教學難點是在教學過程中學生理解和掌握程度相對較低,需要教師進行重點突破的內容。希望這些初中教案范文能夠對教師們的課堂教學提供一些參考和借鑒的思路。
初中數學有理數乘法教案(匯總18篇)篇一
數學學習是最看重基礎的,只有堅實的基礎才能夠做好每一道題目。那么今天小編就來為大家分享和總結一下關于初中數學有理數的乘方教案的相關信息,希望同學們能夠將這篇教案中的知識給總結清楚了。
一、說教材。
1、地位作用。
有理數的乘方是初一年級上學期第一章第五節的教學內容,是有理數的一種基本運算,從教材編排的結構上看,共需要4個課時,此課為第一課時,是在學生學習了有理數的加、減、乘、除運算的基礎上來學習的,它既是有理數乘法的推廣和延續,又是后繼學習有理數的混合運算、科學記數法和開方的基礎,起到承前啟后、鋪路架橋的作用。在這一課的教學過程中,可以培養學生觀察問題、分析問題和解決問題的能力,以及轉化的數學思想,通過這一課的學習,對培養學生的這些能力和轉化的數學思想起到很重要的作用。
2、教學目標。
(1)讓學生理解并掌握有理數的乘方、冪、底數、指數的概念及意義;能夠正確進行有理數的乘方運算。
(2)在生動的情境中讓學生獲得有理數乘方的初步經驗;培養學生觀察、分析、歸納、概括的能力;經歷從乘法到乘方的推廣的過程,從中感受轉化的數學思想。
(3)讓學生通過觀察、推理,歸納出有理數乘方的符號法則,增進學生學好數學的自信心。
(4)經歷知識的拓展過程,培養學生探究的能力和動手操作的能力,體會與他人合作交流的重要性。
3、教學重點:
有理數的乘方、冪、底數、指數的概念及其相互間的關系;有理數乘方的運算方法。
4、教學難點:
有理數的乘方、冪、底數、指數的概念及其相互間的關系的理解。
二、說教學方法。
啟發誘導式、實踐探究式。
三、說學法。
根據初一學生好動、好問、好奇的心理特征,課堂上采取由淺入深的啟發誘導,隨著教學內容的深入,讓學生一步一步的跟著動腦、動手、動口,在合作交流中培養學生學習的積極性和主動性,使學習方式由“學會”變為“會學”。
四、說教學手段。
利用多媒體教學,目的之一是使課堂生動、形象又直觀,能激發學生的學習興趣,目的之二是增大教學容量,增強教學效果。
五、說教學設計。
以上就是小編為大家分享和總結的關于初中數學有理數的乘方教案的相關信息,希望同學們能夠很好地將這一部分的知識給總結清楚,更好地為考試做準備。
初中數學有理數乘法教案(匯總18篇)篇二
知識與技能:理解掌握有理數的減法法則,會將有理數的減法運算轉化為加法運算。
過程與方法:通過把減法運算轉化為加法運算,向學生滲 透轉化思想,通過有理數的 減法運算,培養學生的運算能力。
情感態度與價值觀:通過揭示有理數的減法法則,滲透事物間普遍聯系、相互轉化的辯證唯物主義思想。
運用有理數的減法法則,熟練進行減法運算。
理解有理數減法法則。
本節是在學習了正負數、相反數、有理數加法運算之后,以初中代數第一 冊第53頁的有理數減法法則及有理數減法運算的例1、例2為課堂教學內容。有理數的'減法運算是一種基本的有理數運算,對今后正確熟練地進行有理數的混合運算,并對解決實際問題都有十分重要的作用。
師生互動法
幻燈片
1課時
1、計算(口答):
(1) 1+(-2)
(2) -10+(+3)
(3) +10+(-3)
2、出示幻燈片二:
如圖:
教師引導觀察
教師總結:這就是我們今天要學習的內容(引入新課,板書課題)
1、師:誰能把10-3=7這個式子中的性質符號補出來呢?
(+10)-(+3)=7
再計算:(+10)+(-3),師讓學生觀察兩式結果,由此得到:
(+10)-(+3)=(+10)+(-3)
觀察減法是否可以轉化為加法 計算呢?是如何轉化的呢?
(教師發揮主導作用,注意學生的參與意識)
2、再看一題:
計算:(-10)-(-3)
問題:計算:(-10)+(+3)
教師引導,學生觀察上述兩題結果,由此得到
(-10)-(-3)=(-10)+(+3)
教師進一步引導學生觀察式子,你能得到什么結論呢?
教師總結:由以上兩式可以看出減法運算可以轉化成加法運算。
教師提問:通過以上的學習,同學們想一想兩個有理數相減的法則是什么?
教師對學生回答給予點評,總結有理數減法法則:減去一個數,等于加上這個數的相反數。
強調法則:(1)減法轉化為加法,減數要變成相反數(2)法則適用于任何兩個有理數相減(3)用字母表示一般形式為a-b=a+(-b)
3 、例題講解:
出示幻燈片三(例1和例2)
例1計算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教師板書做示范,強調解題的規范性, 然后師生共同總結解題步驟,(1)轉化(2)進行加法運算。
師巡視指導,最后師生講評兩個學生的解題過程。
課后練習1、2
教師巡視指導
師組織學生自己編題
1、 談談本節課你有哪些收獲和體會?[
2、本節課涉及的數學思想和數學方法是什么
教師點評:有 理數減法法則是一個轉化法則,要求同學們掌握并能應用進 行計算。
課堂檢測(包括基礎題和能力提高題)
1、-9-(-11)
2、3-15
學生思考后搶答,盡量照顧不同層次的學生參與的積極性。
學生觀察思考如何計算
學生觀察思考
互相討論
學生口述解題過程
由兩個學生板演,其他學生在練習本上做
第1小題學生搶答
第2小題找兩個 學生板演。
學生回答
學生相互交流自己的收獲和體會,教師參與互動并給予鼓勵性評價。
綜合考查學以致用
既復習鞏固有理數加法法則,同時為進行有理數減法運算打下基礎
創設問題情境,激發學生的認知興趣。
讓學生通過嘗試,自己認識減法可以轉化為加法計算。
學生通過一個問題易于充分發揮學習的主動性,同時也培養了學生分析問題的能力
可以培養學生嚴謹的學風和良好 的學習習慣,同時鍛煉學生的表達能力
可以照顧不層次的學生,調動學生學習積極性。
通過練習讓學生進一步鞏固新知,體驗知識的應用性。
能增強學生學習的主動性和參與意識。
學生嘗試小結,疏理知識,自由發表學習心得,能鍛煉學生的語言表達能力和歸納概括能力。
鍛煉學生綜合運用知識,獨立解題的能力
板書設計:
2.6有 理數的減法
有理數減法法則:
(+10)-(+3)=(+10)+(-3)
( -10)-(-3)=(-10)+(+3)
減去一個數等于加上這個數的相反數. 例1:
例2:
練習:
本節課我在問題探索過程中,以提問的形式展現新問題,激發學生的好奇心,學生學習的積極性很高,討論交流的氣氛很熱烈,解決問題后有 一種成就感,從而使學生更積極主動的學習,并且營造了良好的學習氛圍,從而收到較好的學習效果。
初中數學有理數乘法教案(匯總18篇)篇三
經歷探索有理數乘法法則過程,掌握有理數的乘法法則,能用法則進行有理數的乘法。
經歷探索有理數乘法法則的過程,發展學生歸納、猜想、驗證等能力。
培養學生積極探索精神,感受數學與實際生活的聯系。
教學重、難點與關鍵
1.重點:應用法則正確地進行有理數乘法運算。
2.難點:兩負數相乘,積的符號為正與兩負數相加和的符號為負號容易混淆。
3.關鍵:積的符號的確定。
教具準備
投影儀。
一、引入新課
五、新授
課本第28頁圖1.4-1,一只蝸牛沿直線l爬行,它現在的位置恰在l上的點o.
(1)如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(2)如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(3)如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(4)如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4個問題涉及2組相反意義的量:向右和向左爬行,3分鐘后與3分鐘前,為了區分方向,我們規定:向左為負,向右為正;為區分時間,我們規定:現在前為負,現在后為正,那么(1)中2cm記作+2cm,3分后記作+3分。
初中數學有理數乘法教案(匯總18篇)篇四
1、知識目標:了解有理數乘法法則的合理性,掌握有理數的乘法法則,熟練運用有理數的法則進行準確運算。
2、能力目標:通過對問題的變式探索,培養自己觀察、分析、抽象、概括的能力。
3、情感目標:培養積極思考和勇于探索的精神,形成良好的學習習慣。
重點:有理數乘法運算法則的推導及熟練運用。
難點:有理數乘法運算中積的符號的確定。
1、在小學我們已經接觸了乘法,那什么叫乘法呢?
求幾個的運算,叫乘法。
一個數同0相乘,得0。
2、請你列舉幾道小學學過的乘法算式。
規定:向右為正,現在之后為正。
3分鐘后蝸牛應在o點的()邊()cm處。
可以列式為:(+2)(+3)=。
問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘后蝸牛應在o點的()邊()cm處。
可以列式為:
問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘前蝸牛應在o點的()邊()cm處。
可以表示為:
問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘前蝸牛應在o點的()邊()cm處。
可以表示為:
2、觀察這四個式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正數乘正數積為__數:負數乘負數積為__數:
負數乘正數積為__數:正數乘負數積為__數:
乘積的絕對值等于各乘數絕對值的_____。
思考:當一個因數為0時,積是多少?
兩數相乘,同號得,異號得,并把絕對值。
任何數同0相乘,都得。
1、你能確定下列乘積的符號嗎?
37積的符號為;(—3)7積的符號為;
3(—7)積的`符號為;(—3)(—7)積的符號為。
2先閱讀,再填空:
(—5)x(—3)。同號兩數相乘。
(—5)x(—3)=+()得正。
5x3=15把絕對值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]計算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
請同學們仿照上述步驟計算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
讓我們來總結求解步驟:
兩個數相乘,應先確定積的,再確定積的。
1、小組口算比賽,看誰更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔細計算。,注意積的符號和絕對值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列說法錯誤的是()。
a、一個數同0相乘,仍得0。
b、一個數同1相乘,仍得原數。
c、如果兩個數的乘積等于1,那么這兩個數互為相反數。
d、一個數同—1相乘,得原數的相反數。
2、在—2,3,4,—5這四個數中,任意兩個數相乘,所得的積最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、計算下列各題:
(5)(—6)(—5)=;(6)(—5)(—6)=。
初中數學有理數乘法教案(匯總18篇)篇五
本次說課我共分成教材分析、教學方法與手段、教學過程分析和幾點思考四部分,具體內容如下:
(一)教材的地位和作用:本節課的內容是《新人教版七年級數學》教材中的第一章第四節,“有理數的乘除法”是把“有理數乘法”和“有理數除法”的內容進行整合,在“有理數的加減混合運算”之后的一個學習內容。在本章教材的編排中,“有理數的乘法”起著承上啟下的作用,它既是有理數加減的深入學習,又是有理數除法、有理數乘方的基礎,在有理數運算中有很重要的地位。“有理數的乘法”從具體情境入手,把乘法看做連加,通過類比,讓學生進行充分討論、自主探索與合作交流的形式,自己歸納出有理數乘法法則。通過這個探索的過程,發展了學生觀察、歸納、猜測、驗證的能力,使學生在學習的過程中獲得成功的體驗,增強了自信心。所以本節課的學習具有一定的現實地位。
(二)學情分析:因為學生在小學的學習里已經接觸過正數和0的乘除法,對于兩個正數相乘、正數與0相乘、兩個正數相除、0與正數相除的情況學生已經掌握。同時由于前面學習了有理數的加減法運算,學生對負數參與運算有了一定的認識,但仍還有一定的困難。另外,經過前一階段的教學,學生對數學問題的研究方法有了一定的了解,課堂上合作交流也做得相對較好。
(三)教學目標分析:基于以上的學情分析,我確定本節課的教學目標如下。
1、知識目標:讓學生經歷學習過程,探索歸納得出有理數的乘除法法則,并能熟練運用。
2、能力目標:在課堂學習過程中,使學生經歷探索有理數乘除法法則的過程,發展觀察、猜想、歸納、驗證、運算的能力,同時在探索法則的過程中培養學生分類和歸納的數學思想。
3、情感態度和價值觀:在探索過程中尊重學生的學習態度,樹立學生學習數學的自信心,培養學生嚴謹的數學思維習慣。
4、教學重點:會進行有理數的乘除法運算。
5、教學難點:有理數乘除法法則的探索與運用。
確定教學目標的理由依據是:新課標中指出課堂教學中應體現知識與技能、過程與方法、情感態度與價值觀的.三維目標,同時也基于本節內容的地位與作用。而確定重難點是根據新課標的要求,結合學生的學情而確定的。
根據本節課的內容特點及學生的學情,我選擇的教學方法是引導探索、小組合作、效果反饋的教學方法。為了提高課堂的教學容量,增加實際問題的直觀性,我選用多媒體輔助教學手段。
關于學法:本節課里我主要指導學生采用了自主探索、合作交流、自我反思的學習方法,我想這樣更能有效的培養學生學習數學的能力,更好的培養學生數學地思考問題。
本課共6課時,重點是有理數乘除法法則的教學,下面我重點說有理數乘法法則的教學。整體的教學程序包括:情景創設、提出問題;引導探索、歸納結論;知識運用、加深理解;變式練習、形成能力;回顧與反思、納入知識系統;布置作業;板書設計七部分。
初中數學有理數乘法教案(匯總18篇)篇六
教案是教師為順利而有效地開展 教學活動,根據教學 大綱和教科書要求及學生的實際情況,以課時或課題為單位,對 教學內容、教學 步驟、教學 方法等進行的具體設計和安排的一種實用性教學文書。以下是小編整理的關于有理數教案,希望大家認真閱讀!
這一節是初中數學中非常重要的內容,從知識上講,數軸是數學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數軸是數形結合的起點,而數形結合是學生理解數學、學好數學的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學習數軸概念打下了一定的基礎。通過問題情境類比得到數軸的概念,是這節課的主要學習方法。同時,數軸又能將數的分類直觀的表現出來,是學生領悟分類思想的基礎。
(3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生的主動性。
從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。教學中,數軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數軸都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。
(一)知識與技能
1、掌握數軸的三要素,能正確畫出數軸。
2、能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數。
(二)過程與方法
1、使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識。
2、對學生滲透數形結合的思想方法。
(三)情感、態度與價值觀
1、使學生初步了解數學來源于實踐,反過來又服務于實踐 的辯證唯物主義觀點。
2、通過畫數軸,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。
1、重點:正確掌握數軸畫法和用數軸上的點表示有理數。
2、難點:有理數和數軸上的點的對應關系。
1、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的'是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。
2、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下:
定 義 規定了原點、正方向、單位長度的直線叫數軸
三要素 原 點 正方向 單位長度
應 用 數形結合
1、教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發興趣—手腦并用—啟發誘導—反饋矯正”的教學方法。
初中數學有理數乘法教案(匯總18篇)篇七
學習目標:。
1、理解有理數的運算法則;能根據有理數乘法運算法則進行有理的簡單運算。
2、經歷探索有理數乘法法則過程,發展觀察、歸納、猜想、驗證能力.
3、培養語言表達能力.調動學習積極性,培養學習數學的興趣.
學習重點:有理數乘法。
學習難點:法則推導。
教學方法:引導、探究、歸納與練習相結合。
教學過程。
一、學前準備。
計算:
(1)(一2)十(一2)。
(2)(一2)十(一2)十(一2)。
(3)(一2)十(一2)十(一2)十(一2)。
(4)(一2)十(一2)十(一2)十(一2)十(一2)。
猜想下列各式的值:
(一2)×2(一2)×3。
(一2)×4(一2)×5。
二、探究新知。
1、自學有理數乘法中不同的形式,完成教科書中29~30頁的填空.
2、觀察以上各式,結合對問題的研究,請同學們回答:
(3)負數乘以正數積為__________數,(4)負數乘以負數積為__________數。
提出問題:一個數和零相乘如何解釋呢?
初中數學有理數乘法教案(匯總18篇)篇八
2、使學生更多經歷有關知識發生、規律發現過程。
重點:對乘法運算法則的運用,對積的確定。
難點:如何在該知識中注重知識體系的延續。
一、知識導向:
有理數的乘法是小學所學乘法運算的延續,也是在學習了有理數的加法法則與有理數的減法法則的基礎上所學習的,所以應注意到各種法則間的必然聯系,在本節中應注重學生學習的過程,多讓學生經歷知識、規律發現的過程。在學習中應掌握有理數的乘法法則。
二、新課:
1、知識基礎:
其一:小學所學過的乘法運算方法;
其二:有關在加法運算中結果的確定方法與步驟。
2、知識形成:
(引例)一只小蟲沿一條東西向的跑道,以每分鐘3米的速度爬行。
列式:
即:小蟲位于原來出發位置的東方6米處。
拓展:如果規定向東為正,向西為負。
列式:
即:小蟲位于原來出發位置的西方6米處。
概括:把一個因數換成它的相反數,所得的積是原來的積的相反數。
3、設疑:
如果我們把中的一個因數2換成它的相。
反數-2時,所得的積又會有什么變化?
當然,當其中的一個因數為0時,所得的積還是等于0。
兩數相乘,同號得正,異號得負,并把絕對值相乘;
任何數與零相乘,都得零。
例:計算:
(1)(2)。
三、鞏固訓練:
p52.1、2、3。
四、知識小結:
本節課從實際情形入手,對多種情形進行分析,從一般中找到規律,從而得到有關有理數乘法的運算法則。在運算中應強調注意如何正確得到積的結果。
五、家庭作業:
p57.1、2、3。
六、每日預題:
2、在對有理數的簡便運算中,一般應考慮到哪些可能的情況?
初中數學有理數乘法教案(匯總18篇)篇九
2.探索運用乘法運算律簡化運算。
〖探索1。
〖閱讀理解。
乘法交換律和結合律(見p40)。
〖探索2。
下列計算若按順序依次相乘怎樣算?用運算律為什么能簡化運算?
(1)252004(2)-1999。
〖探索3。
運用運算律真的能節省時間嗎?分兩個大組,比一比:
計算(-198)。
〖練習1。
運用乘法交換律和結合律簡化運算:
(1)1999125(2)-1097。
〖探索4。
2.如右圖,你會用兩種方法求長方形abcd的面積嗎?
〖例題學習。
p41.例5。
〖作業。
p41.練習。
〖補充作業。
1.計算(注意運用分配律簡化運算):。
(1)-6(100-);(2)(-12).
(2)2(-3)4(-5)(-6)789(-10);。
(3)2(-3)4(-5)(-6)0789(-10);。
4.下列各式的積(冪)是正的還是負的?為什么?
(1)(-3)(-3)(-3)(-3)(-3).
5.運用乘法交換律和結合律簡化運算:
(1)-98(-0.6);(2)-1999(-)()。
2.運用分配律化簡下列的式子:
(1)例3x+9x+x(2)13x-20x+5x;。
=(3+9+1)x。
=13x;。
(3)12-9(4)-z-7z-8z.
初中數學有理數乘法教案(匯總18篇)篇十
1、熟練有理數的乘法運算并能用乘法運算律簡化運算。
2、讓學生通過觀察、思考、探究、討論,主動地進行學習。
3、培養學生語言表達能力以及與他人溝通、交往能力,使其逐漸熱愛數學這門課程。
教學重點:正確運用運算律,使運算簡化。
教學難點:運用運算律,使運算簡化。
一、學前準備。
1、下面兩組練習,請同學們選擇一組計算。并比較它們的結果:
請以小組為單位,相互檢查,看計算對了嗎?
二、探究新知。
1、下面我們以小組為單位,仔細觀察上面的式子與結果,把你的發現相互交流交流。
2、怎么樣,在有理數運算律中,乘法的交換律,結合律以及分配律還成立嗎?
3、歸納、總結。
乘法交換律:兩個數相乘,交換因數的位置,積相等。
即:ab=ba。
乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
即:(ab)c=a(bc)。
乘法分配律:一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
即:a(b+c)=ab+bc。
三、新知應用。
1、例題。
用兩種方法計算(+-)12。
2、看誰算得快,算得準。
1)(-7)(-)2)915.
四、課堂小結。
怎么樣,這節課有什么收獲,還有那些問題沒有解決?
乘法交換律:兩個數相乘,交換因數的位置,積相等。
即:ab=ba。
乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
即:(ab)c=a(bc)。
乘法分配律:一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
即:a(b+c)=ab+bc。
五、作業布置。
初中數學有理數乘法教案(匯總18篇)篇十一
1.知識目標使學生了解了負數產生的背景,理解正、負數及零的意義,掌握正、負數的表示方法,會用正、負數表示具有相反意義的量。
3.思想目標對學生進行愛國主義思想教育;培養學生良好的個性品質和學習習慣。
本課教材所處位置,是小學所學算術數之后數的范圍的第一次擴充,是算術數到有理數的銜接與過渡,并且是以后學習數軸、相反數、絕對值以及有理數運算的基礎。
正、負數的意義,
負數的意義及0的內涵。
鑒于初一年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發式教學法及情感教學,創設問題情境,引導學生主動思考,用大量的實例和生動的語言激發學生學習興趣,調節學習情緒。并利用計算機和投影膠片輔助教學,增大教學密度。
初中數學有理數乘法教案(匯總18篇)篇十二
3.進一步感悟“轉化”的思想。
把有理數的加減法混合運算統一為加法運算。
省略負數前面的加號的有理數加法,運用運算律交換加數位置時,符號不變。
根據有理數的減法法則,有理數的加減速混合運算可以統一為加法運算。
1、完成下列計算:
(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
歸納:根據有理數的減法法則,有理數的`加減混合運算可以統一為運算;
省略負數前面的加號和()后的形式是______________________;
展示交流。
1、把下列運算統一成加法運算:
2、將下列有理數加法運算中,加號省略:
(1)12+(-8)=________________;
3、將下列運算先統一成加法,再省略加號:
=___[]______________________。
4、仿照本p37例6,完成下列計算:
盤點收獲。
個案補充。
1.計算:
本p39習題2。5第6題(1)、(3)、(5),第7題。
初中數學有理數乘法教案(匯總18篇)篇十三
本次說課我共分成教材分析、教學方法與手段、教學過程分析和幾點思考四部分,具體內容如下:
(一)教材的地位和作用:本節課的內容是《新人教版七年級數學》教材中的第一章第四節,“有理數的乘除法”是把“有理數乘法”和“有理數除法”的內容進行整合,在“有理數的加減混合運算”之后的一個學習內容。在本章教材的編排中,“有理數的乘法”起著承上啟下的作用,它既是有理數加減的深入學習,又是有理數除法、有理數乘方的基礎,在有理數運算中有很重要的地位。“有理數的乘法”從具體情境入手,把乘法看做連加,通過類比,讓學生進行充分討論、自主探索與合作交流的形式,自己歸納出有理數乘法法則。通過這個探索的過程,發展了學生觀察、歸納、猜測、驗證的能力,使學生在學習的過程中獲得成功的體驗,增強了自信心。所以本節課的學習具有一定的現實地位。
(二)學情分析:因為學生在小學的學習里已經接觸過正數和0的乘除法,對于兩個正數相乘、正數與0相乘、兩個正數相除、0與正數相除的情況學生已經掌握。同時由于前面學習了有理數的加減法運算,學生對負數參與運算有了一定的認識,但仍還有一定的困難。另外,經過前一階段的教學,學生對數學問題的研究方法有了一定的了解,課堂上合作交流也做得相對較好。
(三)教學目標分析:基于以上的學情分析,我確定本節課的教學目標如下。
1、知識目標:讓學生經歷學習過程,探索歸納得出有理數的乘除法法則,并能熟練運用。
2、能力目標:在課堂學習過程中,使學生經歷探索有理數乘除法法則的過程,發展觀察、猜想、歸納、驗證、運算的能力,同時在探索法則的過程中培養學生分類和歸納的數學思想。
3、情感態度和價值觀:在探索過程中尊重學生的學習態度,樹立學生學習數學的自信心,培養學生嚴謹的數學思維習慣。
4、教學重點:會進行有理數的乘除法運算。
5、教學難點:有理數乘除法法則的探索與運用。
確定教學目標的理由依據是:新課標中指出課堂教學中應體現知識與技能、過程與方法、情感態度與價值觀的三維目標,同時也基于本節內容的地位與作用。而確定重難點是根據新課標的要求,結合學生的學情而確定的。
根據本節課的內容特點及學生的學情,我選擇的教學方法是引導探索、小組合作、效果反饋的教學方法。為了提高課堂的教學容量,增加實際問題的直觀性,我選用多媒體輔助教學手段。
關于學法:本節課里我主要指導學生采用了自主探索、合作交流、自我反思的學習方法,我想這樣更能有效的培養學生學習數學的能力,更好的培養學生數學地思考問題。
分析:
本課共6課時,重點是有理數乘除法法則的教學,下面我重點說有理數乘法法則的教學。整體的教學程序包括:情景創設、提出問題;引導探索、歸納結論;知識運用、加深理解;變式練習、形成能力;回顧與反思、納入知識系統;布置作業;板書設計七部分。
設計七部分。
初中數學有理數乘法教案(匯總18篇)篇十四
1、知識與技能目標:經歷有理數乘法法則探究的過程,學習兩個有理數相乘的法則。
3、情感目標:通過小組合作,培養與他人合作的精神。
教學難點:如何觀察給定的乘法算式,從哪幾個角度概況算式的規律。
2、出幾道小學里已經做過的兩數相乘的題目,并計算。
(一)創設情境,引入新知。
問題:根據課前準備,小學我們計算的兩個數相乘都是正數乘正數或者正數乘零,現在我們知道有理數包括正數、負數和零三類,根據這種分類,你能說出兩個有理數相乘會出現哪幾種情況?(根據學生回答板書各種類型)。
預設:學生可能會把正數乘負數、負數乘正數當作一種情況,教師可引導為兩種。
(二)觀察歸納,學習法則(設計說明:法則的得出分兩部分)。
第一部分分類探究(說明:3組探究重點是探究1)。
探究1(師生共同活動)。
問題1、觀察下面熟識的算式,你能發現什么規律?
3×3=9。
3×2=6。
3×1=3。
3×0=0。
預設:如果學生有困難,可以提示學生觀察兩個因數有什么變化規律,積有什么變化規律。
這樣會得到規律:左邊因數都是3,右邊因數依次減1,而積依次減3。
問題2、根據這個規律,你能填寫下面的結論嗎?
3×(-1)=。
3×(-2)=。
3×(-3)=。
問題3這組數據的規律,對其他組類似規律的數據也成立嗎?自己根據這個規律構造一組數試一試。
歸納可得:(板書)正數乘正數,結果為正,絕對值相乘;正數乘負數,結果為負,絕對值相乘。
階段性學習方法小結:回想探究1的結論,我們是怎樣一步步得到的?
(讓學生充分發表見解,教師適當引導,得出主要環節:觀察-猜想-歸納)。
(說明:設計意圖有兩個,一是初一學生學法意識的形成,二是為探究2,3的學習做好引導)。
探究2(小組討論)。
根據剛才得到的規律,你能得出下面的結果嗎?能據此總結出規律嗎?
3×3=9。
2×3=6。
1×3=3。
0×3=0。
(-1)×3=。
(-2)×3=。
(-3)×3=。
(選一組代表上講臺分析,得出結論)。
歸納小結:(負數乘正數,結果為負,絕對值相乘)。
探究3(同桌交流)、
利用上面的規律填空,并說出其中的規律。
(-3)×3=。
(-3)×2=。
(-3)×1=。
(-3)×0=。
(-3)×(-1)=。
(-3)×(-2)=。
(-3)×(-3)=。
由學生總結得出:負數乘負數,結果為正,絕對值相乘。
第二部分歸納總結。
問題1:總結上面所有的情況,你能試著說出有理數乘法的法則嗎?
兩數相乘,同號得正,異號得負,再把絕對值相乘。任何數與0相乘,都得0。
問題2:你認為根據有理數乘法法則進行有理數乘法運算時,應按照怎樣的步驟進行運算?可類比加法的運算方法。
(說明:向學生滲透分類討論及類比思想,再次形成學法體系)。
(三)例題示范,學會應用。
說說這節課你有什么收獲?你還有什么問題存在?
初中數學有理數乘法教案(匯總18篇)篇十五
2.內容解析。
有理數的乘法是繼有理數的加減法之后的又一種基本運算。有理數乘法既是有理數運算的深入,又是進一步學習有理數的除法、乘方的基礎,對后續代數學習是至關重要的。
與有理數加法法則類似,有理數乘法法則也是一種規定,給出這種規定要遵循的原則是“使原有的運算律保持不變”。本節課要在小學已掌握的乘法運算的基礎上,通過合情推理的方式,得到“要使正數乘正數(或0)的規律在正數乘負數、負數乘負數時仍然成立,那么運算結果應該是什么”的結論,從而使學生體會乘法法則的合理性。與加法法則一樣,正數乘負數、負數乘負數的法則,也要從符號和絕對值來分析。由于絕對值相乘就是非負數相乘,因此,這里關鍵是要規定好含有負數的兩數相乘之積的符號,這是有理數乘法的本質特征,也是乘法法則的核心。
基于以上分析,可以確定本課的教學重點是兩個有理數相乘的符號法則。
1.目標。
(1)理解有理數乘法法則,能利用有理數乘法法則計算兩個數的乘法。
(2)能說出有理數乘法的符號法則,能用例子說明法則的合理性。
2.目標解析。
達成目標(2)的標志是學生能通過具體例子說明有理數乘法的符號法則的歸納過程。
有理數的乘法與小學學習的乘法的區別在于負數參與了運算。本課要以正數、0之間的運算為基礎,構造一組有規律的算式,先讓學生從算式左右各數的符號和絕對值兩個角度觀察這些算式的共同特點并得出規律,再以問題“要使這個規律在引入負數后仍然成立,那么應有……”為引導,讓學生思考在這樣的規律下,正數乘負數、負數乘正數、兩個負數相乘各應有什么運算結果,并從積的符號和絕對值兩個角度總結出規律,進而給出有理數乘法法則,在這個過程中體會規定的合理性。上述過程中,學生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規律等,都會出現困難。為了解決這些困難,教師應該在“如何觀察”上加強指導,并明確提出“從符號和絕對值兩個角度看規律”的要求。
本課的教學難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規律。
教師引導學生從有理數分類的角度考慮,區分出有理數乘法的情況有:正數乘正數、正數與0相乘、正數乘負數、負數乘正數、負數乘負數。
設計意圖:有理數分為正數、零、負數,由此引出兩個有理數相乘的幾種情況,既復習有關知識,為下面的教學做好準備,又滲透了分類討論思想。
問題2下面從我們熟悉的乘法運算開始。觀察下面的乘法算式,你能發現什么規律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認為問題要我們“觀察”什么?應該從哪幾個角度去觀察、發現規律?
如果學生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數3.
(2)其他兩個數有什么變化規律?——隨著后一個乘數逐次遞減1,積逐次遞減3.
設計意圖:構造這組有規律的算式,為通過合情推理,得到正數乘負數的法則做準備。通過追問、提示,使學生知道“如何觀察”“如何發現規律”。
教師:要使這個規律在引入負數后仍然成立,那么,3×(-1)=-3,這是因為后一乘數從0遞減1就是-1,因此積應該從0遞減3而得-3.
追問2:根據這個規律,下面的兩個積應該是什么?
3×(-2)=,
3×(-3)=.
練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規律。
設計意圖:讓學生自主構造算式,加深對運算規律的理解。
先讓學生觀察、敘述、補充,教師再總結:都是正數乘負數,積都為負數,積的絕對值等于各乘數絕對值的積。
設計意圖:先得到一類情況的結果,降低歸納概括的難度,同時也為后面的學習奠定基礎。
問題3觀察下列算式,類比上述過程,你又能發現什么規律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學生模仿正數乘負數的過程,自己獨立得出規律。
設計意圖:為得到負數乘正數的結論做準備;培養學生的模仿、概括的能力。
追問1:要使這個規律在引入負數后仍然成立,你認為下面的空格應各填什么數?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規律。
先讓學生觀察、敘述、補充,教師再總結:都是負數乘正數,積都為負數,積的絕對值等于各乘數絕對值的積。
追問3:正數乘負數、負數乘正數兩種情況下的結論有什么共性?你能把它概括出來嗎?
設計意圖:讓學生模仿已有的討論過程,自己得出負數乘正數的結論,并進一步概括出“異號兩數相乘,積的符號為負,積的絕對值等于各乘數絕對值的積”。既使學生感受法則的合理性,又培養他們的歸納思想和概括能力。
問題4利用上面歸納的結論計算下面的算式,你能發現其中的規律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規律填空,并說說其中有什么規律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設計意圖:由學生自主探究得出負數乘負數的結論。因為有前面積累的豐富經驗,學生能獨立完成。
問題5總結上面所有的情況,你能試著自己給出有理數乘法法則嗎?
學生獨立思考后進行課堂交流,師生共同完成,得出結論后再讓學生看教科書。
學生獨立思考、回答。如果有困難,可先讓學生看課本第29頁有理數乘法法則后面的一段文字。
設計意圖:讓學生嘗試歸納乘法法則,明確按法則計算的關鍵步驟。
例1計算:
學生獨立完成后,全班交流。
教師說明:在(3)中,我們得到了。
=1.與以前學習過的倒數概念一樣,我們說。
與-2互為倒數。一般地,在有理數中仍然有:乘積是1的兩個數互為倒數。
追問:在(2)中,8和-8互為相反數。由此,你能說說如何得到一個數的相反數嗎?
設計意圖:本例既作為鞏固乘法法則,又引出了倒數的概念(因為這個概念很容易理解),同時說明了求一個數的相反數與乘-1之間的關系(反過來有-8=8×(―1)).
設計意圖:利用有理數乘法解決實際問題,體現數學的應用價值。
小結、布置作業。
請同學們帶著下列問題回顧本節課的內容:
(2)用有理數乘法法則進行兩個有理數的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數、0的乘法運算出發,歸納出正數乘負數的法則。
(4)你能舉例說明符號法則“負負得正”的合理性嗎?
設計意圖:引導學生從知識內容和學習過程兩個方面進行小結。
作業:教科書第30頁,練習1,2,3;第37頁,習題1.4第1題。
五、目標檢測設計。
1.判斷下列運算結果的符號:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
設計意圖:檢測學生對有理數乘法的符號法則的理解。
2計算:
(1)6×(-9);。
(2)(-6)×0.25;。
(3)(-0.5)×(-8);。
(4)0×(-6);。
設計意圖:檢測學生對有理數乘法法則的理解情況。
初中數學有理數乘法教案(匯總18篇)篇十六
二、難點:正確進行有理數的乘除運算。
預習導學。
一、創設情景,談話導入。
我們已經學習了有理數的乘除法,同學們歸納,總結一下有理數的乘法法則以及乘法運算律。
二、精講點撥質疑問難。
根據預習內容,同學們回答以下問題:
(3)0與任何自然數相乘,得____。
(1)乘法交換律:ab=_________。
(2)乘法結合律:(ab)c=_______。
(3)乘法分配律:(a+b)c=________。
3、有理數的除法法則:
除以一個不等于0的數,等于乘這個數的__________。
比較有理數的乘法,除法法則,發現_________可能轉化為__________。
初中數學有理數乘法教案(匯總18篇)篇十七
2.培養學生觀察、分析、歸納及運算能力.。
三角尺、小黑板、小卡片。
1課時。
(一)、從學生原有認知結構提出問題。
1.計算:
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);
(4)+(+4);(5)-(-9);(6)-(+3).。
3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.。
(二)、師生共同研究有理數減法法則。
問題1(1)(+10)-(+3)=______;
(2)(+10)+(-3)=______.。
教師引導學生發現:兩式的結果相同,即(+10)-(+3)=(+10)+(-3).。
(2)(+10)+(+3)=______.。
(2)的結果是多少?
于是,(+10)-(-3)=(+10)+(+3).。
至此,教師引導學生歸納出有理數減法法則:
減去一個數,等于加上這個數的相反數.。
教師強調運用此法則時注意“兩變”:一是減法變為加法;二是減數變為其相反數.減數變號(減法============加法)。
(三)、運用舉例變式練習。
例1計算:
(1)(-3)-(-5);(2)0-7.。
例2計算:
通過計算上面一組有理數減法算式,引導學生發現:
閱讀課本63頁例3。
(四)、小結。
1.教師指導學生閱讀教材后強調指出:
(五)、課堂練習。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
(4)(-5.9)-(-6.1);
利用有理數減法解下列問題。
課本習題2.6知識技能的2、3、4和問題解決1。
(一)知識回顧(三)例題解析(五)課堂小結。
例1、例2、例3。
(二)觀察發現(四)課堂練習練習設計。
初中數學有理數乘法教案(匯總18篇)篇十八
(1)—2345。
(2)2(—3)4(—5)6789(—10)、
2、下列各式的積為什么是正的?
(1)(—2)(—3)456。
(2)—2345(—6)78(—9)(—10)、
p38、觀察。
幾個不是0的數相乘,積的符號與負因數的個數之間有什么關系?
(見p38、思考)。
p39、例3。
p39、觀察。
p39、練習。
p46、7、(1),(2)(3),8,9,10,11、
1、(1)若a=3,a與2a哪個大?若a=0呢?又若a=—3呢?
(2)a與2a哪個大?
(3)判斷:9a一定大于2a;
(4)判斷:9a一定不小于2a、
(5)判斷:9a有可能小于2a、
2、幾個數相乘,積的符號由負因數的個數決定這句話錯在哪里?
3、若ab,則acbc嗎?為什么?請舉例說明、
4、若mn=0,那么一定有()。
5、利用乘法法則完成下表,你能發現什么規律?
3210—1—2—3。
39630—3。
2622。
1321。
—1。
—2。
—3。