教學工作計劃的制定需要充分考慮學生的實際情況和學科的特點。此處為大家整理了一些精選的教學工作計劃范文,供大家欣賞學習。
比的基本性質數學教案(優秀17篇)篇一
1、使學生理解掌握比的基本性質,能應用比的基本性質進行比的化簡。
2、培養學生類比、推理和概括思維能力。
1、前面我們認識了比,想一想2:4與6:12這兩個比的大小是相等的嗎?你能證明嗎?----小研究(后附)。
(1)4人小組交流(2)全班交流。
(3)比值相等可以證明,還可以運用學過的哪個知識也可以證明呢?
(4)商不變的性質是不是對每個比都適用呢?自己舉例試一試。
4、學生齊讀,我們學習比的基本性質有什么作用呢?分數的性質可以使分數化簡,比的性質同樣可以使比化簡,那么,什么樣的比才是最簡單的整數比呢?(比的前項和后項是互質數)最簡單的整數比就簡稱為最簡比。
5、你能舉例說幾個最簡比嗎?說得很好,在計算結果時,我們一般要得到最簡比。
1、小組交流。
2、全班交流。
小結:化簡比時,我們一般利用比的性質把比的前項和后項化成整數,再化簡比較快。但在比的前項和后項都是分數時,用求比值的方法較快,只是注意最后結果要寫成真分數、假分數或比的形式。
結合學生的匯報,引導學生注意化簡比和求比值的區別。化簡比:它是為了得到一個最簡單的整數比。結果可以寫成比的形式,也可以寫成分數的形式,但不能寫成帶分數、小數獲整數的形式。
1、學校體育室有10個籃球,15個足球,籃球與足球的個數比是()。
2、李師傅8小時生產了72個零件,李師傅生產零件總個數和時間的比是()。
3、拓展練習。
3:8=(3+6):(8+)。
(讓學生分小組討論方法)。
這節課有哪些收獲?師生共同總結。
()年()班姓名。
你知道2:4與6:12這兩個比的大小相等嗎?你能證明嗎?你有什么發現?
方法一。
方法二。
方法三。
方法四。
我的發現:
聰明的同學:請你結合這節課所學的知識化簡下面各比,說說你有什么發現?
序號。
比
我的方法。
(寫出過程)。
1
14:21。
2
36:15。
3
1/6:2/9。
4
2/3:3/4。
5
1.25:2。
6
5.6:4.2。
我的發現:
比的基本性質數學教案(優秀17篇)篇二
教學內容:
課本第57頁的內容及例1,完成做一做題和練習十四的第5~9題。
教學目的:
教學過程:
一、復習。
1.除法中的商不變規律是什么?
3.比與除法有什么關系?
4.比與分數有什么關系?
二、新授。
我們剛才復習了除法中商不變規律和分數的基本性質,又知道比和除法、分數有著密切的聯系,比的前項相當于被除數,比的后項相當于除數;比的前項也相當于分數的分子,比的后項相當于分母。
問:在比中有什么樣的規律?
引導學生得出:比的前項和后項同時乘以或者同時除以相同的數(零除外),比值不變。這就是比的基本性質。
問:為什么這里要同時乘以或除以相同的數不能是0?(因為如果乘以0,比的后項就變成了0,沒有意義。且0不能作除數,更不能同時除以0)。
2.教學化簡比。
利用比的基本性質,我們可以把比化成最簡單的整數比。
比的基本性質數學教案(優秀17篇)篇三
課本第57頁的內容及例1,完成做一做題和練習十四的第5~9題。
使學生理解比的基本性質,掌握化簡比的方法。
一、復習。
1.除法中的商不變規律是什么?
2.分數的基本性質是什么?
3.比與除法有什么關系?
4.比與分數有什么關系?
二、新授。
1.教學比的基本性質。
我們剛才復習了除法中商不變規律和分數的基本性質,又知道比和除法、分數有著密切的聯系,比的前項相當于被除數,比的后項相當于除數;比的前項也相當于分數的分子,比的后項相當于分母。
問:在比中有什么樣的規律?
引導學生得出:比的前項和后項同時乘以或者同時除以相同的數(零除外),比值不變。這就是比的基本性質。
問:為什么這里要同時乘以或除以相同的數不能是0?(因為如果乘以0,比的后項就變成了0,沒有意義。且0不能作除數,更不能同時除以0)
2.教學化簡比。
利用比的基本性質,我們可以把比化成最簡單的整數比。
比的基本性質數學教案(優秀17篇)篇四
我們剛才復習了除法中商不變規律和分數的基本性質,又知道比和除法、分數有著密切的聯系,比的前項相當于被除數,比的后項相當于除數;比的前項也相當于分數的分子,比的后項相當于分母。
問:在比中有什么樣的規律?
引導學生得出:比的前項和后項同時乘以或者同時除以相同的數(零除外),比值不變。這就是比的基本性質。
問:為什么這里要同時乘以或除以相同的數不能是0?(因為如果乘以0,比的后項就變成了0,沒有意義。且0不能作除數,更不能同時除以0)。
2.教學化簡比。
利用比的基本性質,我們可以把比化成最簡單的整數比。
比的基本性質數學教案(優秀17篇)篇五
3、導入課題:
我們以前學過商不變的性質和分數的基本性質,今天我們就在這些舊知識的基礎上學習新的知識。下面,我們就一起研究研究。(板書課題:比的基本性質)
1、教學例3比的基本性質。
(4)師:你覺得哪些詞語比較重要?0除外你怎樣理解得?
2、教學例4應用比的基本性質化簡比。
我們以前學過最簡分數,想一想:什么叫做最簡分數?最簡單的整數比就是比的前項、后項是互質數,像9∶8就是最簡單的整數比。
出示:把下面各比化成最簡單的整數比
(1)12:18(2)(3)1、8:0、09
(1)讓學生試做第(1)題
師:你是怎么做的?6和12、18有著怎樣的關系?
引導學生小結出整數比化簡的方法:用比的前后項分別除以它們的公約數,使比的前后項是互質數。
比的基本性質數學教案(優秀17篇)篇六
課本第57頁的內容及例1,完成“做一做”題和練習十四的第5~9題。
一、復習。
1.除法中的商不變規律是什么?
3.比與除法有什么關系?
4.比與分數有什么關系?
二、新授。
我們剛才復習了除法中商不變規律和分數的基本性質,又知道比和除法、分數有著密切的聯系,比的前項相當于被除數,比的后項相當于除數;比的前項也相當于分數的分子,比的后項相當于分母。
問:在比中有什么樣的規律?
引導學生得出:比的前項和后項同時乘以或者同時除以相同的數(零除外),比值不變。這就是比的基本性質。
問:為什么這里要同時乘以或除以相同的數不能是0?(因為如果乘以0,比的后項就變成了0,沒有意義。且0不能作除數,更不能同時除以0)。
2.教學化簡比。
出示例1:把下面各比化成最簡單的整數比。
(1)。
問:這道題的前項和后項都是什么數?怎樣才能使它化成最簡整數比?(引導學生得出:這道題前項、后項都是整數,要把它化成最簡整數比,就必須根據比的基本性質把前、后項同時除以它們最大公約數7)。
(2)。
問:這是一道分數比,怎樣才能使它轉化成整數比?(引。
導學生說出:要根據比的基本性質,把它的前后項同時乘以它們的分母的最小公倍數18,才能轉化成整數比。)。
化成整數比以后,如果不是最簡的整數比,還要應用(1)題的方法繼續化簡。
(3)。
問:這道是小數比,怎樣化成整數比?(啟發學生說出:可根據比的基本性質,把它的前后項同時乘以相同的數,使它們轉化成整數比。如果這時還不是最簡整數比,要再除以前后項的最大公約數,使它化為最簡整數比。)。
或
3.小結:
問:這節課我們學習了什么新知識?它的內容是什么?還學會了什么?
三、鞏固練習。
1.完成“做一做”的題目。
讓學生說一說化簡的方法。
2.練習十四第5、7、8題。
3.練習十四第9題。
提示:化簡與求比值的得數有什么不同?(化簡的結果是一個比。求比值的結果是商,是一個數)。
四、作業。
1.練習十四第6、10題。
2.一列火車15小時行駛1200千米。
(1)寫出行駛的路程和時間的比,并化成最簡單的整數比。
(2)求出這個比的比值,再說出這個比值的含義是什么?
比的基本性質數學教案(優秀17篇)篇七
教完“比的基本性質”后,我不停地在思考一個問題:學生學習數學知識有一個最重要的基礎:已有知識,尤其對六年級學生而言,他們在以前學習的過程中,積累了豐富的數學知識,盡管這些知識的獲得有的來自于他人的幫助,有的來自于自身的感悟,但是不管怎樣,不管其來源如何,既然學生已經掌握,就納入到了學生已有的知識結構體系中,這些的確是客觀存在的現實,并作為小學生已有知識的一部分構成進一步學習新知的數學資源。《數學新課程標準》指出:“數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上”。小學生已有的知識是學生進行數學學習的重要資源。
其實,對于小學生而言,由于他們已經有了許多相關的數學知識,很多教材中的“新知識”對于學生來講并非“新知識”。正因為這樣,我理解的小學生數學學習的實質是,用自己已有的知識與新知進行交互作用,進而重新建構自己的知識體系的過程。學生以前學習的“商不變的規律”、“分數的基本性質”、“比與分數、除法之間的關系”和今天學習的“比的基本性質”相互聯系起來,讓學生在已有知識的基礎上學習新知就可以起到事半功倍的效果。
因此,學生的已有知識理所當然地成為他們數學學習的一個重要基礎,進而成為我們進行數學教學的一個龐大資源庫。而這些學生已經掌握的數學知識,為他們進一步學習數學提供了一個有利的條件。教師如果能夠注意到這些情況,并將學生已有的知識科學合理進行利用,與學習數學新知互相結合起來,必將起到良好的效果。因此,關注學生已有的知識,貼近學生的實際情況,既是數學學科的特點所決定的,更是數學學習所必需的。
比的基本性質數學教案(優秀17篇)篇八
填空:
教師追問:第三題()里可以填多少個數?第4題呢?
為什么3、4題()里可以填無數個數?
()里填任何數都行嗎?哪個數不行?(板書:零除外)。
這里為什么必須“零除外”?
教師小結:我們總結的分數的這個變化規律就是“分數的基本性質.。
教師提問:分數的基本性質里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習.。
1.用直線把相等的分數連接起來.。
2.把下列分數按要求分類.。
和相等的分數:
和相等的分數:
3.判斷下列各題的對錯,并說明理由.。
4.填空并說出理由.。
5.集體練習.。
四、照應課前談話.。
問:現在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結.。
這節課你有什么收獲?
六、布置作業.。
1.指出下面每組中的兩個分數是相等的還是不相等的.。
2.在下面的括號里填上適當的數.。
比的基本性質數學教案(優秀17篇)篇九
1,充分體現了學生的主體性,放手到位.
在探究比的基本性質時,教師先讓學生在已有的知識基礎上大膽猜想,然后讓學生以同桌為單位進行驗證,展示驗證過程,再讓學生歸納出比的基本性質;在探究化簡比的方法時,教師安排了兩次活動,第一次,安排學生獨立自主探究,解決例1第一部分,第二次,由于內容有一定難度,教師讓學生以小組(4人)為單位,先自己思考,再小組內交流方法并解決問題,最后全班展示交流,總結方法,解決了例1第二部分.在本節課的兩次新知學習中,教師沒有過多講解,方法的探究,結論的歸納都是出自學生之口,學生真正經歷了知識的產生過程.
2,深挖教材并合理進行調整.
在探究化簡比的方法時,教材例1中只安排了整數比整數,分數比分數,小數比整數三種類型,基于對教材知識體系和學生實際的了解,教師把“做一做中的小數比小數,小數比分數兩種類型的題充實到例1中,這樣使學生較全面的掌握了化簡比的方法,降低了練習難度,效果較好.
3,整堂課體現了大容量快節奏,練習設計形式多樣.
習設計層次性強,有梯度,題型靈活多樣,尤其是快樂ab卷中設計了兩種難度的練習,供不同層次的學生選擇,關注了全體.
4,注重了多元化的評價.
教師在教學過程中,不僅注重了對學生個體的評價還注重了對小組合作學習的評價,同時也注重了培養學生的評價意識.在談收獲時,學生也能夠正確地對組內成員進行評價,合作意識得以凸顯;尤其在快樂ab卷中,教師設計了學生自評,組內成員互評,對教師課堂教學的評價版塊,這種多元化評價的設計既有利于學生的發展又有利于教師課堂教學的改善.
值得商榷之處:。
1,個別環節沒有抓住,失去了生成時機.
例如:在學生總結比的基本性質時,個別學生說出了”0除外“,這時教師就應該抓住這一問題,為什么”0除外",進行強化,砸實這個知識點.
2,學生學習熱情不夠高.
教師在今后教學中應在創設情境和設計過渡語方面下功夫,力求充分調動學生的學習熱情.
比的基本性質數學教案(優秀17篇)篇十
今天聽了馮老師執教的《比的基本性質》一課。馮位老師圍繞活動主題,注重培養學生的數學思想,注重學生為教學主體,教師為教學的引導者、合作者,教學方法靈活,教學效果良好。
優點:
1、課堂教學中都體現了類推的數學思想,轉化的思想,開學伊始對分數基本性質、除法商不變性質的復習,在教學中,由最簡分數到最簡整數比,這些由舊知的復習到新知的引入與理解,充分體現了數學中的類推思想和轉化思想,不僅教會學生學習的方法,更提高了學生的學習能力,教學效果良好。
2、教學中做到了分散難點,抓住重點,突破難點,在課堂教學中,抓住了理解比的基本性質,利用學生課前閱讀,各類判斷題的判斷(前項后項乘的數不同,前項后項運算不同,沒有加上0除外等等),讓學生對比的基本性質得到了充分的理解,并在教學中,有效建立分數的基本性質、商不變性質與比的基本性質的關系,分散了教學的難點,抓住重點,突破了難點,教學收到良好的效果。
3、課堂容量大,馮老師的教學根據六年級學生的特點,課堂教學容量大,將課堂教學看作是考試一樣,引導學生在緊張、高效的情況下學習、了解、鞏固、提高。
建議:教學中注重了學生在判斷中理解比的基本性質,化簡比與求比值的區別,但缺乏學生親自動手化簡的過程,如果讓學生自己親自去化簡,會充分理解比的基本性質,會應用比的基本性質。
比的基本性質數學教案(優秀17篇)篇十一
本周學校舉行關于數學學科的聯片教研活動,活動主題是“在數學閱讀中體驗和掌握數學思想方法”,我有幸聆聽馮老師執教的六年級數學上冊《比的基本性質》,主要有以下收獲:
1、本次活動緊扣活動主題,嘗試踐行落實數學課程中的閱讀教學,注重在課堂教學中向學生滲透一定的數學思想方法。馮老師的課堂教學體現了對應思想、類比思想、轉化思想。
2、緊扣教材重難點,精心設計教學環節,教學語言精煉,引導恰到好處。
3、練習設計獨具匠心,從名稱就可見一斑如“服從命令聽指揮”、“擦亮眼睛辨真偽”、“眾人劃槳開大船”
尤其是對于比的基本性質中的關鍵詞如“同時”、“相同的數”、“0除外”等都是通過習題判斷來引導學生知道出錯的原因,找出理由,從而加深對比的基本性質關鍵詞的理解,這種形式比對這幾個詞進行單純的強調效果要好得多。
比的基本性質數學教案(優秀17篇)篇十二
教學內容:課本第57頁的內容及例1,完成“做一做”題和練習十四的第5~9題。
教學目的:使學生理解比的基本性質,掌握化簡比的方法。
教學過程?:
一、復習。
1.除法中的商不變規律是什么?
3.比與除法有什么關系?
4.比與分數有什么關系?
二、新授。
我們剛才復習了除法中商不變規律和分數的基本性質,又知道比和除法、分數有著密切的聯系,比的前項相當于被除數,比的后項相當于除數;比的前項也相當于分數的分子,比的后項相當于分母。
問:
引導學生得出:比的前項和后項同時乘以或者同時除以相同的數(零除外),比值不變。這就是比的基本性質。
問:(因為如果乘以0,比的后項就變成了0,沒有意義。且0不能作除數,更不能同時除以0)。
2.教學化簡比。
出示例1:把下面各比化成最簡單的整數比。
(1)??????。
問:(引導學生得出:這道題前項、后項都是整數,要把它化成最簡整數比,就必須根據比的基本性質把前、后項同時除以它們最大公約數7)。
(2)。
導學生說出:要根據比的基本性質,把它的前后項同時乘以它們的分母的最小公倍數18,才能轉化成整數比。)。
化成整數比以后,如果不是最簡的整數比,還要應用(1)題的方法繼續化簡。
(3)。
問:(啟發學生說出:可根據比的基本性質,把它的前后項同時乘以相同的數,使它們轉化成整數比。如果這時還不是最簡整數比,要再除以前后項的最大公約數,使它化為最簡整數比。)。
或
3.小結:
問:這節課我們學習了什么新知識?它的內容是什么?還學會了什么?
三、鞏固練習。
1.完成“做一做”的題目。
讓學生說一說化簡的方法。
2.練習十四第5、7、8題。
3.練習十四第9題。
提示:化簡與求比值的得數有什么不同?(化簡的結果是一個比。求比值的結果是商,是一個數)。
四、作業?。
1.練習十四第6、10題。
2.一列火車15小時行駛1200千米。
(1)???????寫出行駛的路程和時間的比,并化成最簡單的整數比。
(2)???????求出這個比的比值,再說出這個比值的含義是什么?
比的基本性質數學教案(優秀17篇)篇十三
張老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在沈老師設計的課堂中,卻讓人欣喜的發現新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節課談談自己的體會。
《分數的基本性質》是小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。
(1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發現。
(2)把總結式教學為學生自我發現、自我總結的探究性學習。
(3)以教師的主導地位轉化為學生為主體的學生探究性學習。
調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數和除數同時擴大或縮小相同倍數,商不變。”
在新授過程中,沈老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態的數學知識變為一種讓學生在一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。整個課堂創設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發展,為學生的長遠發展奠定了良好的基礎。沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現了自主學習。
比的基本性質數學教案(優秀17篇)篇十四
填空:
教師追問:第三題()里可以填多少個數?第4題呢?
為什么3、4題()里可以填無數個數?
()里填任何數都行嗎?哪個數不行?(板書:零除外)。
這里為什么必須“零除外”?
(板書課題:分數基本性質)。
4.深入理解分數基本性質.。
教師提問:分數的基本性質里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習.。
1.用直線把相等的分數連接起來.。
2.把下列分數按要求分類.。
和相等的分數:
和相等的分數:
3.判斷下列各題的對錯,并說明理由.。
4.填空并說出理由.。
5.集體練習.。
四、照應課前談話.。
問:現在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結.。
這節課你有什么收獲?
六、布置作業.。
1.指出下面每組中的兩個分數是相等的還是不相等的.。
2.在下面的括號里填上適當的數.。
將本文的word文檔下載到電腦,方便收藏和打印。
比的基本性質數學教案(優秀17篇)篇十五
難點本節例2。
方法講練結合教學。
用具。
教學過程集體備課稿個案補充。
等式的`基本性質1等式的兩邊同時加上(或減去)同一個數或式,所得結果仍是等式若則。
1.書本117做一做。
2.書本118課內練習1。
3.課本117頁例1。
三.會依據等式的基本性質將方程變形,求出方程的解。
1.書本118頁例2。
2.書本119頁作業題3,4。
教學反思。
教學改進。
比的基本性質數學教案(優秀17篇)篇十六
聽了靳老師的這節課后,對比馮老師的同課異構課,我認為兩節課是各有千秋,都起到了很好的教學效果。
1、用學生喜聞樂見的生活實例引入數學。
本節課的導入是采用了我們都認識的國旗,它的長和寬的比入手,激發學生的聯想,從而很好的引入了新課的教學。有新意。
2、本課的教學程序和馮老師的不同之處是采用了舉例子的方法。靳老師從三個比值相等的式子1:2=2:4=3:6中,引導學生從左往右,從右往左依次觀察前項和后項的變化,從而得到比的基本性質,自然流暢,符合規律的形成過程,學生也容易接受,而且教師也提示了關鍵詞,通過判斷題鞏固了新知的教學。
3、注重練習題的設計,使學生積極主動的學在教學中教師能抓住學生的心理特點,設計一些學生容易進入陷阱的題目,在這些小陷阱中,讓學生愉快地掌握知識,突破重點和難點。例如:當學生得出比的基本性質這一規律時,及時出示了判斷題,在學習化簡比后也是先判斷再分類化簡比。
4、板書設計簡潔明了,概括性強。
5、學生的參與度高。
建議:增加動筆的訓練。本節課學生是說得多,做的少。
比的基本性質數學教案(優秀17篇)篇十七
《不等式的基本性質》它是北師大版八年級下冊第二章第二節的內容。今天我將從教材分析,教學目標,教學重難點,教法學法,教學過程這五個方面談談我對這節課處理的一些不成熟的看法:
本節內容不等式的基本性質,它是刻畫現實世界中量與量之間關系的有效數學模型,在現實生活中有著廣泛的應用,所以對不等式的學習有著重要的實際意義。同時,不等式的基本性質也為學生以后順利學習解一元一次不等式和解一元一次不等式組的有關內容的理論基礎,起到重要的奠基作用。
根據《新課程標準》的要求,教材的內容兼顧我班學生的特點,我制定了如下教學目標:
知識與技能:
1.感受生活中存在的不等關系,了解不等式的意義。
過程與方法:經歷不等式的基本性質的探索過程,初步體會不等式與等式的異同。
情感態度與價值觀:經歷由具體實例建立不等式模型的過程,進一步符號感與數學化的能力。
教學重難點: