形內角和180°求出其它兩個角的度數。在題型上有一定的難度。學生必須根據已有的知識推理出圖形中沒有直接告訴我們的角的度數,再利用三角形內角和是180°性質來求其余角的度數。第三個練習題是學生比較喜歡的“問不倒熱線”電話互動的形式,有新意,使學生在前兩題的基礎上來解決的:一個三角形中最多有幾個直角;有幾個鈍角;至少有幾個銳角?為什么?練習不光注意了形勢變化,更注意了練習坡度。使學生的思維得到了提高,課堂氣氛活躍,學生在交流切磋中迸發出思維的火花。
這樣,不僅讓學生認識到數學就在我們身邊,生活中處處有數學,而且讓學生體會到數學知識也是可以延伸運用到生活中去,促進學生的自主發展。
三角形內角和數學教案(通用20篇)篇十七
學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。四年級的學生已經初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。
三角形內角和數學教案(通用20篇)篇十八
復習目標:
1.鞏固掌握三角形的特性,三角形任意兩邊之和大于第三邊以及三角形的內角和是180o。
2.知道銳角三角形、直角三角形、鈍角三角形和等腰三角形、等邊三角形的特點并能夠辨認和區別它們。
復習過程:
一、復習三角形的特點、特性、分類、內角和。
1、說一說三角形的特點。
2、作銳角三角形、直角三角形、鈍角三角形的高和底。談談注意什么問題?(強調鈍角三角形高的畫法)。
3、三角形的穩定性。(說說生活中很多事物都用到三角形的原因是什么?)。
4、給出三根小棒說說可不可以組成三角形?并說出為什么?
3.4.53.3.32.2.63.3.5。
5、三角形的分類:注意三角形各自之間的聯系及個三角形的特點。
二:解決問題。
1)三邊相等。
3)有一個銳角50度,是直角三角形。
(根據題目所給條件——分析——解決——匯報解題思路)。
2、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是75度,頂角是多少?
觀察找信息——分析——解決。
3、長方形和正方形的內角和各是多少度?
三:提高題。
1、能畫出有兩個直角或者兩個鈍角的三角形嗎?為什么?
2、根據三角形的內角和是180度,能求出下面的四邊形和正六邊形的內角和嗎?
四、指導學生完成課本p1278。
五、課堂小結。
三角形內角和數學教案(通用20篇)篇十九
通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。
課前準備:
電腦課件、學具卡片。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導學生說出90度、60度、30度。
出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。
提問:請同學們任選一個三角尺,算出他們三個角一共多少度?
學生計算后指名回答。
提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。
學生小組活動,教師了解學生情況,個別同學加以輔導。
全班交流:讓學生分別說出三個角的度數以及它們的和。
提問:你發現了什么?
:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。
要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。
教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以計算的結果為準。
三角形內角和數學教案(通用20篇)篇二十
這節課是上“三角形內角和”,因為學生對三角尺上每個角的度數比較熟悉,就從這里入手。先讓學生算出一塊三角尺三個內角的和是180°,引發學生的猜想:其它三角形的內角和也是180°嗎?接著,引導學生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°,再引導學生通過剪拼的方法發現:各類三角形的三個內角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動潛移默化地向學生滲透了“轉化”數學思想,為后繼學習奠定了必要的基礎。最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創設問題情境,讓學生去實驗、去發現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發展空間觀念和推理能力。
這篇教學設計通過施教,符合新課程理念,轉變學生的學習方式,能讓學生以小組合作的形式進行問題的探索與研究,學生在整節課中學得輕松。整節課的教學設計,條理清晰,層次清楚,教學一開始從學生熟悉的三角板抽象出特殊的三角形探討三角形的內角和是180°,接下來很自然地引導學生探討所有的三角形的內角和是不是也是180,過渡自然且有吸引力。
總之,在這節課中存在著很多不足,今后我將花更多的時間在課堂教學方法、策略的研究上,使自己不斷進步。