教案模板是教師為了更好地組織和展開教學(xué)活動而設(shè)計的一種工具,它可以幫助教師系統(tǒng)地規(guī)劃和安排教學(xué)內(nèi)容。接下來,讓我們一起來看看這些教案模板范文,探索一下如何編寫一份優(yōu)秀的教學(xué)設(shè)計。
最新一元二次方程詳細(xì)教案(模板14篇)篇一
(二)整體感知
(三)重點、難點的學(xué)習(xí)及目標(biāo)完成過程
1.復(fù)習(xí)提問
(1)什么叫做方程?曾學(xué)過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
最新一元二次方程詳細(xì)教案(模板14篇)篇二
1、知識與能力目標(biāo):要求學(xué)生會根據(jù)實際問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學(xué)生歸納、分析的能力。
2、過程與方法目標(biāo):引導(dǎo)學(xué)生分析實際問題中的數(shù)量關(guān)系,回顧一元一次方程的概念,組織學(xué)生討論,讓學(xué)生自己抽象出一元二次方程的概念。
3.、情感、態(tài)度與價值觀:通過數(shù)學(xué)建模的分析、思考過程,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會做數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識并與校園綠化相結(jié)合。
教學(xué)重點、難點。
教學(xué)重點:通過實際問題模型建立一元二次方程的概念,認(rèn)識一元二次方程一般形式.
2。難點:通過實際問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
教學(xué)過程:
(一)創(chuàng)設(shè)情景,導(dǎo)入新課。
分析:設(shè)長方形綠地的寬為x米,則列方程,
整理可得。
分析:設(shè)長方形綠地的寬為x米,則列方程,
整理可得。
【設(shè)計意圖】因為數(shù)學(xué)來源與生活,所以以學(xué)生的實際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。同時幫助學(xué)生從實際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的,從而激發(fā)學(xué)生的求知欲望,順利地進入新課,并激發(fā)學(xué)生環(huán)保意識。
最新一元二次方程詳細(xì)教案(模板14篇)篇三
1、構(gòu)建本章的部分知識框圖。
2、復(fù)習(xí)一元二次方程的概念、解法。
1、通過對本章方程解法的復(fù)習(xí),進一步提高學(xué)生的運算能力。
2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
解法的靈活選擇;例4和例5的解法。
導(dǎo)入新課
問題:本章中,我們有哪些收獲?(教師點撥引導(dǎo)學(xué)生構(gòu)建本章部分知識框圖)
共同探究
例1
例2
(1)
解法及其關(guān)系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
(4)方法優(yōu)選
例4
例5
解關(guān)于x的方程
錯誤解法
正確解法
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
鞏固提高
最新一元二次方程詳細(xì)教案(模板14篇)篇四
課標(biāo)要求熟練掌握用配方法解一元二次方程。配方法和公式法是解一元二次方程的通用方法,它的推導(dǎo)是建立在直接開平方法的基礎(chǔ)上,又是推導(dǎo)求根公式和一元二次方程根與系數(shù)的關(guān)系的基礎(chǔ),更是為今后學(xué)生能學(xué)好二次函數(shù)打基礎(chǔ),二次函數(shù)的頂點坐標(biāo)的確定和二次函數(shù)與一元二次方程的關(guān)系息息相關(guān)。再者列一元二次方程解應(yīng)用題和壓軸題----二次函數(shù)的綜合題是中考試題中常見的題型。一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)占有重要的地位。
2、過程與方法。
(1)理解并掌握配方法。
(2)通過探索配方法的過程,體會轉(zhuǎn)化,降次的數(shù)學(xué)思想方法,培養(yǎng)觀察、比較、分析、概括、歸納的能力。
3、情感態(tài)度與價值觀。
通過分析實際問題中的數(shù)量關(guān)系,建立一元二次方程模型解決問題,進一步認(rèn)識方程模型的重要性,增強學(xué)生的數(shù)學(xué)應(yīng)用意識與能力。
難點:配方的過程。
最新一元二次方程詳細(xì)教案(模板14篇)篇五
1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習(xí)慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。
(一)導(dǎo)入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
(二)新課教學(xué)。
師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
(下去巡視)。
(三)小結(jié)作業(yè)。
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強鞏固,做練習(xí)題的1、2(2)題。
四、板書設(shè)計。
五、教學(xué)反思。
最新一元二次方程詳細(xì)教案(模板14篇)篇六
理解并掌握一元二次方程求根公式的推導(dǎo)過程,能正確、熟練地運用公式法解一元二次方程。
【過程與方法】。
經(jīng)歷探究求根公式的過程,發(fā)展合情推理能力,提高運算能力并養(yǎng)成良好的運算習(xí)慣。
【情感、態(tài)度與價值觀】。
通過公式法解一元二次方程,感受解法的多樣性,在學(xué)習(xí)活動中獲取成功的體驗。
【教學(xué)重點】。
【教學(xué)難點】。
(一)引入新課。
配方,得。
(四)小結(jié)作業(yè)。
作業(yè):課后練習(xí)題,試著用多種方法解答。
四、板書設(shè)計。
略
最新一元二次方程詳細(xì)教案(模板14篇)篇七
1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習(xí)慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。
(一)導(dǎo)入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
(二)新課教學(xué)。
師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
(下去巡視)。
(三)小結(jié)作業(yè)。
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強鞏固,做練習(xí)題的1、2(2)題。
最新一元二次方程詳細(xì)教案(模板14篇)篇八
解一元二次方程有四種方法,直接開平方法、配方法、公式法、因式分解法,這四種方法各有千秋。直接開平方法很簡單,在這里不做過多的介紹。為保證學(xué)生掌握基本的運算技能,教學(xué)中進行了一定量的訓(xùn)練,但要避免學(xué)生簡單的模仿。我們在探究一元二次方程解法的過程中,要加強思想方法的滲透,發(fā)展學(xué)生的思維能力。在解一元二次方程的幾種方法中,均需要用到轉(zhuǎn)化的思想方法。如配方法需要將方程轉(zhuǎn)化為能直接開平方的形式,公式法能根據(jù)一元二次方程轉(zhuǎn)化為兩個一元一次方程,所有這些均體現(xiàn)了轉(zhuǎn)化的思想。在教學(xué)時老師引導(dǎo)學(xué)生在主動進行觀察、思考核探究的基礎(chǔ)上,體會數(shù)學(xué)思想方法在其中的作用,充分發(fā)展學(xué)生的思維能力。
1.會用配方法、公式法、因式分解法解簡單數(shù)字系數(shù)的一元二次方程。
2.能夠根據(jù)一元二次方程的特點,靈活選用解方程的方法,體會解決問題策略的多樣性。
1.參與對一元二次方程解法的探索,體驗數(shù)學(xué)發(fā)現(xiàn)的過程,對結(jié)果比較、驗證、歸納、理清幾種解法之間的關(guān)系,并能根據(jù)方程的特點靈活選擇適當(dāng)?shù)姆椒ń庖辉畏匠獭?/p>
在解一元二次方程的實踐中,交流、總結(jié)經(jīng)驗和規(guī)律,體驗數(shù)學(xué)活動樂趣。
重點:掌握配方法、公式法、因式分解法解一元二次方程的步驟,并熟練運用上述方法解題。
難點:根據(jù)方程的特點靈活選擇適當(dāng)?shù)姆椒ń庖辉畏匠獭?/p>
探索發(fā)現(xiàn),講練結(jié)合。
最新一元二次方程詳細(xì)教案(模板14篇)篇九
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.。
3.解決一些概念性的題目.。
4.態(tài)度、情感、價值觀。
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.。
一、復(fù)習(xí)引入。
學(xué)生活動:列方程.。
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________.。
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.。
整理,得:________.。
二、探索新知。
學(xué)生活動:請口答下面問題.。
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
解:去括號,得:
移項,得:4x2-26x+22=0。
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.。
解:去括號,得:
x2+2x+1+x2-4=1。
移項,合并得:2x2+2x-4=0。
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.。
三、鞏固練習(xí)。
教材p32練習(xí)1、2。
四、應(yīng)用拓展。
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.。
證明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
五、歸納小結(jié)(學(xué)生總結(jié),老師點評)。
本節(jié)課要掌握:
六、布置作業(yè)。
最新一元二次方程詳細(xì)教案(模板14篇)篇十
第二步:將左端的二次三項式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習(xí)。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當(dāng)x=________時,y的值為0;當(dāng)x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
文檔為doc格式。
最新一元二次方程詳細(xì)教案(模板14篇)篇十一
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點和難點:
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
最新一元二次方程詳細(xì)教案(模板14篇)篇十二
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.。
3.解決一些概念性的題目.。
4.態(tài)度、情感、價值觀。
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情。
一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.。
學(xué)生活動:列方程。
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________。
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點。
整理,得:________。
學(xué)生活動:請口答下面問題。
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師點評:
(1)都只含一個未知數(shù)x;
(2)它們的最高次數(shù)都是2次的;
(3)都有等號,是方程.。
解:去括號,得:
移項,得:4x2-26x+22=0。
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.。
解:去括號,得:
x2+2x+1+x2-4=1。
移項,合并得:2x2+2x-4=0。
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.。
教材p32練習(xí)1、2。
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.。
證明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
本節(jié)課要掌握:
最新一元二次方程詳細(xì)教案(模板14篇)篇十三
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
【教學(xué)過程】。
(一)創(chuàng)設(shè)情景,引入新課。
由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
(三)小結(jié)。
(四)布置作業(yè)。
最新一元二次方程詳細(xì)教案(模板14篇)篇十四
九年級的學(xué)生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學(xué)習(xí)了一元一次方程及相關(guān)概念,學(xué)習(xí)了整式、分式和二次根式,從知識結(jié)構(gòu)上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎(chǔ)。這個階段的學(xué)生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當(dāng)遇到新的問題時,會自然的產(chǎn)生進一步探究的欲望。而我所教(11)班是年級中一個普通班,學(xué)生數(shù)學(xué)底子薄,基礎(chǔ)差,學(xué)生由于學(xué)習(xí)困難,基礎(chǔ)差,沒有自信,也就對數(shù)學(xué)的學(xué)習(xí)興趣越來越弱,有人甚至要放棄對數(shù)學(xué)的學(xué)習(xí),作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學(xué)的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學(xué)基本概念、基本運算方法悄然走進學(xué)生的生活、走進他們對知識的運用中去。
教學(xué)目標(biāo)。
一、知識與技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。
2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數(shù);。
3.通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、探究和歸納的能力。
二、過程與方法。
三、情感態(tài)度與價值觀。
2.通過本節(jié)知識的學(xué)習(xí),使學(xué)生認(rèn)識到知識的產(chǎn)生、變化和發(fā)展的過程。
教學(xué)重點和難點。
難點:1.由實際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程。2.正確識別一般式中的“項”及“系數(shù)”。