教學計劃可以幫助教師提前準備教學所需的教學資源和教學材料,提高教學的效率。這些教學計劃范文展示了教師豐富的教學經驗和獨特的教學風格。
函數建模教學設計(優秀15篇)篇一
教學目標:
2、能較熟練地運用指數函數的性質解決指數函數的平移問題。
教學重點:
教學難點:
教學過程:
一、情境創設。
二、數學應用與建構。
例1、解不等式:
小結:解關于指數的不等式與判斷幾個指數值的大小一樣,是指數性質的運用,關鍵是底數所在的范圍。
例2、說明下列函數的圖象與指數函數y=2x的圖象的關系,并畫出它們的`示意圖。
小結:指數函數的平移規律:y=f(x)左右平移,y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移)。
練習:
(1)將函數f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數x的圖象。
(2)將函數f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數y的圖象。
(3)將函數圖象先向左平移2個單位,再向下平移1個單位所得函數的解析式是。
(4)對任意的a0且a1,函數y=a2x1的圖象恒過的定點的坐標是(),函數y=a2x—1的圖象恒過的定點的坐標是()。
小結:指數函數的定點往往是解決問題的突破口!定點與單調性相結合,就可以構造出函數的簡圖,從而許多問題就可以找到解決的突破口。
(5)如何利用函數f(x)=2x的圖象,作出函數y=2x和y=2|x2|的圖象?
(6)如何利用函數f(x)=2x的圖象,作出函數y=|2x—1|的圖象?
小結:函數圖象的對稱變換規律。
例3、已知函數y=f(x)是定義在r上的奇函數,且x0時,f(x)=1—2x,試畫出此函數的圖象。
例4、求函數的最小值以及取得最小值時的x值。
小結:復合函數常常需要換元來求解其最值。
練習:
(1)函數y=ax在[0,1]上的最大值與最小值的和為3,則a等于();。
(2)函數y=2x的值域為();。
(4)當x0時,函數f(x)=(a2—1)x的值總大于1,求實數a的取值范圍。
三、小結。
四、作業:
課本p55—6、7。
五、課后探究。
(1)函數f(x)的定義域為(0,1),則函數f(x)的定義域為?
(2)對于任意的x1,x2r,若函數f(x)=2x,試比較函數的大小。
函數建模教學設計(優秀15篇)篇二
時,函數值變化情況的區分.(3)指數函數是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從指數函數的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.二.學情分析:學生在學習了函數概念和函數性質基礎上對函數有了初步認識,但我所教班時平行班,學生學習興趣不濃,積極性高,針對這種情況,教學時要總層層設問降低難度,用幾何畫板直觀演示提高學生學習積極性,時學生主動學習。
三.教學目標:
知識與技能:理解指數函數的概念,掌握指數函數的圖象和性質,培養學生實際應用函數的能力。
過程與方法:通過觀察圖象,分析、歸納、總結、自主建構指數函數的性質。領會數形結合的數學思想方法,培養學生發現、分析、解決問題的能力。
情感態度與價值觀:在指數函數的學習過程中,體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
投影儀。
六.教學方法。
啟發討論研究式。
七.教學過程。
(一)創設情景。
學生回答:y與x之間的關系式,可以表示為y=2x。
問題2:一種放射性物質不斷衰變為其他物質,每經過一年剩留的質量約是原來的84%.求出這種物質的剩留量隨時間(單位:年)變化的函數關系.設最初的質量為1,時間變量用x表示,剩留量用y表示。
學生回答:y與x之間的關系式,可以表示為y=0.84x。
(二)導入新課。
引導學生觀察,兩個函數中,底數是常數,指數是自變量。設計意圖:充實實例,突出底數a的取值范圍,讓學生體會到數學來源于生產生活實際。函數y=2x、y=0.84x分別以01的數為底,加深對定義的感性認識,為順利引出指數函數定義作鋪墊。
一般地,函數是r。
叫做指數函數,其中x是自變量,函數的定義域的含義:
”如果不這樣規定會出現什么情況?問題:指數函數定義中,為什么規定“設計意圖:教師首先提出問題:為什么要規定底數大于0且不等于1呢?這是本節的一個難點,為突破難點,采取學生自由討論的形式,達到互相啟發,補充,活躍氣氛,激發興趣的目的。
對于底數的分類,可將問題分解為:
(1)若a。
則在實數范圍內相應的函數值不存在)都無意義)。
在這里要注意生生之間、師生之間的對話。
設計意圖:認識清楚底數a的特殊規定,才能深刻理解指數函數的定義域是r;并為學習對數函數,認識指數與對數函數關系打基礎。
教師還要提醒學生指數函數的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。
1:指出下列函數那些是指數函數:
在同一平面直角坐標系內畫出下列指數函數的圖象。
畫函數圖象的步驟:列表、描點、連線思考如何列表取值?教師與學生共同作出。
圖像。
時函數值變化的不同情況,學生往往容易混淆,這是教學中的一個難點。為此,必須利用圖像,數形結合。教師親自板演,學生親自在課前準備好的坐標系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學生更加信服,加深印象,并為以后畫圖解題,采用數形結合思想方法打下基礎。
利用幾何畫板演示函數特征。由特殊到一般,得出指數函數。
的圖象,觀察分析圖像的共同。
的圖象特征,進一步得出圖象性質:
教師組織學生結合圖像討論指數函數的性質。
設計意圖:這是本節課的重點和難點,要充分調動學生的積極性、主動性,發揮他們的潛能,盡量由學生自主得出性質,以便能夠更深刻的記憶、更熟練的運用。
特別地,函數值的分布情況如下:
設計意圖:再次強調指數函數的單調性與底數a的關系,并具體分析了函數值的分布情況,深刻理解指數函數值域情況。3.簡單應用(板書)。
1.利用指數函數單調性比大小.(板書)。
一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同.再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯想指數函數,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
函數建模教學設計(優秀15篇)篇三
1、教材的地位和作用: 函數是高中數學學習的重點和難點,函數的貫穿于整個高中數學之中。本節課是學生在已掌握了函數的一般性質和簡單的指數運算的基礎上,進一步研究指數函數,以及指數函數的圖像與性質,同時也為今后研究對數函數以及等比數列的性質打下堅實的基礎。因此,本節課的內容十分重要,它對知識起到了承上啟下的作用。
2、教學的重點和難點:根據這一節課的內容特點以及學生的實際情況,我將本節課教學重點定為指數函數的圖像、性質及其運用,本節課的難點是指數函數圖像和性質的發現過程,及指數函數圖像與底的關系。
基于對教材的理解和分析,我制定了以下的教學目標
1、知識目標(直接性目標):理解指數函數的定義,掌握指數函數的圖像、性質及其簡單應用。
2、能力目標(發展性目標):通過教學培養學生觀察、分析、歸納等思維能力,體會數形結合和分類討論,增強學生識圖用圖的能力。
3、情感目標(可持續性目標): 通過學習,使學生學會認識事物的特殊性與一般性之間的關系,培養學生勇于提問,善于探索的思維品質。
1、教學策略:首先從實際問題出發,激發學生的學習興趣。第二步,學生歸納指數的圖像和性質。第三步,典型例題分析,加深學生對指數函數的理解。
2、教學: 貫徹引導發現式教學原則,在教學中既注重知識的直觀素材和背景材料,又要激活相關知識和引導學生思考、探究、創設有趣的問題。
3、教法分析:根據教學內容和學生的狀況, 本節課我采用引導發現式的教學方法并充分利用多媒體輔助教學。
函數建模教學設計(優秀15篇)篇四
1.某種蔬菜每千克1元,若購買千克,需要支付元是函數嗎?
2.正方形的邊長為,那么它的面積是的函數嗎?
3.立方體的邊長為,那么它的體積是的函數嗎?
4.正方形的面積為,那么它的邊長是的函數嗎?
5.某人內騎車 內行進了1,那么他騎車的平均速度是函數嗎?
6.這五個函數有什么共同特征?
7.給出冪函數的定義
8.下列函數是冪函數嗎?
9.冪函數的定義和指數函數的定義有什么區別?
10. 已知冪函數的圖象過點(4, ),求這個函數的解析式?
11. 觀察冪函數的圖象
12.作函數的圖象。
13. 作函數的圖象。
14.作函數的圖象。
15.根據所作函數的圖象,分別討論這些函數的性質。
16.你能證明冪函數在[0,+ 上是增函數嗎?
17.從整體上把握冪函數的圖象。
作業p79習題1、2、3
師:投影展示問題,引導學生根據函數的定義進行分析。
生:根據函數定義思考并回答。
師:板書這5個函數表達式。
師生:從形式上分析:是指數冪的形式,其中底數是自變量,指數是常數。
師:板書定義。
生:根據冪函數的形式進行辨別。
生:對比指數函數的定義,指出區別。
師生:用待定系數法共同完成。
師:幾何畫板展示冪函數圖象,隨著指數 的改變,冪函數圖象的形態和位置都發生改變。
生:觀察指數的變化和圖象的變化
師:冪函數的圖象因指數 不同而形態各異,遠比指數函數的.圖象復雜。但我們可以通過討論其中有代表性的幾個函數來了解冪函數的圖象特征。生:在同一坐標系中作出三個函數的圖象。
師:巡視指導。
師:用幾何畫板作出三個函數的圖象。
生:對照檢查,注意所作圖象的特征。
師:提示橫坐標取值: 。巡視學生作圖情況。
生:列表,并描點作圖。
師:投影函數圖象。
師:指導作圖:取橫坐標0。
生:作圖。
師:投影圖象。
師:引導學生根據函數的圖象,指出函數的性質。
生:指出函數性質并完成課本第78頁表格。
生:嘗試證明。
師生:共同完成證明。
師:幾何畫板動態展示冪函數在第一象限的圖象,引導學生觀察圖象的變化。師生共同歸納圖象的主要特征:在 上:減函數 :猛增:增函數 :緩增通過實際問題,引入冪函數。由特殊到一般的提練、概括。形式定義,注意辨別。對比,加深印象,避免與指數函數混淆。進一步加強理解冪函數定義。對冪函數的圖象作整體感知,了解冪函數的圖象和性質與指數 關系密切。三個函數都是初中學過的,描三個點作出簡圖,把握圖象的主要特征。數形結合。
函數建模教學設計(優秀15篇)篇五
【目標】。
1.借助生活實例,引領學生參與函數概念的形成過程.
2.體會從生活實例抽象出數學知識的方法,感知現實世界中變量之間聯系的復雜性.
【學習目標】。
1.初步掌握函數概念,判斷兩個變量間的關系是否能看作函數.
2.初步感受函數表示的三種形式:表格法、圖象法、解析式法.根據兩個變量間的關系式,給定其中一個量,會相應地求出另一個量的值.
3.經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力.
【教學重點】。
2.判斷兩個變量之間的關系是否可看作函數.
【教學難點】。
1.準確理解函數概念中“唯一確定”的含義.
2.能把實際問題抽象概括為函數問題.
計意圖】。
本節公開課在教師的精心準備之下,按照djp教學模式常規要求,順利完成了教學目標。現將本節課中具體作以下幾點反思:
1.函數對初中生來是第一次接觸,在教學設計的時候,充分列舉生活中有關變量的例子,讓學生去感受兩個變量之間的關系,提高學生的學習興趣.
2.本節課屬于概念課,根據djp教學模式下概念課的要求,認真設計教學過程和修改學案,經過教研組多次研討,最終形成此教學設計.
3.本節課在原有基礎上作出了一些調整,在情境引入時,列舉生活中的變量,并演示摩天輪模型轉動,同時提出問題:在轉動過程中,有幾個變量?你了解它們之間的關系嗎?從而引出本節課的主題――函數的概念,并由此進入情境1的學習,此環節由教師主講,目的在于為后面學生講解情境2,3作出示范,特別是在圖像中,判斷兩個變量是否成函數關系時,由于學生還沒學習直角坐標系,所以通過ppt多次演示,教會學生判斷方法,為后面的練習作好鋪墊.
作者簡介:冉龍海,男,1980年4月出生,本科,就職于四川省成都市龍泉驛區第十中學校,研究方向:班主任教育工作。
函數建模教學設計(優秀15篇)篇六
結合課程標準的要求,參照教材的安排,考慮到學生已有的認知結構、心理特征,我制定了如下教學目標:
(1)通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型。
(2)能畫出具體對數函數的圖象,學生通過自己動手作圖,分組討論對數函數的性質,提高動手能力、合作學習能力以及分析解決問題的能力。
難點:難點是探究底數對對數函數圖象及性質變化的影響。
二、學生學習情況分析。
剛從初中升入高一的學生,仍保留著初中生許多學習特點,能力發展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數概念十分抽象,又以對數運算為基礎,同時,初中函數教學要求降低,初中生運算能力有所下降,這雙重問題增加了對數函數教學的難度。尤其作為對數函數的第一課時,教師在教學中要控制難度,關注學生學習過程的體驗。
三、設計思想。
本節課以建構主義基本理論為指導,以新課標基本理念為依據進行設計的,針對學生現有的認知水平,對數函數的教學首先要挖掘其知識背景貼近學生實際,讓學生充分體驗到數學的應用價值;其次,激發學生的學習熱情,引導他們找到學習對數函數的思路(類比學習指數函數的思路),然后把學習的主動權交給學生,為他們提供自主探究、合作交流的機會,改以前滿堂教的方式為讓學生滿堂學,讓學生學會學習。
四、教學基本流程:
五、教學過程:
根據新課標的要求我將本節課分為五個環節:創設情境,形成概念。
(一)創設情境,形成概念。
本節課我是從課本中給出的“考古實例”和學生熟悉的“細胞分裂”實例這樣兩個材料引出對數函數的概念,讓學生熟悉它的知識背景,初步感受對數函數是刻畫現實世界的又一重要數學模型。這樣處理,對數函數顯得不抽象,學生容易接受,降低了新課教學的起點。我的引入材料是這樣的:1.請同學們認真閱讀材料,解決材料中提出的問題:材料1:考古實例(材料1給出后面的觀察提供必要的感性材料)材料2:細胞分裂實例。
過程,既化解難點,又為第一問引導學生有目的用生成細胞個數x表示出細胞分裂次數y,緊接著問學生:這是一個函數嗎?將知識遷移到函數的定義,即對于任意一個y是否都有唯一的x與之相對應,為了幫助學生理解,可以借助指數函數圖像加以解釋,從而得到x=log2y是一個函數,但它又和我們平時所見過的函數形式不一樣,我們習慣上用x來表示自變量,y表示函數,所以將其改寫成y=log2x,這樣的函數稱之為對數函數,引出本節課題。
2.這兩個函數有什么共同特征?(引導學生觀察這兩個函數的特征)有了學習指數函數的經驗,再結合以上兩個實例,學生不難歸納總結出對數函數的一般定義。
3.給出對數函數的定義(提煉出對數函數的概念,明確對數函數的結構特征)想一想:字母a、x、y的含義及取值范圍。
1.你能類比指數函數的研究思路,說說對數函數的研究思路嗎?
引導學生回顧指數函數的研究思路,強調數形結合,強調函數圖象在研究性質中的作用。
關于如何得到對數函數圖像我的想法是這樣的:一方面描點法畫圖是學生需要掌握的一類重要的畫圖方法,而且讓學生去親身經歷畫出對數函數圖像的過程,這樣記憶會更深刻,所以我決定將課堂交給學生,讓他們自主探究,然后通過實物投影全班同學一起交流,對學生們的共同問題集中解決。2.在同一坐標系中作出下列對數函數的圖象:
(1)(2)(3)(4)。
我們估計學生可能遇到的困難是對數運算,所以我們坐標紙上附了列表(列表的用意:多描點,使圖像更準確;便于底數分部規律、對稱性等的發現.)請完成x,y的對應值表,并用描點法畫出函數圖像.
函數建模教學設計(優秀15篇)篇七
指數函數是學生在學習了函數基本概念和性質以后接觸到得第一個具體函數,所以在這部分的教學安排上,我更注意學生思維習慣的養成,特作如下思考:
1、設計應從哪些方面,哪些角度去探索一個具體函數,我在這部分設置了三個環節。
(1)由具體的折紙的例子引出指數函數。
設計意圖:貼近學生的生活實際,便于動手操作與觀察。讓學生充分感受我們生活中大量存在指數函數模型,從而便于學生接受指數函數的形式,突破符號語言的障礙。
(2)通過研究幾個特殊的底數的指數函數得到一般指數函數的規律。符合學生由特殊到一般的,由具體到抽象的學習認知規律。
(3)通過多媒體手段,用計算機作出底數a變換的圖像,讓學生更直觀、深刻的感受指數函數的圖像及性質。
通過引入定義剖析辨析運用,這個由特殊到一般的過程揭示了概念的內涵和外延;而后在教師的點撥下,學生作圖觀察探究交流概括運用,使學生在動手操作、動眼觀察、動腦思考、合作探究中達到對知識的發現和接受,同時滲透了分類討論、數形結合的思想,提高了學生學習數學概念、性質和方法的能力,養成了良好的學習習慣。
2、課堂練習前后呼應,各有側重。
通過問題呈現,變式教學,不但突出了重點內容,把知識加固、挖深。使教學目標得以實現。而且注重知識的延續性,為以后的學習奠定了基礎。
3、教學過程設計為六個環節:
1、情景設置,形成概念2、發現問題,深化概念。
3、深入探究圖像,加深理解性質。
4、強化訓練,落實掌握。
5、小結歸納,拓展深化。
6、布置作業,延伸課堂。各個環節層層深入,環環相扣,充分體現了在教師的'指導下,師生、生生之間的交流互動,使學生親身經歷知識的形成和發展過程。
4、通過學案教學為抓手,讓學生先學。
老師在課前充分了解了學情,以學定教,進行二次備課,抓住學生的學習困難,站在學生學的角度設計教學。
5、學生真思考,學生的真探究,才是保障教學目標得以實現的前提。
在教學中,教師通過教學設計要以給學生充分的思維空間、推理運算空間和交流學習空間,努力創設一個“活動化的課堂”才可能真正喚起學生的生命主體意識,引領他們走上自主構建知識意義的發展路徑。
函數建模教學設計(優秀15篇)篇八
2、教學目標的確定及依據。
根據教學大綱要求,結合教材,考慮到學生已有的認知結構心理特征,我制定了如下的教學目標:
(1)知識目標:理解對數函數的意義;掌握對數函數的圖像與性質;初步學會用。
(2)能力目標:滲透類比、數形結合、分類討論等數學思想方法,培養學生觀察、
分析、歸納等邏輯思維能力.。
(3)情感目標:通過指數函數和對數函數在圖像與性質上的對比,使學生欣賞數。
學的精確和美妙之處,調動學生學習數學的積極性.。
3、教學重點與難點。
難點:對數函數性質中對于在a1與01兩種情況函數值的不同變化.。
學生在整個教學過程中始終是認知的主體和發展的主體,教師作為學生學習的指導者,應充分地調動學生學習的積極性和主動性,有效地滲透數學思想方法.根據這樣的原則和所要完成的教學目標,對于本節課我主要考慮了以下兩個方面:
1、教學方法:
(1)啟發引導學生實驗、觀察、聯想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數形結合、分類討論等數學思想方法.。
2、教學手段:
計算機多媒體輔助教學.。
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學生受益終身.本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)類比學習:與指數函數類比學習對數函數的圖像與性質.。
(2)探究定向性學習:學生在教師建立的情境下,通過思考、分析、操作、探索,
(3)主動合作式學習:學生在歸納得出對數函數的圖像與性質時,通過小組討論,
使問題得以圓滿解決.。
1、溫故知新。
設計意圖:既復習了指數函數和反函數的有關知識,又與本節內容有密切關系,
有利于引出新課.為學生理解新知清除了障礙,有意識地培養學生。
分析問題的能力.。
2、探求新知。
函數建模教學設計(優秀15篇)篇九
對數函數的教學共分兩個部分完成。第一部分為對數函數的定義,圖像及性質;第二部分為對數函數的應用。對數函數是在學習對數概念的基礎上學習對數函數的概念和性質,通過學習對數函數的定義,圖像及性質,可以進一步深化學生對函數概念的理解與認識,使學生得到較系統的函數知識和研究函數的方法,并且為學習對數函數以及對數函數的應用作好準備。
在教學過程中,我類比指數函數圖象和性質的研究,研究了對數函數圖象和性質。同學們課堂上能積極主動參與獲得性質的過程。我用了三節課就對數函數的圖象和性質,圖象和性質的應用進行講解。但是從作業和課堂效果看來。同學們沒有指數函數的性質和圖象掌握的好。特反思如下:
1、學生對對數函數概念的理解及對數的運算不過關。學生在做這些運算時有時不能靈活運用公式例如換底公式,有時學生會想當然地自己“發明”公式。導致部分題目出現運算錯誤或不會。
2、在利用對數函數的單調性比較兩個對數式的大小書寫格式不規范,因此在解題的過程中就把真數和底數混亂了,這說明同學們用函數的觀點解決問題的思想方法還沒形成。
3、在解有關求定義域的問題時,學生不能很好的掌握底數a的取值范圍以及真數必修大于0.
4、同學們對對數與指數的互化不是很熟練。導致有關指數與對數互化題目出現錯誤。尤其是解決有關對數和指數混合式子的有關計算時困難很大,問題最多。還有在解決有關對數型函數定義域問題時,更不會用對數函數的單調性去解決。
以上這些原因我通過認真的反思,同時參考學生提出的意見,決定講兩節習題課,針對學生存在的共性問題解決,找出他們的盲點,同時加強練習力度。從練習中發現問題,再通過系統講解,直到絕大部分學生理解掌握為止。
函數建模教學設計(優秀15篇)篇十
教學過程中教師應通過情境創設激發學生的學習興趣,對函數與圖像的對應關系應讓學生動手去實踐,去發現,對一次函數的圖象是一條直線應讓學生自己得出。在得出結論之后,讓學生能運用“兩點確定一條直線”,很快做出一次函數的圖像。在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力。
根據學生狀況,教學設計也應做出相應的調整.如第一環節:探究新知,固然可以激發學生興趣,但也可能容易讓學生關注代數表達式的尋求,甚至部分學生形成一定的認知障礙,因此該環節也可以直接開門見山,直切主題,如提出問題:一次函數的代數形式是y=kx+b,那么,一個一次函數對應的圖形具有什么特征呢?今天我們就研究一次函數對應的圖形特征—本節課是學生首次接觸利用數形結合的思想研究一次函數圖象和性質,對他們而言觀察對象、探索思路、研究方法都是陌生的,因而在教學過程中我通過問題情境的創設,激發學生的學習興趣,引導學生觀察一次函數的圖像,探討一次函數的簡單性質,逐步加深學生對一次函數及性質的認識。本節課的重點是要學生了解正比例函數的確定需要一個條件,一次函數的確定需要兩個條件,能由條件求出一些簡單的一次函數表達式,并能解決有關現實問題。本節課設計注重發展了學生的數形結合的思想方法及綜合分析解決問題的能力及應用意識的培養,為后繼學習打下基礎。
由于這節課的知識容量較大,而且內容較難,我們所用的學案就能很好地幫助學生消化理解該知識,。在教學過程中,讓學生親自動手、動腦畫圖的方式,通過教師的引導,學生的交流、歸納等環節較成功地完成了教學目標,收到了較好的效果。但還存在著不盡人意的地方,由于課的內容容量較大,對于有些知識點,如“隨著x值的增大,y的值分別如何化?”,本應給學生更多的時間練習、討論,以幫助理解消化該知識,但由于時間緊,學生的這一活動開展的不充分。課堂氣氛不夠活躍,個別學生的主動性、積極性沒有充分調動起來。這是今后教學中應該注意的問題。
函數建模教學設計(優秀15篇)篇十一
1.理解指數函數的定義,初步掌握指數函數的圖象,性質及其簡單應用.
2.通過指數函數的圖象和性質的學習,培養學生觀察,分析,歸納的能力,進一步體會數形結合的思想方法.
3.通過對指數函數的研究,使學生能把握函數研究的基本方法,激發學生的學習興趣.
教學重點和難點。
難點是認識底數對函數值影響的認識.
教學用具。
投影儀。
教學方法。
啟發討論研究式。
教學過程。
一.引入新課。
我們前面學習了指數運算,在此基礎上,今天我們要來研究一類新的常見函數-------指數函數.
這類函數之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的'問題:。
由學生回答:與之間的關系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數關系.
由學生回答:.
在以上兩個實例中我們可以看到這兩個函數與我們前面研究的函數有所區別,從形式上冪的形式,且自變量均在指數的位置上,那么就把形如這樣的函數稱為指數函數.
1.定義:形如的函數稱為指數函數.(板書)。
教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關于對的規定:。
教師首先提出問題:為什么要規定底數大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數范圍內相應的函數值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的發生,所以規定且.
教師引導學生回顧指數范圍,發現指數可以取有理數.此時教師可指出,其實當指數為無理數時,也是一個確定的實數,對于無理指數冪,學過的有理指數冪的性質和運算法則它都適用,所以將指數范圍擴充為實數范圍,所以指數函數的定義域為.擴充的另一個原因是因為使她它更具代表更有應用價值.
剛才分別認識了指數函數中底數,指數的要求,下面我們從整體的角度來認識一下,根據定義我們知道什么樣的函數是指數函數,請看下面函數是否是指數函數.
(1),(2),(3)。
(4),(5).
學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是指數函數,其中(3)可以寫成,也是指數圖象.
最后提醒學生指數函數的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質.
3.歸納性質。
作圖的用什么方法.用列表描點發現,教師準備明確性質,再由學生回答.
函數。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數也不是偶函數。
4.截距:在軸上沒有,在軸上為1.
對于性質1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應會證明.對于單調性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導函數圖象畫圖的依據.(圖象位于軸上方,且與軸不相交.)。
在此基礎上,教師可指導學生列表,描點了.取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調性不清,所取點的個數不能太少.
此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據.連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(板書)。
1.圖象的畫法:性質指導下的列表描點法.
2.草圖:。
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關于軸對稱,而此時的圖象已經有了,具備了變換的條件.讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.
最后問學生是否需要再畫.(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿.
填好后,讓學生仿照此例再列一個的表,將相應的內容填好.為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質.
3.性質.
(1)無論為何值,指數函數都有定義域為,值域為,都過點.
(2)時,在定義域內為增函數,時,為減函數.
(3)時,,時,.
總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質.
三.簡單應用(板書)。
1.利用指數函數單調性比大小.(板書)。
一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同.再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯想指數函數,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數,且。
(板書)。
教師最后再強調過程必須寫清三句話:。
(1)構造函數并指明函數的單調區間及相應的單調性.
(2)自變量的大小比較.
(3)函數值的大小比較.
后兩個題的過程略.要求學生仿照第(1)題敘述過程.
例2.比較下列各組數的大小。
(1)與;(2)與;。
(3)與.(板書)。
先讓學生觀察例2中各組數與例1中的區別,再思考解決的方法.引導學生發現對(1)來說可以寫成,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決.(教師可提示學生指數函數的函數值與1有關,可以用1來起橋梁作用)。
最后由學生說出1,1,.
解決后由教師小結比較大小的方法。
(1)構造函數的方法:數的特征是同底不同指(包括可轉化為同底的)。
(2)搭橋比較法:用特殊的數1或0.
三.鞏固練習。
練習:比較下列各組數的大小(板書)。
(1)與(2)與;。
(3)與;(4)與.解答過程略。
四.小結。
3.簡單應用。
五.板書設計。
探究活動。
答案:有兩個交點.
答案:15天的合同可以簽,而30天的合同不能簽.
函數建模教學設計(優秀15篇)篇十二
1.設計構思:1.1設計理念:
本設計基于學生的認知規律,在設計時將盡可能采用探索式教學,讓學生自己觀察,主動去探索。而教學時盡可能夠顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果。同時在教學中將理論聯系實際,讓學生用所學的知識去解決問題(練習)。而教師在整個過程中充當引導者、組織者,注重培養學生的歸納發現能力、理論證明能力、多位拓展能力等。
1.2教材地位和作用:
函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅是前面所學函數知識的延伸,更為今后的函數學習打下理論基礎,還有利于培養學生的思維能力,及分析問題和解決問題的能力。
1.3教學目標的設計:重點:函數單調性的概念;難點:函數單調性的判定及證明;關鍵:增函數與減函數的概念的理解。教學目標的確定及依據:
依據教學目標和教育原則,本節知識的特點以及學生已有的知識結構現狀,我制定了如下教育教學目標。
(1)、知識目標:理解函數單調性的概念,掌握判斷函數單調性的基本方法(作差比較法,作商比較法。主要是做差比較法);了解函數單調區間的概念。
(2)、能力目標:培養學生閱讀、自學、分析、歸納能力;抽象思維能力及推理判斷的能力和勇于探索的精神。
(3)、情感目標:體會用運動變化的觀點去觀察、分析事物的方法。培養學生對數學美的藝術體驗。在平等的教學氛圍中,通過學生之間、師生之間的交流、合作與評價,拉近學生之間、師生之間的情感距離。培養學生對數學的興趣。
1.4教學方法:輔導自學法、討論探究法、講授法。
教學手段:根據本節內容的特點,為了更有效地突出教學重點,突破教學難點,展示知識的發生過程,提高課堂效率,使教學目標更完美地體現。我將運用現代信息技術輔助課堂教學。使用投影儀對學生探究的成果進行展示。
1.5教學過程:
(意圖:明確目標、引起思考。給出函數單調性的圖形語言,調動學生的參與意識,通過直觀圖形得出結論,滲透數形結合的數學思想。用提問的方式,簡單介紹本節課的主要內容,激發學習興趣要求學生帶著問題閱讀教材,通過問題的解決掌握基本內容。有助于培養學生的觀察能力、自學能力和解決問題的能力。)。
成果展示總結強調:
1、單調區間如何理解和劃分?
2、增、減函數的定義用語言如何描述?(可以結合初中對函數的描述進行引導)。
3、如何從圖形上判斷單調性?
(意圖:通過展示自學成果,加深對概念的多方理解,讓部分學生體會學習的樂趣,從而激發和帶動其他同學的學習積極性。另外強調兩點:
1、必須在函數定義域上來討論函數增減性;
2、對于定義域內的某個區間的任意兩個自變量成立)。
總結探究:對一次函數y=kx+b。
(意圖:通過討論使學生深入理解和掌握概念,培養學生的抽象思維能力,培養學生研究數學的能力,學會歸納總結。)。
時
判斷f(x1),f(x2)大小時的基本方法是什么?還有其它方法嗎?(作商法)。
總結歸納:
1、作差時的基本變形有那些?(主要用:分解因式、配方等)。
2、什么時候可以用作商法?
2(意圖:學生難以從例題中歸納出判斷(證明)方法及步驟,所以在詳細講解的過程中,通過分析、引導學生抽象、概括出方法及步驟,提示學生注意證明過程的規范性及嚴謹性。同時說明數學題型間的轉化關系,使學生體驗數學中的藝術美。另外通過探究加深對基本方法的掌握,拓寬解題思路使學生容易突破本節的難點,掌握本節重點)。
應用探究;
1、函數f(x)=1的定義域什么?x。
12、函數f(x)=在定義域上也是減函數嗎?
x
3、課堂實踐(練習)。
(意圖:通過此題的探究、輔導、講解,強化解題步驟,形成并提高解題能力。調動學生參與討論,形成生動活潑的學習氛圍,從而培養學生的發散思維,開闊解題思路,使學生形成良好的學習習慣)。
課后延展:、作業,思考。
1、比較一次函數y=2x+3和二次函數y=x2的圖象上有最低點和最高點嗎?
2、通過圖象觀察函數值有最大或最小值嗎?
3、再換成函數y=2x+3(0。
(意圖:通過練習作業加深對概念的理解,熟悉判斷方法,達到鞏固,消化新知的目的。同時思考題的設計對下一節的學習起到承上啟下的作用。)。
函數建模教學設計(優秀15篇)篇十三
正比例函數是本章的重點內容,是學生在初中階段第一次接觸的函數,這部分內容的學習是在學生已經學習了變量和函數的概念及圖像的基礎之上進行的。它是對前面所學知識的應用,又為后面學習做好鋪墊。因此,本節課的知識起到了承上啟下的作用。
學情分析。
學習本節課之前,學生已經學習了變量和函數等知識。在描點法的學習中初步感受了通過描點法畫出圖象,并感知其增感性的過程,為本節課新知識的學習做好準備,所以本節課的學習問題不大。
知識技能:1、初步理解正比例函數的概念及其圖象的特征。2、能畫出正比例函數的圖象。3、能夠判斷兩個變量是否構成正比例函數關系。
數學思考:1、通過“燕鷗飛行路程問題”的研究,體會建立函數模型的.思想。2、通過正比例函數圖像的學習和探究,感知數行結合思想。
解決問題:1、能夠要求運用“列表法”和“兩點法”作正比率函數的圖象。2、會利用正比例函數解決簡單的數學問題。
情感態度:1、結合描點作圖,培養學生認真、細心、嚴謹的學習態度和學習習慣。2、通過正比率函數概念的引入,使學生進一步認識數學是由于人們需要而產生的,與現實世界密切相關。同時滲透熱愛自然和生活的教育。
教學重點和難點。
重點:正比率函數的概念。
難點:正比率函數的性質。
函數建模教學設計(優秀15篇)篇十四
“指數函數及性質”的教學共分兩個課時完成,這是第一課時。本節課主要學習了指數函數的定義,研究了指數函數的圖像及相關的性質。回顧這節課,心中有很多感想,也有下面一些思考:
1.這節課是在學生系統的學習了指數概念、函數概念,基本掌握了函數性質的基礎上進行學習的,具有初步的函數知識,但是對于研究具體的初等函數的性質的基本方法和步驟還比較陌生,對于指數函數要怎么樣進行較為系統的研究對學生來說是有困難的,因此這節課的每一個環節以我引導,以學生的自主探究為主來完成是符合學情的。
2.設計“指數函數的圖象及性質”,“y=ax的圖象和y=(1/a)x的圖象間的關系”.“a的大小對函數圖象的影響”三個問題,讓學生通過幾何畫板軟件動手畫圖操作、自主探究、主動思考來達到對知識的發現和接受,改變過去機械接受和死記結論的狀況,符合新課改的理念,同時也完成了這節課的主要教學任務。
3.在對底數a的范圍的思考及三個探究性問題后都設置了練習,能及時反饋學生對所探求到的知識的掌握程度,便于及時調整課堂教學行為。從課后看學生對這些知識的掌握應該是比較好的。
4.這節課的學習及對函數研究方法和步驟的總結對后續學習新的函數起到了重要的示范作用。
在整個的教學過程中,始終體現以學生為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,強調學生的品德、思維和心理等方面的發展。重視討論、交流和合作,重視探究問題的習慣的培養和養成。同時,考慮不同學生的個性差異和發展層次,使不同的學生都有發展,體現因材施教的原則。
在教學的過程中,考慮到學生的實際,有意地設計了一些鋪墊和引導,既鞏固舊有知識,又為新知識提供了附著點,充分體現學生的主體地位。
三.存在的問題。
1.沒有充分調動學生的積極性,課堂氣氛顯得沉悶。
2.盡量放手讓學生自己去解決問題,教師自己講得偏多,學生的主體作用體現得不夠。
3.指數函數概念部分的教學時間稍多,后面教學過程稍顯倉促,學生自主探究的時間不夠,因此違背了教學設計的初衷。當然我會通過對學生作業的批改獲得更全面的對學生知識掌握的評價和課堂效果的反思,并在后續的時間里修訂課堂設計方案,達到預期的教學效果,實現學生的目標掌握和能力發展。
函數建模教學設計(優秀15篇)篇十五
一次函數圖像,是北師大八年級上冊的內容。教學這一節時,我沒有按照課本的講解。我著這樣安排的,先講正比例函數的圖像和性質,用一課時,今天我就是講這一節。
先介紹函數的圖像、畫法。再畫正比例函數的圖像,引出正比例函數是經過原點的直線。接著介紹怎樣作正比例函數的圖像。用這種方法,作幾個正比例函數的圖像,總結規律。接著練習。
練習之后我備課時又有一個性質要介紹,由于時間的關系,沒有講解,就下課了!
反思:1、課堂中前段時間留給學生的時間長,沒完成課前準備的教學任務。
2、本節課講到第三個性質。
3、練習題要精而且少,難易適中。
4、注意課前準備,上課注意語言。函數教學反思反比例函數教學反思。
將本文的word文檔下載到電腦,方便收藏和打印。