教學(xué)計(jì)劃是教師根據(jù)學(xué)科要求和學(xué)生實(shí)際情況,有目的地組織和安排教學(xué)內(nèi)容的一項(xiàng)工作。教學(xué)計(jì)劃范文八:初中地理教學(xué)計(jì)劃,讓學(xué)生了解世界各地的地理知識(shí)。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇一
這節(jié)課的教學(xué)主要使學(xué)生在原有基礎(chǔ)上,通過類比一次函數(shù)掌握二次函數(shù)圖象和性質(zhì),突出的是探索交流合作的方式。
在知識(shí)學(xué)習(xí)過程中給學(xué)生留有充分的思考與交流的時(shí)間和空間,讓學(xué)生經(jīng)歷了畫圖、觀察、猜測(cè)、交流、反思等活動(dòng),借助圖形教學(xué),形象直觀,體現(xiàn)了數(shù)形結(jié)合思想,激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的觀察、分析、歸納、概括能力,提高數(shù)學(xué)課堂教學(xué)的效率和效果,促使學(xué)生主動(dòng)參與到“做”數(shù)學(xué)的活動(dòng)中,從而更加深刻地認(rèn)識(shí)最簡(jiǎn)二次函數(shù)的性質(zhì)。
對(duì)于本節(jié)課,我個(gè)人認(rèn)為在教學(xué)思路上還是比較清晰的,重難點(diǎn)把握得還是比較準(zhǔn)確的,復(fù)習(xí)時(shí)利用原來學(xué)過的函數(shù)圖像,讓學(xué)生說出增減性,很自然的就引發(fā)出了探究二次函數(shù)性質(zhì)的問題以及利用具體的圖像,學(xué)生比較容易理解和掌握。
2011年10月21日來源:本站。
進(jìn)入二次函數(shù)這一章節(jié)后,難點(diǎn)也就隨之而來了,因?yàn)檫@一章節(jié)中大部分的內(nèi)容都是數(shù)形結(jié)合的知識(shí),學(xué)生在這部分也一直是難點(diǎn)。在學(xué)習(xí)一次函數(shù)的時(shí)候,涉及到函數(shù)增減性的問題,當(dāng)時(shí)的解決方法是讓學(xué)生動(dòng)手去做,方法如下:首先做出一次函數(shù)的草圖,然后用左手從圖像的左到右移動(dòng),并且要求學(xué)生說出隨著x的增大(手由左向右的移動(dòng)過程中x是一直在增大的),圖像是升高了還是降低了。最后把話說完整,隨著x的增大y是增大了還是減小了,這種方法在當(dāng)時(shí)大部分學(xué)生還是能夠接受的。所以在二次函數(shù)的性質(zhì)這節(jié)課之前我就決定了,還是用動(dòng)手比劃的方法讓學(xué)生去理解增減性。
首先,讓學(xué)生理解想求出二次函數(shù)的增減性首先要從二次函數(shù)的一般式轉(zhuǎn)化為頂點(diǎn)式,目的在于通過頂點(diǎn)式就可以直接看出對(duì)稱軸,再給學(xué)生充分的時(shí)間讓學(xué)生發(fā)現(xiàn),二次函數(shù)與一次函數(shù)的增減性是不同的,一次函數(shù)不用分段去說,而二次函數(shù)要求以對(duì)稱軸為分界點(diǎn)分段去說。在這些都準(zhǔn)備好之后,告訴學(xué)生判斷增減性的要點(diǎn):
(1)通過函數(shù)的頂點(diǎn)和開口方向,畫出二次函數(shù)的草圖。
(2)在草圖上標(biāo)出對(duì)稱軸,然后用對(duì)稱軸把二次函數(shù)的定義域分成兩部分。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇二
1、在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖像,掌握對(duì)數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡(jiǎn)單問題。
2、通過對(duì)數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類討論的思想。
3、通過對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。
教學(xué)重點(diǎn),難點(diǎn)。
重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握?qǐng)D像和性質(zhì)。
難點(diǎn)是由對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對(duì)數(shù)函數(shù)的圖像和性質(zhì)。
教學(xué)方法。
啟發(fā)研討式。
教學(xué)用具。
投影儀。
教學(xué)過程。
一。引入新課。
今天我們一起再來研究一種常見函數(shù)。前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù)。
反函數(shù)的實(shí)質(zhì)是研究?jī)蓚€(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù)。這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù)。
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學(xué)生說出是指數(shù)函數(shù),它是存在反函數(shù)的。并由一個(gè)學(xué)生口答求反函數(shù)的過程:
由得。又的值域?yàn)椋?/p>
所求反函數(shù)為。
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù)。
2.8對(duì)數(shù)函數(shù)(板書)。
1、定義:函數(shù)的反函數(shù)叫做對(duì)數(shù)函數(shù)。
教師可提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識(shí),從而找出對(duì)數(shù)函數(shù)的定義域?yàn)椋瑢?duì)數(shù)函數(shù)的值域?yàn)椋业讛?shù)就是指數(shù)函數(shù)中的,故有著相同的限制條件。
在此基礎(chǔ)上,我們將一起來研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)。
1、作圖方法。
提問學(xué)生打算用什么方法來畫函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖。同時(shí)教師也應(yīng)指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫圖。
由于指數(shù)函數(shù)的圖像按和分成兩種不同的類型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況和,并分別以和為例畫圖。
具體操作時(shí),要求學(xué)生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等)。
(2)畫出直線。
(3)的圖像在翻折時(shí)先將特殊點(diǎn)對(duì)稱點(diǎn)找到,變化趨勢(shì)由靠近軸對(duì)稱為逐漸靠近軸,而的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在左側(cè)的先翻,然后再翻在右側(cè)的部分。
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出。
和的圖像。(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
2、草圖。
教師畫完圖后再利用投影儀將和的圖像畫在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說明)。
3、性質(zhì)。
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側(cè)。
(3)截距:令得,即在軸上的截距為1,與軸無交點(diǎn)即以軸為漸近線。
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱,也不關(guān)于軸對(duì)稱。
(5)單調(diào)性:與有關(guān)。當(dāng)時(shí),在上是增函數(shù)。即圖像是上升的。
當(dāng)時(shí),在上是減函數(shù),即圖像是下降的。
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng)時(shí),有;當(dāng)時(shí),有。
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來。
最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖。且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶。(特別強(qiáng)調(diào)它們單調(diào)性的一致性)。
對(duì)圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用。
三。簡(jiǎn)單應(yīng)用(板書)。
1、研究相關(guān)函數(shù)的性質(zhì)。
例1.求下列函數(shù)的定義域:
(1)(2)(3)。
先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對(duì)數(shù)中真數(shù)和底數(shù)的條件限制。
2、利用單調(diào)性比較大小(板書)。
例2.比較下列各組數(shù)的大小。
(1)與;(2)與;
(3)與;(4)與。
讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來比大小。最后讓學(xué)生以其中一組為例寫出詳細(xì)的比較過程。
三。鞏固練習(xí)。
練習(xí):若,求的取值范圍。
四。小結(jié)。
五。作業(yè)略。
板書設(shè)計(jì)。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇三
本節(jié)的主要內(nèi)容是讓學(xué)生逐步形成用函數(shù)的觀點(diǎn)處理問題意識(shí),體驗(yàn)數(shù)形結(jié)合的思想方法。
教學(xué)時(shí),能夠達(dá)到三維目標(biāo)的要求,突出重點(diǎn)把握難點(diǎn)。能夠讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的應(yīng)用過程,關(guān)注對(duì)問題的分析過程,讓學(xué)生自己利用已經(jīng)具備的知識(shí)分析實(shí)例。用函數(shù)的觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境,建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,注意分析的過程,即將實(shí)際問題置于已有的知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新理解(這是什么?可以看成什么?),讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的'眼光考察實(shí)際問題。同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想。
具體分析本節(jié)課,首先簡(jiǎn)單的用幾分鐘時(shí)間回顧一下一次函數(shù)的基本理論,“學(xué)習(xí)理論是為了服務(wù)于實(shí)踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點(diǎn)處理實(shí)際問題,主要圍繞著路程、價(jià)格這樣的實(shí)際問題,通過在速度一定的條件下路程與時(shí)間的關(guān)系,總價(jià)在單價(jià)一定的情形下,總價(jià)與數(shù)量的關(guān)系這幾個(gè)例題,認(rèn)識(shí)到一次函數(shù)與實(shí)際問題的關(guān)系,在講解這幾個(gè)例子的時(shí)候,創(chuàng)設(shè)了學(xué)生熟悉的情境,如在建立一次函數(shù)模型進(jìn)行預(yù)測(cè)的問題時(shí),問學(xué)生:“你知道今年奧運(yùn)會(huì)的撐桿跳高的記錄是多少?你能對(duì)它進(jìn)行預(yù)測(cè)嗎?”,簡(jiǎn)單的一句話引出問題,這樣更能引起學(xué)生的興趣,使學(xué)生更積極地參與到教學(xué)中來,因?yàn)榍榫呈煜ぃ材芸焖俚嘏c學(xué)生產(chǎn)生共鳴。創(chuàng)設(shè)了輕松和諧的教學(xué)環(huán)境與氛圍,師生互動(dòng)較好,這樣能使學(xué)生主動(dòng)開動(dòng)思維,利用已有的知識(shí)順利的解決這幾個(gè)問題。在講解例題的同時(shí),試著讓學(xué)生利用圖象解決問題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實(shí)際情境中的取值范圍問題。
而后,給學(xué)生幾分鐘的思考時(shí)間,讓他們通過平時(shí)對(duì)生活的細(xì)心觀察,生活中有關(guān)一次函數(shù)的有價(jià)值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個(gè)性,這樣有益于他們健康的人格的成長(zhǎng)。最后在總結(jié)中讓學(xué)生體會(huì)到利用一次函數(shù)解決實(shí)際問題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。從總體看整個(gè)教學(xué)環(huán)節(jié)也比較完整。
這節(jié)課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會(huì)更快點(diǎn),整節(jié)課將會(huì)更加豐滿。當(dāng)然,在教學(xué)實(shí)施中我也考慮到了這一點(diǎn),所以在講解例題的時(shí)候?qū)⒚總€(gè)例題的要點(diǎn)以簡(jiǎn)短的板書形式展示出來,在一定程度上也節(jié)省了時(shí)間。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇四
本節(jié)內(nèi)容是人教版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》八年級(jí)上冊(cè)“14.2.2一次函數(shù)”(第二課時(shí))。
一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位和作用分析。
二、教學(xué)目標(biāo)分析。
三、教學(xué)問題診斷分析。
四、本節(jié)課的教法特點(diǎn)及預(yù)期效果分析。
3.八年級(jí)的學(xué)生好奇、好學(xué)、好動(dòng),所以在教學(xué)過程中通過讓學(xué)生自己動(dòng)手畫圖,同學(xué)之間交流畫法,談?wù)勏敕ǖ然顒?dòng),充分發(fā)揮學(xué)生的主體性,進(jìn)一步激發(fā)學(xué)生的求知欲,課件中的動(dòng)畫過程使數(shù)與形的關(guān)系可視化,有利于學(xué)生對(duì)問題的感知。
以上是我對(duì)這節(jié)課的教學(xué)設(shè)計(jì)的說明,不妥之處懇請(qǐng)各位專家批評(píng)指正。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇五
一次函數(shù)圖像,是北師大八年級(jí)上冊(cè)的內(nèi)容。教學(xué)這一節(jié)時(shí),我沒有按照課本的講解。我著這樣安排的,先講正比例函數(shù)的圖像和性質(zhì),用一課時(shí),今天我就是講這一節(jié)。
先介紹函數(shù)的圖像、畫法。再畫正比例函數(shù)的圖像,引出正比例函數(shù)是經(jīng)過原點(diǎn)的直線。接著介紹怎樣作正比例函數(shù)的圖像。用這種方法,作幾個(gè)正比例函數(shù)的圖像,總結(jié)規(guī)律。接著練習(xí)。
練習(xí)之后我備課時(shí)又有一個(gè)性質(zhì)要介紹,由于時(shí)間的關(guān)系,沒有講解,就下課了!
反思:1、課堂中前段時(shí)間留給學(xué)生的時(shí)間長(zhǎng),沒完成課前準(zhǔn)備的教學(xué)任務(wù)。
2、本節(jié)課講到第三個(gè)性質(zhì)。
3、練習(xí)題要精而且少,難易適中。
4、注意課前準(zhǔn)備,上課注意語(yǔ)言。函數(shù)教學(xué)反思反比例函數(shù)教學(xué)反思。
將本文的word文檔下載到電腦,方便收藏和打印。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇六
本節(jié)內(nèi)容共安排2個(gè)課時(shí)完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對(duì)應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力。本節(jié)要注意的是由兩條直線求交點(diǎn),其交點(diǎn)的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對(duì)應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的。
學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識(shí),學(xué)習(xí)本節(jié)知識(shí)困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會(huì)數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決。
1、教學(xué)目標(biāo)。
知識(shí)與技能目標(biāo)。
(1)初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2)掌握二元一次方程組和對(duì)應(yīng)的兩條直線之間的關(guān)系;
(3)掌握二元一次方程組的圖像解法。
過程與方法目標(biāo)。
(2)通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。
(3)情感與態(tài)度目標(biāo)。
(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力。
2、教學(xué)重點(diǎn)。
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對(duì)應(yīng)的兩條直線的關(guān)系。
3、教學(xué)難點(diǎn)。
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。
1、教法學(xué)法。
啟發(fā)引導(dǎo)與自主探索相結(jié)合。
2、課前準(zhǔn)備。
教具:多媒體課件、三角板。
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置。
第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)。
內(nèi)容:1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?
2、點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3、在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。
意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y=相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對(duì)應(yīng)關(guān)系。
效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識(shí)的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。
前面研究了一個(gè)二元一次方程和相應(yīng)的一個(gè)一次函數(shù)的關(guān)系,現(xiàn)在來研究?jī)蓚€(gè)二元一次方程組成的方程組和相應(yīng)的兩個(gè)一次函數(shù)的關(guān)系。順其自然進(jìn)入下一環(huán)節(jié)。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系。
內(nèi)容:1.解方程組。
2、上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
意圖:通過自主探索,使學(xué)生初步體會(huì)數(shù)(二元一次方程)與形(兩條直線)之間的對(duì)應(yīng)關(guān)系,為求兩條直線的交點(diǎn)坐標(biāo)打下基礎(chǔ)。
效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識(shí),學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和變式能力。
第三環(huán)節(jié)典型例題。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點(diǎn)坐標(biāo)是。
意圖:設(shè)計(jì)例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解。通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理。這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時(shí)解決實(shí)際問題作了很好的鋪墊。
效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。
第四環(huán)節(jié)反饋練習(xí)。
內(nèi)容:1.已知一次函數(shù)與的圖像的交點(diǎn)為,則。
2、已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)a(2,0),且與軸分別交于b,c兩點(diǎn),則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?
意圖:4個(gè)練習(xí),意在及時(shí)檢測(cè)學(xué)生對(duì)本節(jié)知識(shí)的掌握情況。
效果:加深了兩條直線交點(diǎn)的坐標(biāo)就是對(duì)應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計(jì)算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性。
第五環(huán)節(jié)課堂小結(jié)。
內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:
1、二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。
2、方程組和對(duì)應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;
3、解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
意圖:旨在使本節(jié)課的知識(shí)點(diǎn)系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識(shí)才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用。
第六環(huán)節(jié)作業(yè)布置。
習(xí)題7.7。
附:板書設(shè)計(jì)。
本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識(shí)的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對(duì)應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解。因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個(gè)問題。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇七
教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)函數(shù)與圖像的對(duì)應(yīng)關(guān)系應(yīng)讓學(xué)生動(dòng)手去實(shí)踐,去發(fā)現(xiàn),對(duì)一次函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出。在得出結(jié)論之后,讓學(xué)生能運(yùn)用“兩點(diǎn)確定一條直線”,很快做出一次函數(shù)的圖像。在鞏固練習(xí)活動(dòng)中,鼓勵(lì)學(xué)生積極思考,提高學(xué)生解決實(shí)際問題的能力。
根據(jù)學(xué)生狀況,教學(xué)設(shè)計(jì)也應(yīng)做出相應(yīng)的調(diào)整.如第一環(huán)節(jié):探究新知,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見山,直切主題,如提出問題:一次函數(shù)的代數(shù)形式是y=kx+b,那么,一個(gè)一次函數(shù)對(duì)應(yīng)的圖形具有什么特征呢?今天我們就研究一次函數(shù)對(duì)應(yīng)的圖形特征—本節(jié)課是學(xué)生首次接觸利用數(shù)形結(jié)合的思想研究一次函數(shù)圖象和性質(zhì),對(duì)他們而言觀察對(duì)象、探索思路、研究方法都是陌生的,因而在教學(xué)過程中我通過問題情境的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)興趣,引導(dǎo)學(xué)生觀察一次函數(shù)的圖像,探討一次函數(shù)的簡(jiǎn)單性質(zhì),逐步加深學(xué)生對(duì)一次函數(shù)及性質(zhì)的認(rèn)識(shí)。本節(jié)課的重點(diǎn)是要學(xué)生了解正比例函數(shù)的確定需要一個(gè)條件,一次函數(shù)的確定需要兩個(gè)條件,能由條件求出一些簡(jiǎn)單的一次函數(shù)表達(dá)式,并能解決有關(guān)現(xiàn)實(shí)問題。本節(jié)課設(shè)計(jì)注重發(fā)展了學(xué)生的數(shù)形結(jié)合的思想方法及綜合分析解決問題的能力及應(yīng)用意識(shí)的培養(yǎng),為后繼學(xué)習(xí)打下基礎(chǔ)。
由于這節(jié)課的知識(shí)容量較大,而且內(nèi)容較難,我們所用的學(xué)案就能很好地幫助學(xué)生消化理解該知識(shí),。在教學(xué)過程中,讓學(xué)生親自動(dòng)手、動(dòng)腦畫圖的方式,通過教師的引導(dǎo),學(xué)生的交流、歸納等環(huán)節(jié)較成功地完成了教學(xué)目標(biāo),收到了較好的效果。但還存在著不盡人意的地方,由于課的內(nèi)容容量較大,對(duì)于有些知識(shí)點(diǎn),如“隨著x值的增大,y的值分別如何化?”,本應(yīng)給學(xué)生更多的時(shí)間練習(xí)、討論,以幫助理解消化該知識(shí),但由于時(shí)間緊,學(xué)生的這一活動(dòng)開展的不充分。課堂氣氛不夠活躍,個(gè)別學(xué)生的主動(dòng)性、積極性沒有充分調(diào)動(dòng)起來。這是今后教學(xué)中應(yīng)該注意的問題。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇八
《一次函數(shù)的應(yīng)用》這節(jié)課的教學(xué)內(nèi)容是湘教版版八年級(jí)數(shù)學(xué)上冊(cè)第二章第三節(jié)的內(nèi)容。本節(jié)課討論了一次函數(shù)的某些應(yīng)用,在這些實(shí)際應(yīng)用中,備課時(shí)注意到與學(xué)生的實(shí)際生活相聯(lián)系,切實(shí)發(fā)生在學(xué)生的身邊的某些實(shí)際情境,并且注意用函數(shù)觀點(diǎn)來處理問題或?qū)栴}的解決用函數(shù)做出某種解釋,用以加深對(duì)函數(shù)的認(rèn)識(shí),并突出知識(shí)之間的內(nèi)在聯(lián)系。本節(jié)的主要內(nèi)容是讓學(xué)生逐步形成用函數(shù)的觀點(diǎn)處理問題意識(shí),體驗(yàn)數(shù)形結(jié)合的思想方法。
教學(xué)時(shí),能夠達(dá)到三維目標(biāo)的要求,突出重點(diǎn)把握難點(diǎn)。能夠讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的應(yīng)用過程,關(guān)注對(duì)問題的分析過程,讓學(xué)生自己利用已經(jīng)具備的知識(shí)分析實(shí)例。用函數(shù)的觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境,建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,注意分析的過程,即將實(shí)際問題置于已有的知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新理解(這是什么?可以看成什么?),讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的眼光考察實(shí)際問題。同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想。
具體分析本節(jié)課,首先簡(jiǎn)單的用幾分鐘時(shí)間回顧一下一次函數(shù)的基本理論,“學(xué)習(xí)理論是為了服務(wù)于實(shí)踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點(diǎn)處理實(shí)際問題,主要圍繞著路程、價(jià)格這樣的實(shí)際問題,通過在速度一定的條件下路程與時(shí)間的關(guān)系,總價(jià)在單價(jià)一定的情形下,總價(jià)與數(shù)量的關(guān)系這幾個(gè)例題,認(rèn)識(shí)到一次函數(shù)與實(shí)際問題的關(guān)系,在講解這幾個(gè)例子的時(shí)候,創(chuàng)設(shè)了學(xué)生熟悉的情境,如在建立一次函數(shù)模型進(jìn)行預(yù)測(cè)的問題時(shí),問學(xué)生:“你知道今年奧運(yùn)會(huì)的撐桿跳高的記錄是多少?你能對(duì)它進(jìn)行預(yù)測(cè)嗎?”,簡(jiǎn)單的一句話引出問題,這樣更能引起學(xué)生的興趣,使學(xué)生更積極地參與到教學(xué)中來,因?yàn)榍榫呈煜ぃ材芸焖俚嘏c學(xué)生產(chǎn)生共鳴。創(chuàng)設(shè)了輕松和諧的教學(xué)環(huán)境與氛圍,師生互動(dòng)較好,這樣能使學(xué)生主動(dòng)開動(dòng)思維,利用已有的知識(shí)順利的解決這幾個(gè)問題。
在講解例題的同時(shí),試著讓學(xué)生利用圖象解決問題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實(shí)際情境中的取值范圍問題。而后,給學(xué)生幾分鐘的思考時(shí)間,讓他們通過平時(shí)對(duì)生活的細(xì)心觀察,生活中有關(guān)一次函數(shù)的有價(jià)值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個(gè)性,這樣有益于他們健康的人格的成長(zhǎng)。最后在總結(jié)中讓學(xué)生體會(huì)到利用一次函數(shù)解決實(shí)際問題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。從總體看整個(gè)教學(xué)環(huán)節(jié)也比較完整。
這節(jié)課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會(huì)更快點(diǎn),整節(jié)課將會(huì)更加豐滿。當(dāng)然,在教學(xué)實(shí)施中我也考慮到了這一點(diǎn),所以在講解例題的時(shí)候?qū)⒚總€(gè)例題的要點(diǎn)以簡(jiǎn)短的板書形式展示出來,在一定程度上也節(jié)省了時(shí)間。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇九
3.直線y=kx+b與方程的聯(lián)系。
那么一元一次不等式與一次函數(shù)是怎樣的關(guān)系呢?本節(jié)課研究一元一次不等式與一次函數(shù)的關(guān)系。
教師活動(dòng):引導(dǎo)學(xué)生回顧一次函數(shù)相關(guān)概念以及一次函數(shù)與方程的關(guān)系。
設(shè)計(jì)意圖:回顧所學(xué)知識(shí)作好新知識(shí)的銜接。
二、導(dǎo)探激勵(lì)。
問題1:我們來看下面兩個(gè)問題有什么關(guān)系?
1.解不等式5x+63x+10.。
2.當(dāng)自變量x為何值時(shí)函數(shù)y=2x—4的值大于0?
問題2:作出函數(shù)y=2x—5的圖象,觀察圖象回答下列問題:
(1)x取何值時(shí),2x—5=0?
(2)x取哪些值時(shí),2x—50?
(3)x取哪些值時(shí),2x—50?
(4)x取哪些值時(shí),2x—53?
教師活動(dòng):展示問題1,適當(dāng)時(shí)間后請(qǐng)學(xué)生解答并說明理由,教師借助課件作結(jié)論性評(píng)判。
設(shè)計(jì)意圖:?jiǎn)栴}2可以直接解不等式(或方程)求解,但這里意圖是讓學(xué)生通過直接圖。
象得到。引導(dǎo)學(xué)生體會(huì)既可以運(yùn)用函數(shù)圖象解不等式,也可以運(yùn)用解不等式幫助研究函數(shù)問題,二者互相滲透,互相作用。
學(xué)生可以用不同方法解答,教師意圖是盡量用圖象求解。
問題3:用畫函數(shù)圖象的方法解不等式5x+42x+10。
學(xué)生活動(dòng):在教師指導(dǎo)下,順利完成作圖,觀察求出答案,并能歸納總結(jié)出其特點(diǎn).活動(dòng)過程及結(jié)論:
種函數(shù)觀點(diǎn)認(rèn)識(shí)問題的方法,對(duì)于繼續(xù)學(xué)習(xí)數(shù)學(xué)很重要.。
三、鞏固練習(xí)。
2.利用圖象解出x:
6x—43x+2.。
四.隨堂練習(xí)。
2.利用圖象解不等式5x—12x+5.。
五.課時(shí)小結(jié)。
六.課后作業(yè)。
習(xí)題14.3─3、4、7題.。
七.活動(dòng)與探究。
教學(xué)反思:
本堂課在設(shè)計(jì)上可以跳出教材,根據(jù)學(xué)生的實(shí)際情況,在問題1中可設(shè)計(jì)一。
個(gè)簡(jiǎn)單一點(diǎn)的不等式,待學(xué)生會(huì)將不等式轉(zhuǎn)化為一次函數(shù)分析并用圖像解決時(shí)在增加難度,放在問題3中一并解決,這樣學(xué)生在接受上不會(huì)太難,也不會(huì)導(dǎo)致時(shí)間分配不合理,以至設(shè)計(jì)的內(nèi)容無法完成。另外,這充分發(fā)揮學(xué)生的主體性,讓學(xué)生通過觀察及操作發(fā)現(xiàn)一次函數(shù)與一元一次不等式的關(guān)系及用一次函數(shù)解決一元一次不等式的方法。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇十
知識(shí)目標(biāo):了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。
能力目標(biāo):通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
情感目標(biāo):通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
一、引入、實(shí)物投影。
2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。
這個(gè)問題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。
師:同學(xué)們能用方程的。方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少?(含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)。
師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇十一
3、經(jīng)歷一次函數(shù)概念的認(rèn)識(shí),和利用一次函數(shù)解決實(shí)際問題的過程,逐步認(rèn)識(shí)利用函數(shù)觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
一次函數(shù)的概念以及一次函數(shù)和正比例函數(shù)的關(guān)系。
理解一次函數(shù)和正比例函數(shù)的關(guān)系。
引導(dǎo)發(fā)現(xiàn)、探究指導(dǎo)。
自主學(xué)習(xí)、合作學(xué)習(xí)。
多媒體。
一、情景引入。
母親節(jié)快到了,紅紅想送一大束康乃馨給媽媽,花店老板告訴她,若買10支以及10支以下,每支3元,買10支以上,超過的部分打8折,如果紅紅買了x支康乃馨(x10),付給老板y元錢,請(qǐng)寫出y與x之間的函數(shù)關(guān)系式。
二、探究新知。
1、下列問題中,變量之間的對(duì)應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,請(qǐng)寫出函數(shù)解析式?
(4)把一個(gè)長(zhǎng)10cm,寬5cm的矩形的長(zhǎng)減少xcm,寬不變,矩形面積y(單位:cm2)隨x的值而變化。
2、這些函數(shù)解析式有哪些共同特征?
3、你能仿照正比例函數(shù)的概念,歸納總結(jié)出一次函數(shù)的概念嗎?
4、一次函數(shù)和正比例函數(shù)有什么關(guān)系?
三、展示歸納(學(xué)生做后,解答過程學(xué)生說老師寫,發(fā)動(dòng)學(xué)生糾正和完善并總結(jié)歸納出一次函數(shù)的概念)。
1、學(xué)生先用獨(dú)立思考,在進(jìn)行小組討論,老師準(zhǔn)備板書,巡回指導(dǎo),了解情況;
2、學(xué)生逐一回答,其他學(xué)生逐一補(bǔ)充完善;
3、教師火龍點(diǎn)睛,強(qiáng)調(diào)關(guān)鍵。
四、練習(xí)鞏固(過渡語(yǔ):了解了一次函數(shù)的概念之后下面老師就來檢驗(yàn)一下同學(xué)們,看看同學(xué)們能判斷一個(gè)函數(shù)是一次函數(shù)嗎?)(每個(gè)練習(xí)先讓學(xué)生做,教師巡回指導(dǎo),然后讓有一定問題的學(xué)生匯報(bào)展示,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,教師強(qiáng)調(diào)關(guān)鍵地方,在進(jìn)行下一個(gè)練習(xí))。
練習(xí)1下列函數(shù)中哪些是一次函數(shù),哪些又是正比例函數(shù)?
(1)y=—8x;(2)y=—;(3)y=5x+6;(4)y=—0。5x—1;
(5)y=—1;(6)y=—13;(7)y=2(x—4);(8)y=。
練習(xí)2已知一次函數(shù)y=kx+b,當(dāng)x=1時(shí),y=5;當(dāng)x=—1時(shí),y=1。求k和b的值。
五、小結(jié)與歸納(由學(xué)生來陳述,百花齊放。教師不做限定,沒說到的,教師補(bǔ)充。)。
1、通過本節(jié)課的學(xué)習(xí),你有何收獲?
2、反思一下你所獲得的經(jīng)驗(yàn),與同學(xué)交流!
六、作業(yè):必做題:教科書第91頁(yè)第3題;
選做題:請(qǐng)寫出若干個(gè)變量y與x之間的函數(shù)解析式,讓同桌判斷是否是一次函數(shù);如果是,請(qǐng)說出其一次項(xiàng)系數(shù)與常數(shù)項(xiàng)。
七、板書設(shè)計(jì)(以課堂生成為準(zhǔn))。
八、課后反思:
在上一節(jié)課,學(xué)生整體感受了研究函數(shù)的一般思路與方法,但在具體知識(shí)理解的深度上還是不夠,尤其作業(yè)上學(xué)生對(duì)概念中的自變量的次數(shù)理解不夠到位。在這節(jié)課的學(xué)習(xí)中,應(yīng)當(dāng)促進(jìn)學(xué)生從整體把握的高度深刻的理解一次函數(shù)與正比例函數(shù)的概念以及它們之間的關(guān)系。在概念的學(xué)習(xí)中,教師對(duì)學(xué)生提供的經(jīng)驗(yàn)性材料太少,僅從正面入手不足以使學(xué)生真正理解概念,還必須從側(cè)面和反面來理解概念,通過多舉例,多練習(xí)來鞏固概念。
教學(xué)中,需要分清并抓住本質(zhì)現(xiàn)象,鼓勵(lì)學(xué)生用自己的語(yǔ)言闡述自己的看法,學(xué)生在經(jīng)歷大量源自實(shí)際背景下的解析式的分析比較后,抽象概括出它們的一般結(jié)構(gòu),從而形成一次函數(shù)的概念,教師在強(qiáng)調(diào)概念需要注意和容易出錯(cuò)的地方。在知識(shí)的獲取過程中,始終交織著舊知與新知、變與不變、相同與不同的對(duì)立與統(tǒng)一,這些都觸動(dòng)著學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的情感。
另外,課前備學(xué)生是十分必要的,只有充分了解學(xué)生,課時(shí)盡量關(guān)注每一個(gè)學(xué)生,做到心中有學(xué)生,使每一個(gè)學(xué)生都參與課堂活動(dòng)中來,讓他們感受到自己是這節(jié)課的主角,從而學(xué)習(xí)數(shù)學(xué)的積極性提高,降低兩極分化。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇十二
(2)通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。
(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力。
(2)二元一次方程組和對(duì)應(yīng)的兩條直線的關(guān)系。
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。
教具:多媒體課件、三角板。
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識(shí))。
內(nèi)容:
1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?
2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。
內(nèi)容:
1.解方程組。
2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點(diǎn)坐標(biāo)是。
第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。
內(nèi)容:
1.已知一次函數(shù)與的圖像的交點(diǎn)為,則。
2.已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)a(—2,0),且與軸分別交于b,c兩點(diǎn),則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?
第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。
內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:
1.二元一次方程和一次函數(shù)的。圖像的關(guān)系;
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇十三
1、問題導(dǎo)入:
請(qǐng)同學(xué)們思考后回答:
(1)找出問題中的變量并用字母表示,列出函數(shù)關(guān)系式、
(2)這兩個(gè)函數(shù)關(guān)系式有什么共同點(diǎn)?自變量的取值范圍各有什么限制?
以上這些問題,請(qǐng)各小組討論一下,派代表回答、引出課題(板書課題)教師最后總結(jié)一次函數(shù)的概念、(板書)。
1、做一做:
我們已經(jīng)學(xué)習(xí)了用描點(diǎn)法畫函數(shù)的圖象,請(qǐng)同學(xué)運(yùn)用描點(diǎn)法畫出下列函數(shù)的圖象(老師用多媒體打出題目)。根據(jù)學(xué)生的動(dòng)手實(shí)踐、觀察與討論,得出結(jié)論:一次函數(shù)的圖象是一條直線、特別地,正比例函數(shù)的圖象是經(jīng)過原點(diǎn)的一條直線。
2、接下來教師提問:
(1)觀察所畫出的四個(gè)一次函數(shù)的圖象,比較各對(duì)一次函數(shù)的圖象有什么共同點(diǎn),有什么不同點(diǎn)。
4、鞏固訓(xùn)練:
(1)在同一平面直角坐標(biāo)系中畫出下列函數(shù)的圖象。
將直線向上平移5個(gè)單位,得到直線_______________________、
(由學(xué)生到前板演)、
函數(shù)反映了客觀世界中量的變化規(guī)律,那么一次函數(shù)又有什么性質(zhì)呢?
1、請(qǐng)同學(xué)們來一起觀察大屏幕上函數(shù)圖象(教師用多媒體演示函數(shù)的圖象),并回答:當(dāng)一個(gè)點(diǎn)在直線上從左右移動(dòng)時(shí),它的位置如何變化?你能從中得到函數(shù)值的變化與自變量的變化規(guī)律嗎?(教師運(yùn)用現(xiàn)代化的教學(xué)手段來演示點(diǎn)的移動(dòng)情況,進(jìn)一步促進(jìn)了學(xué)生對(duì)一次函數(shù)的變化規(guī)律理解)由學(xué)生討論出結(jié)果:也就是說,函數(shù)值隨自變量的增大而增大、(教師板書)。
一次函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(匯總14篇)篇十四
作為一位杰出的教職工,編寫教學(xué)設(shè)計(jì)是必不可少的,教學(xué)設(shè)計(jì)是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動(dòng)的計(jì)劃。那么優(yōu)秀的教學(xué)設(shè)計(jì)是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教學(xué)設(shè)計(jì),歡迎閱讀與收藏。
2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
1、用作圖像法求二元一次方程組的近似值。
1、做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近。
先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問題多聽多問。
問題1、
(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數(shù)y=5—x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?
(5)由以上的探究過程,你發(fā)現(xiàn)了什么?
問題2、
(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點(diǎn)。