教案模板的編寫應該注重實際操作性,合理分配課堂時間和教學資源。希望以下的教案模板范文能夠給大家提供一些啟示和幫助,愿大家取得更好的教學成果。
分數的基本性質的說課稿(匯總14篇)篇一
《分數的基本性質》是人教版九年義務教育小學數學第十冊中的內容。本節課內容是在分數的意義,以及分數與除法關系的基礎上進行教學的。是后面進一步學習約分、通分以及分數運算的重要依據,因此本節內容將起著舉足輕重的作用。
根據教材內容及學生的認知水平,我制定了以下教學目標:
1、使學生理解與掌握分數的基本性質。
2、培養學生觀察、比較、分析、概括等方面的能力。
為了使學生成為課堂的主人,我巧妙的扮演著引導著、組織者的角色。設計了情景設疑、觀察發現、小組合作的教學方法。
新課程標準提倡:過程重于結果。有效的數學活動不能單純的依靠模仿與記憶。因此我引導學生去動手操作,自主探究,游戲比賽等形式來組織教學。
結合五年級學生的理解能力和年齡特征,我將本課的教學,設計了四個環節。
(一)、創設情境、引發猜想
首先、我為學生帶來了一個猴王分餅的故事:猴山上的猴子們都愛吃猴王做的餅。一天,猴王做了三張同樣大的餅。猴王把第一張餅平均切成了兩塊,給了猴1一塊。猴2看見了,眼饞的說:“猴王,猴王,我要兩塊。”猴王笑瞇瞇的說:“別急,別急,給你兩塊。”只見猴王把第二張餅平均分成了四塊,給了猴2兩塊。猴3更貪心:“我要六塊,我要六塊。”猴王想了想,把第三張餅拿出來,平均切成了十二塊,果真給了猴3六塊。
“同學們,你們聽完故事后,覺得哪知猴子分得餅最多?”
一上課,先聽一段故事,學生們自然非常樂意,并會立即被吸引,積極的思考故事中的問題。通過這樣的故事設疑,馬上激起了學生探求新知的欲望。
(二)、動手操作、初步感知
我讓學生把準備好的三張圓片,拿出來代替猴王做的餅,分別按照折,畫,涂的步驟,表示出每只猴子所得的餅,并用分數表示涂色部分。在這個過程中,學生必然會對那三個圖形進行觀察和比較,從中有所發現。(課件)通過多媒體的直觀演示,學生更加確定,三只猴子分的餅確實一樣多,有了實物的直觀對比,學生不難理解,三個分數大小相等。可是為何分數的分子、分母不同,大小卻相等?在此處,又設下懸疑,充分調動了學生的好奇心。這一情境的設置,主要是讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,營造出良好的學習開端。接著,我因勢利導,安排下一環節:
(三)比較歸納、揭示規律
(1)我板書這組分數后,請學生觀察:從左往右看,分子是怎么變的?分母是怎樣變的?此時我將主動權全都交給了學生,先獨立思考,然后在四人小組中交流討論,最后匯報結果。有的小組認為分子加了1,分母加了2等。我都笑而不答。而是鼓勵學生逐一去驗證各種猜想是否具有規律性。使學生在探索中發現,在發現中成長。直到有些學生發現分數的分子分母同時乘了2和3時,我及時給予了肯定和表揚。此時,為了突破本節課的重難點,我設計了一道填空題,可以很好的引導學生概括出這一發現,并讓多名學生說一說。這樣的設計,既培養了學生的概括能力,并為進一步學習增強了信心。在此基礎上,我再布置一個任務:你再從右往左看,又有什么規律?有了前面的經驗,這時學生很快得出:分數的分子、分母同時除以一個相同的數,分數的大小也不變。
(2)就在學生享受成功的喜悅時,我拋出了一個問題:分數的分子分母如果同時乘或除以0,會是什么結果?學生頓時領悟:要0除外。
(3)最后,我建議學生用一句話來歸納這兩個發現,師生共同完善規律。此時我才板書課題,并告訴學生這一規律就叫分數的基本性質,使學生明確了本節課的教學內容。
(4)現在,學生明白了聰明的猴王原來是利用分數的基本性質來分餅的。即滿足了猴子們的要求,又分的那么公平。如果猴4想要八塊怎么辦?如此設計,既首尾呼應,又培養了學生靈活解決實際問題的能力。
課堂的高潮之后,我啟發學生還可以用商不變的性質來說明分數的基本性質,溝通新舊知識的聯系。
(四)多層聯系、鞏固深化
練習的設計是鞏固新知最有效的方法。我盡量給枯燥的練習賦予豐富多彩的形式。因此我精心設計的整套練習都是以游戲加比賽的方式來進行。首先,我安排男、女生以搶答的形式,來填空,重點要讓學生說出解題依據。接著,我又設計了師生互動的游戲:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在兩個小組搶摘蘋果的游戲中結束本節課的教學活動。
說說我的板書設計,它遵循了目的性原則、概括性原則、直觀性原則,能幫助學生把整堂課的學習內容融入大腦。
總結:我在整堂課的設計中努力體現“趣”“實”“活”三個字。以猴王分餅為主線,貫穿全文。由情景導入到動手操作,自主探究,最后歸納規律,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,領略成功的喜悅。新課程標準的要求得到了完美體現。
我的說課到此結束,謝謝大家。
分數的基本性質的說課稿(匯總14篇)篇二
1、以學生發展為本,著力強化個人主體意識,同時關注學生學習動機、興趣等情感態度。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會和充分的練習空間。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化,以及“用數學學數學”等數學思想方法。
1、教學內容:《分數的基本性質》一課是五年級下冊第四單元的一個內容。這部分內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據。因此,分數的基本性質是本單元的教學重點之一。教材在講解這一知識點時,應注意加強整數商不變性質的內在聯系,這樣既幫助學生理解了分數的基本性質,又溝通了新舊知識的內在聯系。
2、學情分析:
學生在三年級上學期已經初步認識了分數,知道分數各個部分的'名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。另外,本單元的知識內容概念較多,比較抽象,學生的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。在數學教學中,化抽象為具體、直觀,對于順利開展教學是十分必要的。
3、教學目標:
(1)通過教學使學生理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規律解決簡單的實際問題。
(2)引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養學生的抽象概括能力。
(3)滲透初步的辨證唯物主義思想教育,使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
4、教學難點:學習自主探索,發現和歸納分數的基本性質,以及應用它解決相應的問題。
6、教具學具:課件,三張同樣大小的長方形紙條、彩筆。
“將課堂還給學生,讓課堂煥發生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,以及學生的認知規律,我采用的教學方法主要有:
1、實際操作法。
指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
2、直觀演示法。
先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
3、啟發式教學法。
運用知識遷移規律組織教學,用數學學數學,層層深入,促使學生在積極的思維中獲取新知。
1、學生在學習分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在紙條上涂出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,在嘗試中發現,在實踐中體驗,從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用學生自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成練習題,達到檢驗自學的目的。
想法是好的,但是,操作是難的,加上本人能力有限,教學過程中還是出現幾次失誤,請各位老師多提寶貴意見。
分數的基本性質的說課稿(匯總14篇)篇三
尊敬的各位考官:
大家好,我是x號考生,今天我說課的題目是《分數的基本性質》。
新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
本節課選自人教版小學數學五年級下冊第四單元第三節《分數的基本性質》,是在學生初步認識了分數的意義、分數與除法的關系、以及整數除法中商不變的規律的基礎上進行學習的,而本節課也是后續學習約分和通分的基礎,因此理解并掌握該性質尤為重要。
接下來談談學生的實際情況。五年級的學生學習態度端正,有著良好的學習習慣,而且各個方面都已經發展的比較完善,具備一定的分析能力和解決問題的經驗。但是還具有活潑好動的特點,所以我會采用多種教學方法。
根據以上對教材和學情的分析,我制定了如下三維教學目標:
(一)知識與技能。
結合具體情境,理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
(二)過程與方法。
經歷自主思考、小組討論的過程,提高觀察、分析、推理、總結的能力。
(三)情感、態度與價值觀。
體驗數學與生活的聯系,提高對數學的學習興趣。
在教學目標的實現過程中,教學重點是分數的基本性質,教學難點是分數的基本性質的探究過程。
在教學中我始終以學生為本,以學生為立足點,借助多媒體教學,引導學生動手操作、觀察、探究,充分調動學生學習的積極性。本節課我將主要采用創設情境、動手操作、自主探究的教學方法,把課堂還給學生,充分調動學生的眼、手、腦等感官參與認識活動,享受學習的樂趣。
下面重點談談我對教學過程的設計。
(一)導入新課。
首先是導入環節,我將采用創設情境的導入方法。
熊媽媽按不同分法給三個孩子分三塊巧克力,第一塊平均分成兩份,給老大一份;第二塊平均分成四份,給老二兩份;第三塊平均分成八份,給老幺四份。提問:哪個孩子分的巧克力更多?然后說明通過這個故事學習一個新知識,進而引出課題。
通過創設情境,利用一個小故事,將比較抽象、枯燥的數學知識以生動有趣的形式展示出來,一方面可以吸引學生的興趣,有利于更好的展開課堂教學;另一方面可以淡化學生對數學知識的陌生感,更好的體會數學來源于生活,應用于生活。
(四)小結作業。
在課程接近尾聲時,我會找學生總結今天的學習內容。這樣的設置可以讓學生再次回憶本節課的知識,并且提升學生的歸納總結能力。
課后作業設置為小游戲,同桌之間分別寫幾個不同的分數,讓對方寫出與其分母不同但大小相同的分數。這樣的設置不僅能進一步鞏固本節課的學習,還可以活躍學生的思維。
我的板書設計遵循簡潔明了、突出重點的原則,以下是我的板書設計:
分數的基本性質的說課稿(匯總14篇)篇四
《分數的基本性質》是小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。
2、教材處理。
(1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發現。
(2)把總結式教學為學生自我發現、自我總結的探究性學習。
(3)以教師的主導地位轉化為學生為主體的學生探究性學習。
3、教學過程。
這節課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數和除數同時擴大或縮小相同倍數,商不變。”
在新授過程中,沈老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態的數學知識變為一種讓學生在一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。整個課堂創設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發展,為學生的長遠發展奠定了良好的基礎。沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現了自主學習。
分數的基本性質的說課稿(匯總14篇)篇五
《分數的基本性質》是義務教育課程標準實驗教材人教版五年級下冊第五單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系、整數除法中商不變的規律這些知識為基礎的。分數的基本性質是建立在分數大小相等這一概念基礎之上的。而兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。分數的基本性質又是約分和通分的基礎,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。
二、說教學目標。
根據教材分析制定如下的教學目標:
知識與技能:
1、使讓學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2、培養學生觀察、分析和抽象概括能力。
過程與方法:
2、通過引導啟發,幫助學生學會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數的方法。
情感態度與價值觀:
1、體驗合作探究的樂趣,培養學生的團結協作精神。
2、滲透“事物間相互聯系”的辯證唯物主義觀點。
教具教學準備:
多媒體課件,小棒、紙條、圓形紙片。
三、說教學策略。
為了營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著“將課堂還給學生,讓課堂煥發生命活力”的指導思想,根據學生的認知規律,我采取以下教學策略:
1、采用了創設情境、引導探究、引導自學、組織討論、組織練習等教學策略。
2、實際操作:指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促進學生的感性認識逐步理性化。
3、引導概括:先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
4、新課標指出:有效的數學學習活動,不能單純模仿與記憶。動手實踐、自主探索與合作交流是本節課學生學習的重要方式。
四、說教學流程。
結合五年級學生的理解能力和年齡特征,我將本課的教學設計為六個環節。
(一)、創設情境,引發猜想。
首先我為學生帶來一個《猴王分餅》的故事。
“同學們,你們認為猴王分得公平嗎?”引發學生的猜想。
(這樣就激發了學生的學習興趣,為后面的學習做好了鋪墊。)。
(二)自主探索,尋找規律。
(下面這個環節是課堂教學的中心環節,新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。)。
1、小組合作驗證猜想。
這只是大家的猜想,究竟哪只猴子分得的餅多呢?親自分一分,驗證你們的猜想。
學生操作驗證――集體匯報交流――-展示成果。
學生得出:這三個分數是相等關系,分數的分子和分母變化了,但分數的大小不變。
(三)比較歸納揭示規律。
1、出示思考題。
1/4=2/8=3/12。
比較每組分數的分子和分母:
從左往右看,是按照什么規律變化的?
從右往左看,又是按照什么規律變化的?
通過觀察,你發現了什么?
讓學生帶著上面的思考題,先獨立思考,后小組討論、交流。
2、集體交流,歸納性質。
3、師生共同總結規律,找出性質中的關鍵詞,然后齊讀,注意關鍵的字詞要重讀。
4、現在,大家知道猴王是運用什么性質分餅了嗎?
5、溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。
(這樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間是相互聯系”的辨證唯物主義觀點)。
將本文的word文檔下載到電腦,方便收藏和打印。
分數的基本性質的說課稿(匯總14篇)篇六
這天我說課的資料是《分數的基本性質》。下面我將從“說教學理念、說教材、說教法、說學法、說教學過程”五個方面來說課。
1、以學生發展為本,著力強化主體意識。
2、從學生已有的認知發展水平和知識經驗出發,為學生帶給充分從事數學活動的機會,變“學數學”為“做數學”。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的構成過程,感受驗證、轉化等數學思想方法。
分數的基本性質是九年義務教育小學數學第十冊第四單元的資料,這一部分教學資料是在學生學習了分數的好處、分數與除法的關系、商不變的規律等知識的基礎上進行教學的。在分數教學中占有重要的地位,它是約分、通分的基礎。根據教材資料和學生的認識知規律,將本課的教學目標擬定如下:
1、知識與技能:理解和掌握分數的基本性質,明白分數基本性質與整數除法中商不變規律的關系。能運用分數的基本性質把一個分數化成分母相同而大小相等的分數;培養學生觀察、分析、比較、決定及動手實踐的潛力,進一步拓展學生的思維。
2、情感、態度:激發學生用心主動學習的情感狀態,養成注意傾聽、觀察事物的學習習慣。
3、教學重點和難點:理解和掌握分數的基本性質的概念,運用分數的基本性質,把一個分數化成指定分母而大小不變的分數。
“將課堂還給學生,讓課堂煥發生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,根據概念教學的特點,結合教學特點,以及學生的認知規律,我將采用的教學方法主要有:
1、直觀演示法。
先讓學生充分感知,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過度到抽象思維。
2、實際操作法。
指導學生親自動一動、折一折,畫一畫,比一比,多這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
3、啟發式教學法。
運用知識遷移規律組織教學,層層深入促使學生在用心的思維。
1、學生在運用分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在折紙上畫出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師透過啟發學生運用分數的基本性質,證明那三個分數大小相等,讓嘗試中發現,在實踐中體驗。從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用自自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,到達檢驗自學的目的。
依據新的教學理念及學生的認知特點,將本課的教學模式制定為:
第一、以故事導入,培養學生的學習興趣。在進行備課時,我覺得如果根據教材的安排來導入,顯得有些平淡,也不容易激發學生的學習興趣。為此,我王大爺分地的故事,讓王大爺給三個兒子分地,分得的結果看似不公,實則相同。并讓學生作為裁判來評一評,這樣一來,學生學習數學的興趣必然提高,學習的用心性也會空前高漲。同時,我又把這一懸念暫時先放一放,等學生理解并掌握了分數的基本性質后,學生就會恍然大捂。原先,三個兒子分到的地實際上是一樣多的,只但是是平均分的分數不一樣的,其中表示的份數也不一樣,但大小卻是相等的,誰也沒有吃虧。這樣的設計,不僅僅使教學結構更加完整,前后呼應,同時也提高了學生理解和應用分數的基本性質來解決實際問題的潛力。
第二、發揮群眾優勢,培養學生的合作潛力。為了有效解決教學中“少數學生爭臺面,多數學生做陪客”的現象,我在教學中也引入了小組合作學習的形式,提高學生學習的主動性,使學生在獲取數學知識的同時,構成良好的人際關系,促進學生的全面發展。為此,在觀察相等分數的變化規律時,我讓學生充分展開討論。大家你一言我一語,一點一滴,逐步發現從左往右,分數的分子分母分別依次乘2、乘4、乘8,而分數的大小不變的變化規律。從而慢慢地引出了分數的基本性質。
第三、精心設計練習題,提高學生解題潛力。數學教學,做題目是其中最重要的一個方面。但傳統教學教師往往進行所謂的題海戰役,讓學生反復做、重復做,這樣不僅僅做累了學生同時也做怕了學生,消磨了學生學習的用心性。所以如何使學生愿做、樂做,同時又能到達教學目標,提高學生的數學綜合潛力,是擺在我們面前的一個重要課題。為此,在教學《分數的基本性質》時,我也精心設計練習題。首先是題型變化豐富。練習中,我安排了一些決定題、口答題。題型的豐富不僅僅提高了學生學習的興趣,也使學生更好地理解和應用分數的基本性質來解決實際問題的潛力。
總之,學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節數學課都能到達理想的教學效果。
分數的基本性質的說課稿(匯總14篇)篇七
《分數的基本性質》一課是五年級下冊的一個內容。學習本內容之前,學生已清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。本課在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習約分、通分、分數計算的基礎。
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。
依據新的《數學課程標準》,為了更好地體現數學學習對學生在數學思考、解決問題以及情感與態度等方面的.要求。根據本節課的具體內容并結合學生的實際情況,我制定了以下教學目標:
1.使學生理解與掌握分數的基本性質,能運用它改變分數的分母與分子,而使分數的大小不變。
2.培養學生觀察、比較、分析、概括等方面的能力。
3.通過實踐活動,鼓勵學生動手進行科學的驗證,培養其勇于探索,勇于創新的意識。
教學重點:
理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點
學生通過猜想和動手驗證,抽象概括出分數的基本性質。
教法:本著“以學生發展為本”、“以學定教”的思想,按照學生學習的認知規律,在探究分數的基本性質過程中,主要采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。
學法:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
為了全面、準確地引導學生探索發現分數的基本性質,實現教學目標,我努力抓住學生的思維生長點組織教學,設計了以下內容:
1.創設情境
片斷一
師:我們班有男生多少人?女生呢?,你能說出我們班男生和女生的人數比嗎?
生:男生和女生的人數比是:35:40。
師:你們認為這個比還可以……
生:化簡單一點。
師:具體說說你的想法。
生:根據比的基本性質,把比的前項和后項同時除以5,得到7:8。
師:你怎么想到除以5的?
生:因為35和40的最大公約數是5。
師:說得很好!大家同意嗎?
生:同意。
師:7:8,最簡單了嗎?
生1:是,因為7和8已經是互質數了。
生2:互質數就只有公約數1了,因此它是最簡單的比了。
師:說得好!這里的7:8,前項和后項是互質數,你能給它取個名稱嗎?
生1:就叫最簡單的比。
生2:我認為應該叫最簡單的整數比更好。
師:為什么?
生:因為有時還可能出現小數或分數的比,也是很簡單的。
生:2:3、1:2、8:9……
師:對于最簡單的整數比,你們都理解了嗎?
生:理解了。
師:說說你們的理解?
生1:首先前項和后項必須是互質數。
生2:那前項和后項就必須是整數。
生3:其實,它還是一個比。
師:同學們都說得很好,那12:18是最簡單的整數比嗎?
生:不是。
師:為什么?你是怎么想的?
生:12和18有公約數6。
師:那也就是說可以把這個比進行化簡,把它化成最簡單的整數比,對嗎?你們想不想試一試。
…反思:以班中男女生人數為新知的切入點,通過師生互動、生生互動,理解最簡整數比的含義,同時放手讓學生利用新知去嘗試解決把一個比化簡,體現了在做中學的理念。
片斷二
師:你能說說剛才的化簡,用了什么知識?
生:根據比的基本性質,把比的前項和后項同時除以一個相同的數,就可以化簡了。
師:要是給你一個分數或小數的比,你覺得還能再同時除以一個相同的數嗎?
生:不能
師:為什么?
生:我覺得要將一個分數或小數比化簡,必須同時乘一個相同的數,只有這樣才能轉化為整數比。
生::
師:再說一個小數比?
生:1.8:0.09
師:那,咱們先來試一試。
……
反思:對于分數比和小數比的化簡,確實有些難度,但由于學生已經初步有了化簡比的方法,因此教師可以先讓學生去試一試,這樣學生的學習就會更主動。
片斷三
師:誰先來說說你的想法。
分數的基本性質的說課稿(匯總14篇)篇八
《分數的基本性質》這一課是課改版小學數學教材第十冊的教學內容,學習本內容之前,學生已清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種變與不變中發現規律。
2、知識間的聯系:
七冊:商不變性質。
同時《分數的基本性質》也是學生學習分數加減法的基礎。所以,本節課的教學內容具有比較重要的地位。
新的課程標準提出:教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法。
根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。基于以上思考,本課讓學生經歷:舊知喚醒(復習商不變性質與分數與除法的關系)新知猜想(分數中是否有類似的性質,如果有,是一個什么樣的性質?)實踐探究(看圖分類)得出結論(研究卡)深化認識(對結論的理解,嘗試練習,理解其中的變與不變,能用字母來表示式子)練習提高(基本題、綜合題、加深題)數學建模(用字母來表示分數的基本性質)建立聯系(分數的基本性質與商不變性質的聯系)。讓學生對于分數的基本性質能在數學的層面上有一個較為完整、清晰與明確的掌握。
前測:(問卷形式)。
2:試著做一做下面這些題比較大小:
4/7○2/7、1/2○2/4、3/5○9/15。
教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
教學重點:理解掌握分數的基本性質,它是約分,通分的依據。
解決策略:通過讓學生經歷猜想驗證得出結論實踐練習這樣的學習過程,掌握知識的要點:什么是同時?方法是:乘或除以,要點:相同的數(0除外),最終:分數的大小不變。
解決策略:通過初步建立數學模型,使學生對分數的基本性質這個結論能夠擺脫表象的依賴,即對具體事物或圖例,從而從而成熟地思考、理解。
教法:樹立以以學生發展為本、以學定教的思想,為實現教學目標,有效地突出重點、突破難點,我遵循學生的認知規律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。
學法:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
一、遷移舊知.提出猜想。
1回憶舊知。
活動:猜信封。通過猜信封中的數或算式,引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:
被除數除數。
通過誰能說一道與23商一樣的除法算式?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:。
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
二、驗證猜想,建構新知。
環節1、看圖分類。
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
通過動手操作,使學生不僅明白它們相等,滲透它們是因為什么而相等的為后面的實驗做好準備,避免學生出現盲目行動,同時也是為學生探究方法的多元化創造條件。
環節2、討論方法。
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2=2/4=4/8。
通過讓學生表述怎么判斷它們相等的鍛煉學生的表達能力。
3、研究規律。
利用研究卡進行研究。
確定的研究對象。
分子和分母同時乘上或者。
除以一個相同的數。
得到的分數。
研究對象與得到的分數相等嗎?
相等()不相等()。
猜想是否成立?
成立()不成立()。
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
第二層:教師通過追問和簡單的練習重點處理分數基本性質的關鍵詞,滲透變與不變的數學思想。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)。
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)。
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)。
環節4、質疑完善。
3/4=3()/4()。
師:括號中可以填哪些數?
預設:可以填無數個數。
師:如果只用一個數來表示,填什么數好?
預設:字母。
師:這個字母有什么特殊要求嗎?(0除外)。
得到一個初級的數學模型。3/4=3x/4x(x0)。
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
通過這個環節的練習,進行第一次數學建構。
三、練習升華。
通過以下練習進一步鞏固分數的基本性質,使學生初步利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、和哪一個分數大,你能講出判斷的依據嗎?
四、總結延伸。
分數的基本性質的說課稿(匯總14篇)篇九
尊敬的各位領導,老師們:
大家好!今天,我很高興能站在這里,向大家展示我的說課。我的說課內容是《分數的基本性質》。我將從以下這些方面來進行說明。
一、教材分析(課件)。
《分數的基本性質》是人教版九年義務教育小學數學第十冊中的內容。本節課內容是在分數的意義,以及分數與除法關系的基礎上進行教學的。是后面進一步學習約分、通分以及分數運算的重要依據,因此本節內容將起著舉足輕重的作用。
二、教學目標(課件)。
根據教材內容及學生的認知水平,我制定了以下教學目標:
2、培養學生觀察、比較、分析、概括等方面的能力。
三、教法和學法(課件)。
為了使學生成為課堂的主人,我巧妙的扮演著引導著、組織者的角色。設計了情景設疑、觀察發現、小組合作的教學方法。
新課程標準提倡:過程重于結果。有效的數學活動不能單純的依靠模仿與記憶。因此我引導學生去動手操作,自主探究,游戲比賽等形式來組織教學。
四、教學過程(課件)。
結合五年級學生的理解能力和年齡特征,我將本課的教學,設計了四個環節。
(一)創設情境、引發猜想(課件)。
首先、我為學生帶來了一個猴王分餅的故事:猴山上的猴子們都愛吃猴王做的餅。一天,猴王做了三張同樣大的餅。猴王把第一張餅平均切成了兩塊,給了猴1一塊。(課件)猴2看見了,眼饞的說:“猴王,猴王,我要兩塊。”猴王笑瞇瞇的說:“別急,別急,給你兩塊。”只見猴王把第二張餅平均分成了四塊,給了猴2兩塊。(課件)猴3更貪心:“我要六塊,我要六塊。”猴王想了想,把第三張餅拿出來,平均切成了十二塊,果真給了猴3六塊。
“同學們,你們聽完故事后,覺得哪知猴子分得餅最多?”
一上課,先聽一段故事,學生們自然非常樂意,并會立即被吸引,積極的思考故事中的問題。通過這樣的故事設疑,馬上激起了學生探求新知的欲望。
(二)動手操作、初步感知(課件)。
我讓學生把準備好的三張圓片,拿出來代替猴王做的餅,分別按照折,畫,涂的步驟,表示出每只猴子所得的餅,并用分數表示涂色部分。在這個過程中,學生必然會對那三個圖形進行觀察和比較,從中有所發現。(課件)通過多媒體的直觀演示,學生更加確定,三只猴子分的餅確實一樣多,有了實物的直觀對比,學生不難理解,三個分數大小相等。可是為何分數的分子、分母不同,大小卻相等?在此處,又設下懸疑,充分調動了學生的好奇心。這一情境的設置,主要是讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,營造出良好的學習開端。接著,我因勢利導,安排下一環節:
(三)比較歸納、揭示規律(課件)。
(1)我板書這組分數后,請學生觀察:從左往右看,分子是怎么變的?分母是怎樣變的?此時我將主動權全都交給了學生,先獨立思考,然后在四人小組中交流討論,最后匯報結果。有的小組認為分子加了1,分母加了2等。我都笑而不答。而是鼓勵學生逐一去驗證各種猜想是否具有規律性。使學生在探索中發現,在發現中成長。直到有些學生發現分數的分子分母同時乘了2和3時,我及時給予了肯定和表揚。此時,為了突破本節課的重難點,我設計了一道填空題,可以很好的引導學生概括出這一發現,并讓多名學生說一說。這樣的設計,既培養了學生的概括能力,并為進一步學習增強了信心。在此基礎上,我再布置一個任務:你再從右往左看,又有什么規律?有了前面的經驗,這時學生很快得出:分數的分子、分母同時除以一個相同的數,分數的大小也不變。
(2)就在學生享受成功的喜悅時,我拋出了一個問題:分數的分子分母如果同時乘或除以0,會是什么結果?學生頓時領悟:要0除外。
(3)最后,我建議學生用一句話來歸納這兩個發現,師生共同完善規律。此時我才板書課題,并告訴學生這一規律就叫分數的基本性質,使學生明確了本節課的教學內容。
(4)現在,學生明白了聰明的猴王原來是利用分數的基本性質來分餅的。即滿足了猴子們的要求,又分的那么公平。(課件)如果猴4想要八塊怎么辦?如此設計,既首尾呼應,又培養了學生靈活解決實際問題的能力。
課堂的高潮之后,我啟發學生還可以用商不變的性質來說明分數的基本性質,溝通新舊知識的聯系。
(四)多層聯系、鞏固深化。
練習的設計是鞏固新知最有效的方法。我盡量給枯燥的練習賦予豐富多彩的形式。因此我精心設計的整套練習都是以游戲加比賽的方式來進行。(課件)首先,我安排男、女生以搶答的形式,來填空,重點要讓學生說出解題依據。接著,我又設計了師生互動的游戲:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在兩個小組搶摘蘋果的游戲中結束本節課的教學活動。
五、板書設計。
說說我的板書設計,它遵循了目的性原則、概括性原則、直觀性原則,能幫助學生把整堂課的學習內容融入大腦。
總結:我在整堂課的設計中努力體現“趣”“實”“活”三個字。以猴王分餅為主線,貫穿全文。由情景導入到動手操作,自主探究,最后歸納規律,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,領略成功的喜悅。新課程標準的要求得到了完美體現。
我的說課到此結束,謝謝大家。
分數的基本性質的說課稿(匯總14篇)篇十
著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎,還是約分、通分的依據。
學生已經清楚理解分數的好處,明確分數與除法的關系,商不變
性質等知識,這些都為本節課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子、分母變了,分數的大小卻沒變。學生在這種“變”與“不變”中發現規律,掌握新知識。
綜合分析課程標準要求及學生實際,我確定本節教學目標如下:
1.理解和掌握分數的基本性質,并會運用分數的基本性質把不同
的分數化成分母(或分子)相同而大小不變的.分數。
2.初步養成觀察、比較、抽象概括的邏輯思維潛力,并且在自主探究中正確認識和理解變與不變的辯證關系。
3.受到數學思想的熏陶,養成樂于探究的學習態度。
教學重點:理解掌握分數的基本性質,它是約分、通分的依據。
教學難點:讓學生自主探索、發現和歸納分數的基本性質,以及應用它解決相關的問題。
根據本節課的教學目標,思考到學生已有的知識、生活經驗和認
知特點,結合教材資料,本課我主要采用猜想驗證與探索發現的教學模式。在分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。透過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用,激發學生學習興趣,同時讓學生獲得成功體驗。
本節課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創設問
題情境,揭示本節課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數基本性質。
第三部分:合作探究,發現規律。主要的是學生找出規律,并利用規律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發現規律”能夠細化為三個環節:
環節一:動手操作,進行比較
這一環節是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數表示涂色部分,并比較大小。此環節的設計主要是培養學生的比較潛力。
環節二:呈現問題,引導觀察
這一環節主要呈現給學生這樣一個問題,“第一環節中的分數的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環節的設計主要是培養學生的觀察潛力。
環節三:交流匯報,得出規律
這一環節主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數的基本性質----分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。此環節的設計主要是培養學生的抽象概括潛力。
就應強調的是,無論學生說的多么好,教師最后的總結和確認是不可缺少的。
以上是我對《分數基本性質》一節的教學設計意圖,有不當之處,請各位批評指導。
分數的基本性質的說課稿(匯總14篇)篇十一
把單位“1”平均分成若干份,表示這樣的一份或其中幾份的數叫分數。表示這樣的一份的數叫分數單位。分數的基本性質數學說課稿,我們來看看。
1.使學生理解和掌握分數的基本性質,能應用性質解決一些簡單問題。
2.培養學生觀察、分析、思考和抽象、概括的能力。
3.滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育。
教學過程。
1.用分數表示下面各圖中的陰影部分,并比較它們的大小。
1、分別出示每一個圓,讓學生說出表示陰影部分的分數。
(1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
(2)同樣大的圓,陰影部分占圓的幾分之幾?
(3)同樣大的圓,陰影部分用分數表示是多少?
2、觀察比較陰影部分的大小:
(1)從4幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等。)。
(2)陰影部分的大小相等,可以用等號連接起來。
3、分析、推導出表示陰影部分的分數的大小也相等:
(1)4幅圖中陰影部分的大小相等。那么,表示這4幅圖的4個分數的大小怎么樣呢?(這4個分數的大小也相等)。
(2)它們的大小相等,也可以用等號連接起來(把4個分數用等號連起來)。
4、觀察、分析相等的分數之間有什么關系?
(1)觀察轉化成,的分子、分母發生了什么變化?(的分子、分母都乘上了2或的分子、分母都擴大了2倍。)。
(2)觀察例2.比較的大小。
1、出示圖:我們在三條同樣的數軸上分別表示這三個分數。
2、觀察數軸上三個點的位置,比較三個分數的大小:從數軸上可以看出:
1、觀察前面兩道例題,你們從中發現了什么變化規律?分數的分子分母都乘上或都除以相同的數(零除外),分數的大小不變。
2、為什么要零除外?
3、教師小結:這就是今天這節課我們學習的內容:分數的基本性質(板書:基本性質)。
4、誰再說一遍什么叫分數的基本性質?教師板書字母公式:
1、請同學們回憶,分數的基本性質和我們以前學過的哪一個知識相類似?(和除法中商不變的性質相類似。)。
(1)商不變的性質是什么?(除法中,被除數和除數都乘上或都除以相同的數(零除外),商的大小不變。)。
(2)應用商不變的性質可以進行除法簡便運算,可以解決小數除法的運算。2、分數基本性質的應用:我們學習分數的基本性質目的是加深對分數的認識,更主要的是應用這一知識去解決一些有關分數的問題。例3把和化成分母是12而大小不變的分數。
板書:
教師提問:
(1)?為什么?依據什么道理?(,因為分母2乘上6等于12,要使分數的大小不變,分子1也要乘上6.所以,)。
(2)這個6是怎么想出來的?(這樣想:2?=12,26=12,也可以看12是2的幾倍:122=6,那么分子1也擴大6倍)。
(3)?為什么?依據的什么道理?(,因為分母24除以2等于12,要使分數的大小不變,分子10也得除以2,所以,)。
(4)這個2是怎么想出來的?(這樣想:24?=12,242=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是102=5)。
1、把下面各分數化成分母是60,而大小不變的分數。
2、把下面的分數化成分子是1,而大小不變的分數。
3、在()里填上適當的數。
4、的分子增加2,要使分數的大小不變,分母應該增加幾?你是怎樣想的?
5、請同學們想出與相等的分數。規律:這個分數的值是,然后只要按自然數的順序說出分子是1、2、3、4、分母是分子的4倍為:4、8、12、16無數個。
1、指出下面每組中的兩個分數是相等的還是不相等的。
2、在下面的括號里填上適當的數。
理解了分數的意義,認識真分數、假分數和帶分數,掌握了假分數和帶分數、整數的互化方法之后,就要學習分數的基本性質。
分數的基本性質在分數教學中占有十分重要的地位,它是約分、通分的理論依據,而約分、通分又是分數四則運算的重要基礎。只有理解和掌握分數的基本性質,能比較熟練地進行約分和通分,才能應用四則運算的法則正確、迅速地進行分數四則運算。因此,分數的基本性質是分數的意義和性質這一單元的教學重點之一。掌握分數與除法的關系,以及除法中被除數、除數同時擴大或同時縮小相同的倍數商不變的規律,是學好分數基本性質的基礎。
學生在學習和掌握分數的基本性質過程中,敘述性質內容時常常把分子、分母同時乘上或者除以相同的數(零除外)中的同時零除外丟掉。出現這類問題的原因是:對分數的基本性質沒有真正的理解;對零為什么要除外的道理也不太清楚。分數基本性質是建立在:分數的意義、商不變的性質的基礎上學習的,由于學生進入高年級,抽象思維有了一定的基礎,在培養學生探索規律、應用一些數學方法進行遷移類推、思維的嚴密性以及思維的靈活性等方面,都應該進一步予以加強。這種思想方法以及能力的培養,對今后研究統計知識及其學生的終身學習都具有非常重要的作用。
分數的基本性質是以分數大小相等這一概念為基礎展開研究的,由于學生在中年級已經對商不變的性質有了較深入的理解,所以在教學實踐中要有意識的加強分數與除法之間的聯系,以便把舊知識遷移到新的知識中來。
在教學中,采用小組合作學習的辦法,通過給3張紙涂色、折疊、觀察、探索進行規律性的總結。在進行小組匯報時,教師揭示了知識間的聯系,鼓勵學生用不同的理解方法、不同角度進行匯報分數基本性質的可行性,為學生的思維留下了創造空間。在學生總結規律后,為了加深對分數的性質的理解,還可以讓同學舉一些符合規律的例子進行說明。教學實踐中,要注重培養學生揭示知識間的聯系、探索規律、總結規律的能力。
分數的基本性質的說課稿(匯總14篇)篇十二
今天我說課的內容是《分數的基本性質》。下面我將從“說教學理念、說教材、說教法、說學法、說教學程序、說板書設計”六個方面來說課。
1、以學生發展為本,著力強化主體意識。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會,變“學數學”為“做數學”。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化等數學思想方法。
《分數的基本性質》一課是義務教材六年制數學第十冊第四單元的一個內容。這部內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據教材內容和學生的認識知規律,將本課的教學目標擬定如下:
1、知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小相等的分數;培養學生觀察、比較及動手實踐的能力,進一步發展學生的思維。
2、情感、態度:激發學生積極主動的情感狀態,養成注意傾聽的習慣。
本課的教學重點和難點:理解和掌握分數的基本性質,會運用分數的基本性質。
樹立以“以學生發展為本”、“以學定教”、“教為學服務”的思想,因此在教學中,我采用引導自學、合作探索相結合法,讓學會運用分數的基本性質把一個分數化成分母不同但大小相等的分數,有效地提高了教學效率。在知識的鞏固階段,我還采用組織練習法,當然以上這些教法并不是孤立存在的,本著“一法為主,多法為輔”的思想,我將多種教法進行優化組合,以達到促進學生學習方式的轉變,實現教學目標的目的。
1、學生在運用分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在折紙上畫出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,讓嘗試中發現,在實踐中體驗。從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用自自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。
一、設疑激趣,引入新課。
教育學家布朗曾提出:“情境通過活動來合成知識,興趣最好的老師”。
這樣通過故事激發學生的學習興趣,為后面的學習做好了鋪墊。
二、自主探索,學習新知。
新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。
1、小組合作,讓學生用一張紙代替餅,試著分分看。經歷驗證猜想——學生操作驗證——集體匯報交流——展示成果四個過程。
學生得出:這三個分數相等關系,分數的分子和分母變化了,但分數的大小不變。
師:誰能用一句話把這個變化規律敘述出來呢?
生:從左往右看,分數的分子、分母同時擴大了,也就分子分母都乘了一個相同的數,但三個分數的大小沒有變。
師:你們觀察的真仔細!請大家給點掌聲好嗎?(出示課件)老師這樣敘述的“分數的分子、分母都乘上同一個數,分數大小不變”。
4、讓學生從右到左觀察等式分子和分母又如何變化的呢?誰能用一句話把這個變化規律敘述出來?小組討論后,同樣的方法讓學生小結規律,并請同學給予評價,讓學生抒發自己的見解,體現課堂教學的民主化。然后教師在課件中補充“或者除以”四個字,小結分數的基本性質。
5、接著讓學生四人小組一起做游戲,運用分數的基本性質,由一位同學說一個分數,然后其他同學依次說出相等的分數,不能重復,看看誰又快又準。
結束游戲,教師提問,現在我們知道分數的分子、分母都乘上或除以同一個數,分數大小不變。剛剛大家做游戲,有沒有人使用了0呢?大家想一想0可以不可以呢?讓學生回答:分數的分母不能為零。我在課件中填上“零除外”三個紅色的字,以便引起學生的注意。
6、教師引導:“學了分數的基本性質到底有什么用呢?老師告訴你們,根據分數的基本性質,我們就能變魔術一樣,把一個分數變成多個跟它大小一樣,分子分母卻不同的新分數。下面就讓我們來變個魔術。”接著讓學生練習課本例題2,兩名學生上臺演板,其他學生點評。學生自己小結方法。
教育家波利亞指出:學習任何新知的最佳途徑由學生自己去發現,因為這種發現理解最深,也最容易掌握內在規律和聯系。教學中給學生提供自主探究、合作交流的天地,積極為學生創設主動學習的機會,提供嘗試探索的空間,學生能主動從不同方面,不同角度思考問題,尋求解決途徑。同時還培養學生的合作意識,使不同的想法得到交流,實現知識的學習、互補。
三、分層練習,鞏固深化。
只有通過相應的練習,才能更好地鞏固新知,形成技能。在練習的安排上我注重層次性,滲透多樣性,讓學生理解用所學的知識可以解決不同類型的問題,進一步提高解題能力。
1、涂一涂練習14,第1、7題。
因為要給空格上色,所以答案并不唯一,通過這兩題不僅能讓學生回憶探究發現規律的過程,充分體現了“玩中學,學中玩”的新課程理念。
2、說一說完成練習14,第8題。
我想通過這道題讓學生進一步加深對分數基本性質的形成過程的理解,從而培養學生的語言表達能力。
3、想一想:第5、9、10題(選擇一題做為作業)。
在這我讓同學們充分發揮想象,靈活運用分數的基本性質。為后面學習約分和通分的知識奠定基礎。
四、暢談收獲,小結全課。
讓學生自己總結所學內容,暢談收獲和感受,培養學生的概括能力和語言表達能力。
整節課中,我力求做到始終引導學生主動觀察、充分體驗、動手實踐、積極創新,努力做到既注重學生的獨立思考,又注重合作交流,既重視知識與能力的共進,又關注情感和體驗的提高,讓學生全面、深刻地理解分數的基本性質。
分數的基本性質的說課稿(匯總14篇)篇十三
各位老師:
下午好!我今天說課的內容是北師大版小學數學第九冊《分數基本性質》首先,對教材進行分析。
一、教材分析。
《分數基本性質》是北師大版小學數學第九冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續學習分數與小數互化、分數乘除法四則混合運算打好基礎。
二、學情分析。
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發現規律,掌握新知識。
根據教材分析和學生情況,制定如下教學目標。
三、教學目標。
1.知識目標:經歷探索分數基本性質的過程,理解并掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
2.能力目標:培養學生觀察、比較、抽象、概括等初步的邏輯思維能力,并且能夠正確認識和理解變與不變的辨證關系。
3.情感目標:經歷觀察、操作和討論等數學學習活動使學生進一步體驗數學學習的樂趣。通過學生的成功體驗,培養學生熱愛數學的情感。
依據教學目標,確定教學重難點。
四、教學重難點。
能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
五、教學方法。
根據本節課的教學內容和教學目標采用講授法,小組合作學習。
六、教具學具準備。
準備大小相等的圓形紙片,水彩筆等。
七、教學過程:分六個環節。
(一)故事設疑,揭示課題。我將以唐僧師徒分餅的故事創設問題情景。八戒吃第一塊餅的14,沙和尚吃第二塊餅的28,悟空吃第三塊餅的416,他們誰吃的多呢?以此引入新課,激發學生思考的興趣,積極參與到課堂教學中來。并在這個環節設計學生動手折、畫、標等活動,折出14,28,416,用彩筆在折的圓上涂出14,28,416,再用鉛筆標出分數。在動手做的過程中初步理解分數基本性質。
(二)合作探索,尋找規律。請同學們觀察14,28,416;3|4,68,1216這兩組分數,分子分母有什么變化,分數又有什么變化?組織討論交流匯報。如果沒有概括出“把0除外”就設計一組練習:分子分母同乘0,完善結論;如果概括出來了,就順勢進行驗證。推導出分數基本性質-----分數的分子分母都乘或除以相同的數(0除外),分數的大小不變。
(三)鞏固練習。
練習題的設計有簡單到復雜,例:分數的分子乘5,要使分數的大小不變,分母();23=()18621=2()等這樣的題,進行練習。
(四)梳理知識,溝通聯系。
小結分數基本性質,請同學們回憶“商不變性質”。------在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
然后比較這兩個性質的聯系。這樣設計主要是為了共建知識之間的聯系,有助于學生靈活遷移應用,觸類旁通。
(五)多層練習,鞏固深化。
我將設計從鞏固到思維拓展三個層次的練習。
1.
2.(1)把5/6和1/4化為分母為12而大小不變的分數。
(2)把2/3和3/4化為分子為6而大小不變的分數。
3.考考你:1/4的分子加上3,要使分數的大小不變,分母應加上()。
(六)全課小結。
分數的基本性質的說課稿(匯總14篇)篇十四
《分數的基本性質》一課是五年級下冊的一個內容。學習本內容之前,學生已清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。本課在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習約分、通分、分數計算的基礎。
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。
依據新的《數學課程標準》,為了更好地體現數學學習對學生在數學思考、解決問題以及情感與態度等方面的要求。根據本節課的具體內容并結合學生的實際情況,我制定了以下教學目標:
1.使學生理解與掌握分數的基本性質,能運用它改變分數的分母與分子,而使分數的大小不變。
2.培養學生觀察、比較、分析、概括等方面的能力。
3、通過實踐活動,鼓勵學生動手進行科學的驗證,培養其勇于探索,勇于創新的意識。
教學重點:
理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點。
學生通過猜想和動手驗證,抽象概括出分數的基本性質。
教法:本著“以學生發展為本”、“以學定教”的思想,按照學生學習的認知規律,在探究分數的基本性質過程中,主要采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。
學法:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
為了全面、準確地引導學生探索發現分數的基本性質,實現教學目標,我努力抓住學生的思維生長點組織教學,設計了“1.創設情境——引發思考2.引出新知——動手實踐3.初步感知——引導觀察4.發現規律——鞏固練習5.課堂小結——加深理解”五個環節。
一、創設情境,引發思考。
1、上課開始我引入了故事:有一天媽媽給淘氣做了一個香噴噴的大蛋糕,藍貓看見了也想吃。淘氣說:我只有一個蛋糕,要不我分給你一些吧,我有三種分法,請你選擇一種:
第一種:把蛋糕平均分成2份,送給你其中的一份,也就是這個蛋糕的1/2;
第二種:把蛋糕平均分成4份,送給你其中的2份,也就是這個蛋糕的2/4;
第三種:把蛋糕平均分成8份,送給你其中的4份,也就是這個蛋糕的4/8。
選擇哪一種分法吃到的蛋糕最多呢?
同學們,如果你是藍貓,你會選擇哪一種呢?
先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。
分為3個層次借助長方形紙條來理解。通過觀察、舉例、驗證,初步理解和總結(分數的分子和分母同時乘或除以相同的數分數的大小不變。)——總結完善分數的基本性質。
1、借助長方形紙條理解。
這里分成兩份層次(1)借助直觀圖理解(2)分析分數理解。
(1)借助直觀圖理解。
(2)借助分數理解。
在學生清楚的知道了三個分數為什么會相等后,從圖在回到抽象的三個分數上,說一說,他們的分子、分母是怎樣變化的。說明白后,明確分的份數就是分母,取得分數就是分子,在板書上改為“分母擴大了兩倍、四倍,分子也相應擴大了兩倍、四倍,分數大小不變”
2、通過觀察、舉例、驗證,初步理解和總結(分數的分子和分母同時乘或除以相同的數分數的大小不變。)。
總結規律是在大量的直觀的數據或練習的基礎上實現的。為了給學生便于學生總結,我設計了“你還能舉出一個和3/6大小相等的分數嗎?你是怎樣想的?如果想讓分子是9,分母是?想讓分母是18,分子呢?”一方面學生利用了分數的基本性質做了一些基礎的題,另一方面在敘述你是怎樣想的時候,其實也是對分數基本性質的概括。這樣當“用一句話總結你的發現”的時候,在語言敘述上就沒有什么障礙了。
3、關于“同時”“相同的數““0除外”的理解。
兩種預設,在總結出“分數的分子、分母同時乘或除以相同的數,分數的大小不變。”讓學生說說自己的理解,如果有有學生提出就上提出的學生說一說,如果沒有主動提出,就通過做個練習題,“2/3哪樣列式行嗎?為什么?”。讓學生說一說通過做這兩個題你有什么想提醒大家的。
四、鞏固練習。
根據本節課的內容,在練習上我設計三個不同層次的練習,首先是針對大多數的基礎性練習,如填空、判斷。其次是稍有變動的,需要結合分數與除法關系完成的變式練習。
最后為了滿足優等生的需要還涉及了以下練習。
5/9的分母加9,分子加幾,分數的大小不變。
1/2==2/4=4/8。
分數的分子和分母同時乘或者除以相同的數(0除外),分數大小不變。