初一教案是指為初中一年級學生準備的教學計劃和教學資料,用于指導教師進行教學活動。下面是一些初一語文教案的推薦,希望對大家的課堂教學有所啟發。
完全平方公式數學初一教案(匯總18篇)篇一
重點、難點根據公式的特征及問題的特征選擇適當的公式計算.
教學過程。
一、議一議。
1.邊長為(a+b)的正方形面積是多少?
2.邊長分別為a、b拍的兩個正方形面積和是多少?
3.你能比較(1)(2)的結果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.
二、做一做。
例1.利用完全平方式計算1.102。
三、試一試。
計算:。
1.(a+b+c)。
2.(a+b)師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。
四、隨堂練習。
p381。
五、小結。
本節課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據公式的特征及題目的特征靈活選擇適當的公式計算.3.用加法結合律,可為使用公式創造了條件.利用了這種方法,可以把多項式的完全平方轉化為二項式的完全平方.
六、作業。
課本習題1.14p381、2、3.
七、教后反思。
1.9整式的除法第一課時單項式除以單項式教學目標1.經歷探索單項式除法的法則過程,了解單項式除法的意義.
2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.
將本文的word文檔下載到電腦,方便收藏和打印。
完全平方公式數學初一教案(匯總18篇)篇二
做得較好的方面:
1、本課的知識要點是經歷探索完全平方公式的過程,了解公式的幾何背景,會應公式進行簡單的計算,教學已基本達到了預期目標,能突出重點,兼顧難點。
2、本節課上學生體會了數形結合及轉化的數學思想,并知道猜想的結論必須要加以驗證;授課思維流暢,知識發生發展過渡自然,學生容易得到一些結論但在老師的引導下又使問題的探討得以不斷深入,學生思考積極、氣氛活躍,教學效果較好。
做得不足的方面:
1、應該引導學生用文字概括公式的內容,從而培養學生抽象的數學思維能力和語言表達能力。
2、對需要幫助的學生進行針對性的個別指導較少。
3、對于學生計算中存在的問題應讓學生自己糾錯,教師不應全權代勞。如利用兩數和的公式計算(a+b)2環節,兩位學生分別講述自己的想法之后,教師應該讓全體學生根據其方法進行計算,自主驗證,即使有些學生寫不出來,也會因為經過思考而印象深刻,如果為了節省時間教師自己代勞,那樣就不能夠充分體現學生的主體作用,而且效果也較前者差些。
完全平方公式數學初一教案(匯總18篇)篇三
(2)切勿把“乘積項”2ab中的2丟掉.
今后在教學中?,要注意以下幾點:
1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征.
2.引入完全平方公式,讓學生用文字概括公式的內容,培養抽象的數字思維能力.
完全平方公式數學初一教案(匯總18篇)篇四
2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。
用不同的`形式表示實驗田的總面積,并進行比較你發現了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)xxxxxxxxx_;(2);。
1.求的值,其中。
2.若。
對公式的真正理解有待加強。
完全平方公式數學初一教案(匯總18篇)篇五
重點、難點根據公式的特征及問題的特征選擇適當的公式計算。
1.邊長為(a+b)的正方形面積是多少?
2.邊長分別為a、b拍的兩個正方形面積和是多少?
3.你能比較(1)(2)的結果嗎?說明你的理由。師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大。
例1.利用完全平方式計算1.102。
計算:
1.(a+b+c)。
2.(a+b)師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創造條件。如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法。學生敘述。
p381。
本節課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點。1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤。2.要能根據公式的特征及題目的特征靈活選擇適當的公式計算。3.用加法結合律,可為使用公式創造了條件。利用了這種方法,可以把多項式的完全平方轉化為二項式的完全平方。
課本習題1.14p381、2、3.
1.9整式的除法第一課時單項式除以單項式教學目標1.經歷探索單項式除法的法則過程,了解單項式除法的意義。
2.理解單項式除法法則,會進行單項式除以單項式運算。重點、難點重點:單項式除以單項式的運算。難點:單項式除以單項式法則的理解。
完全平方公式數學初一教案(匯總18篇)篇六
一、教學內容:
本節內容是人教版教材八年級上冊,第十四章第2節乘法公式的第二課時——完全平方公式。
二、教材分析:
完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現的一種特殊的算式的總結,體現了從一般到特殊的思想方法。完全平方公式是學生后續學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數等知識奠定了基礎,所以說完全平方公式屬于代數學的基礎地位。
本節課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發現與驗證為學生體驗規律探索提供了一種較好的模式,培養學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數式的運算,培養學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數學工具。
重點:掌握完全平方公式,會運用公式進行簡單的計算。
難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。
三、教學目標。
(1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。
(2)進一步發展學生的符號感和推理能力,了解公式的幾何背景,感受數與形之間的聯系,學會獨立思考。
(3)通過推導完全平方公式及分析結構特征,培養學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。
(4)體驗完全平方公式可以簡化運算從而激發學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數學的自信心。
四、學情分析與教法學法。
學情分析:課程標準提出數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上,本節課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創造欲、表現欲,所以只有能調動學生的學習熱情,本節內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節課要注意的問題。
學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流。
總結反思中獲得數學知識與技能。
教法:以啟發引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態。
五、教學過程(略)。
六、教學評價。
在教學中,教師在精心設置教學環節中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數學思考、問題解決和情感態度等方面的表現。教師通過情境引入、提供問題引導學生從已有的知識為出發點,自主探究,發現問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養發現問題解決問題的能力。
在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發現問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。
完全平方公式數學初一教案(匯總18篇)篇七
1.掌握平方差公式的推導和運用,以及對平方差公式的幾何背景的理解;(重點)。
2.掌握平方差公式的應用.(重點)。
一、情境導入。
1.教師引導學生回憶多項式與多項式相乘的法則.
學生積極舉手回答.
多項式與多項式相乘的法則:多項式與多項式相乘,先用一個多項式的每一項分別乘以另一個多項式的每一項,再把所得的積相加.
2.教師肯定學生的表現,并講解一種特殊形式的多項式與多項式相乘——平方差公式.
二、合作探究。
探究點:平方差公式。
【類型一】直接運用平方差公式進行計算。
完全平方公式數學初一教案(匯總18篇)篇八
教學目標:
1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展邏輯推理能力和有條理的表達能力。
2、體會公式的發現和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
4、在學習中使學生體會學習數學的樂趣,培養學習數學的信心,感愛數學的內在美。
教學重點:
1、弄清完全平方公式的來源及其結構特點,用自己的.語言說明公式及其特點;
教學難點:
教學方法:
探索討論、歸納總結。
教學過程:
一、回顧與思考。
活動內容:復習已學過的平方差公式。
1、平方差公式:(a+b)(a―b)=a2―b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數和與這兩數差的積。
右邊是兩數的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入。
活動內容:提出問題:
一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。
用不同的形式表示實驗田的總面積,并進行比較。
活動內容:
1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數和的完全平方公式推導出兩數差的完全平方公式:(a―b)2=a2―2ab+b2。
2、引導學生利用幾何圖形來驗證兩數差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數和(差))的平方;
右邊是兩數的平方和加上(減去)這兩數乘積的兩倍。
語言描述:兩數和(或差)的平方,等于這兩數的平方和加上(或減去)這兩數積的兩倍。
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
1、下列各式中哪些可以運用完全平方公式計算。
一、學習目標。
1、會推導完全平方公式,并能運用公式進行簡單的計算。
二、學習重點:會用完全平方公式進行運算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計。
(一)預習準備。
(1)預習書p23―26。
(2)思考:和的平方等于平方的和嗎?
1、已知實數x、y都大于2,試比較這兩個數的積與這兩個數的和的大小,并說明理由。
2、已知(a+b)2=24,(a―b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=―6,xy=1,求代數式(x+2)―(3xy―y)的值。
1、(5―x2)2等于;
答案:25―10x2+x4。
解析:解答:(5―x2)2=25―10x2+x4。
2、(x―2y)2等于;
答案:x2―8xy+4y2。
解析:解答:(x―2y)2=x2―8xy+4y2。
3、(3a―4b)2等于;
答案:9a2―24ab+16b2。
解析:解答:(3a―4b)2=9a2―24ab+16b2。
完全平方公式數學初一教案(匯總18篇)篇九
教學目標:
1.經歷探索完全平方公式的過程,進一步發展學生的符號感和推理能力;。
1.弄清完全平方公式的來源及其結構特點,能用自己的語言說明公式及其特點;。
2.會用完全平方公式進行運算.教學難點:會用完全平方公式進行運算教學過程:
一、探索練習:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(圖略)。
用不同的形式表示實驗田的總面積,并進行比較你發現了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來.
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
二、鞏固練習:
1.下列各式中哪些可以運用完全平方公式計算_______________。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)_____________;(2);。
(3);三、提高練習:
1.求的值,其中。
2.若。
對公式的真正理解有待加強.
完全平方公式數學初一教案(匯總18篇)篇十
探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab).師生共同分析:此題是做除法運算,可以從兩方面思考:根據除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy.另外,根據同底數冪的除法法則,由約分也可得=xy.學生動筆:寫出(2)(3)題的結果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數、同底數冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數、同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。
p401學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。
本節課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:
1.系數相除與同底數冪相除的區別;
2.符號問題;
完全平方公式數學初一教案(匯總18篇)篇十一
學習目標:
1、能說出有序數對的定義。
2、能用有序數對表示實際生活中物體的位置。
學習重點:用有序數對表示位置。
學習難點:用有序數對表示位置。
學習過程:
自學過程:(一)、自學知識清單。
1、教材64頁,在圖7.1—1中找出參加數學問題討論的同學。
小組內交流一下,看一看你們找的'位置相同嗎?
思考:(2,4)和(4,2)在同一位置嗎?為什么?
2、請回答教材65頁:思考題。
3、我們把這種有順序的______個數a與b組成的_______叫做_______,記作(,)。
(二)、自學反饋。
練習1、利用________________,可以準確地表示出一個位置,
如電影院的座號,“3排2號”、表示為(3,2),則“2排3號”可以表示為。
練習2、如圖(1)所示,一方隊正沿箭頭所指的方向前進,a的位置為三列四行,表示為a(3,4),則b,c,d表示為b(,),c(,)。
d(,)。
練習3、完成課本第65頁的練習。
練習4、用有序數對表示物體位置時,(3,2)與(2,3)表示的位置相同嗎?請結合下面圖形加以說明.
練習5、如圖所示,a的位置為(2,6),小明從a出發,經。
完全平方公式數學初一教案(匯總18篇)篇十二
理解兩個完全平方公式的結構,靈活運用完全平方公式進行運算。
在運用完全平方公式的過程中,進一步發展學生的符號演算的能力,提高運算能力。
培養學生在獨立思考的基礎上,積極參與對數學問題的討論,敢于發表自己的見解。
一、復習導入。
2.計算,除了直接用兩數差的完全平方公式外,還有別的方法嗎?
學生思考后回答:由于兩數差可以轉化成兩數和,所以還可以用兩數和的完全平方公式計算,把“”看成加數,按照兩數和的完全平方公式計算,結果是一樣的。
教師歸納:當我們對差與和加以區分時,兩個公式是有區別的,區別是其結果的中間項一個是“減”一個是“加”,注意到區別有助于計算的準確;另一方面,當我們對差與和不加區分,全部理解成“加項”時,那么兩個公式從結構上來看就是一致的了,其結構都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍。”注意到它們的統一性,有于我們更深刻地理解公式特點,提高運算的靈活性。
我們學習運算,除了要重視結果,還要重視過程,平時注意訓練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。
二、新課講解。
溫故知新。
與,與相等嗎?為什么?
學生討論交流,鼓勵學生從不同的。角度進行說理,共同歸納總結出兩條判斷的思路:
1.對原式進行運算,利用運算的結果來判斷;
2.不對原式進行運算,只做適當變形后利用整體的方法來判斷。
思考:與,與相等嗎?為什么?
利用整體的方法判斷,把看成一個數,則是它的相反數,相反數的奇次方是相反的,所以它們不相等。
總結歸納得到:;
三、典例剖析。
完全平方公式數學初一教案(匯總18篇)篇十三
(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[。
(1)(2)(3)(4)。
2.計算:
(1)(2)。
由反之。
反之。
1、填空:
(1)(2)(3)。
(4)(5)。
(6)。
(7)若,則k=。
例1計算:1.2.
從圖(1)中可以看出大正方形的邊長是a+b,
它是由兩個小正方形和兩個矩形組成,所以。
大正方形的面積等于這四個圖形的面積之和。
則s==。
即:
如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的'面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積。也就是:(a-b)2=.這也正好符合完全平方公式。
例2.計算:
(1)(2)。
變式訓練:
(1)(2)。
(3)(4)(x+5)2–(x-2)(x-3)。
(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。
拓展:1、(1)已知,則=。
(2)已知,求________,________。
(3)不論為任意有理數,的值總是()。
a.負數b.零c.正數d.不小于2。
2、(1)已知,求和的值。
(2)已知,求的值。
(3).已知,求的值。
1.完全平方公式的使用:在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數、也可以是單項式,還可以是多項式,所以要記得添括號。
2.解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優化選擇。
完全平方公式數學初一教案(匯總18篇)篇十四
1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。
2、掌握運用完全平方公式分解因式的'方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。
對比發現法課型新授課教具投影儀。
學生活動。
(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2。
a2-8a+16=a2-2×4a+42=(a-4)2。
(要強調注意符號)。
首先我們來試一試:(投影:牛刀小試)。
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1。
(3)(m+n)2-4(m+n)+4。
(教師強調步驟的重要性,注意發現學生易錯點,及時糾正)。
2.把81x4-72x2y2+16y4分解因式。
(本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創新)。
將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。
第88頁練一練第1、2題。
完全平方公式數學初一教案(匯總18篇)篇十五
1、了解完全平方公式的特征,會用完全平方公式進行因式分解.
2、通過整式乘法逆向得出因式分解方法的過程,發展學生逆向思維能力和推理能力.
3、通過猜想、觀察、討論、歸納等活動,培養學生觀察能力,實踐能力和創新能力.
學習建議教學重點:
完全平方公式數學初一教案(匯總18篇)篇十六
引例講解:將下列各式分解因式。
1、x2+6x+92、4x2-20x+25。
問題:這兩題首先怎么分析?
生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學生回答,教師板書)。
生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5。
x2+6x+9=x2+2×x×3+32=(x+3)2。
4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。
(聯系字母表達式用箭頭對應表示,加深學生印象。)。
生16:由符號來決定。
師:能不能具體點。
生16:由中間一項的符號決定,就是兩個數乘積2倍這項的符號決定,是正,就是兩個數的和;是負,就是兩個數的差。
師:總之,在分解完全平方式時,要根據第二項的符號來選擇運用哪一個完全平方公式。
例題1:把25x4+10x2+1分解因式。
師:這道題目能否運用以前所學的方法分解?就題目本身有什么特點?可以怎么分解?
生17:題目符合完全平方式的特點,可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學生板演,過程略)。
例題2:把-x2-4y2+4xy分解因式。
師:按照常規我們首先怎么辦?
生齊答:提取負號。〔教師板書:-(x2+4y2-4xy)〕以下過程學生板演。
師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)。
提示:從項的特征進行考慮,怎樣轉化比較合理?四人小組討論。
生18:同樣還是將負號提取改變成完全平方式的形式。
師:從這里我們可以發現,只要三項式中能改寫成平方的兩項是同號,且另一項為兩底數積的2倍,我們都能利用這個公式分解,若這兩項同為正則可直接分解,若同為負則先提取負號再分解。
練習題:課本p21練習:第1題,學生板演,教師講解,學生板演的同時,教師提示注意點、多項式的特征;第2題,學生口答。
例題3:把3ax2+6axy+3ay2分解因式。
師:先觀察,再選擇適當的方法。(學生板演,教師點評)。
練習:課本p22第3題分兩組學生板演,教師評講、適當提示注意點。
師:這一堂課我們一起研究了完全平方式的有關知識,同學們先自查一下自己的收獲,然后請同學發表自己的見解。(學生小聲討論)。
生甲:我學到了如何將完全平方式分解因式,遇到三項式中有兩項符號相同且能化成平方的形式,另一項為這兩個數的積的2倍的形式,如果能化成平方項是負的,首先將負號提取再分解。第二項是正的就是兩數的和的平方,第二項是負的就是兩數差的平方。
生乙:有公因式可提取的先提取公因式,然后再分解,同時根據第二項的符號來選用合適的公式。
教師布置課堂作業:課本p23習題8.2a組4~5偶數題。
課外作業:課本p23習題8.2a組4~5奇數題。
下課!
完全平方公式數學初一教案(匯總18篇)篇十七
1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展邏輯推理能力和有條理的表達能力。
2、體會公式的發現和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
3、了解完全平方公式的幾何背景,培養學生的數形結合意識。
4、在學習中使學生體會學習數學的樂趣,培養學習數學的信心,感愛數學的內在美。
1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;
探索討論、歸納總結。
一、回顧與思考。
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數和與這兩數差的積。
右邊是兩數的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入。
活動內容:提出問題:
用不同的形式表示實驗田的總面積,并進行比較。
活動內容:
1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數和的完全平方公式推導出兩數差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引導學生利用幾何圖形來驗證兩數差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數和(差))的平方;
右邊是兩數的平方和加上(減去)這兩數乘積的兩倍。
語言描述:兩數和(或差)的平方,等于這兩數的平方和加上(或減去)這兩數積的兩倍。
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
一、學習目標。
1、會推導完全平方公式,并能運用公式進行簡單的計算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計。
(一)預習準備。
(1)預習書p23—26。
(2)思考:和的平方等于平方的和嗎?
1、已知實數x、y都大于2,試比較這兩個數的積與這兩個數的和的大小,并說明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代數式(x+2)—(3xy—y)的值。
1、(5—x2)2等于;
答案:25—10x2+x4。
解析:解答:(5—x2)2=25—10x2+x4。
2、(x—2y)2等于;
答案:x2—8xy+4y2。
解析:解答:(x—2y)2=x2—8xy+4y2。
3、(3a—4b)2等于;
答案:9a2—24ab+16b2。
解析:解答:(3a—4b)2=9a2—24ab+16b2。
完全平方公式數學初一教案(匯總18篇)篇十八
本節內容是人教版教材八年級上冊,第十四章第2節乘法公式的第二課時――完全平方公式。
完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現的一種特殊的算式的總結,體現了從一般到特殊的思想方法。完全平方公式是學生后續學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數等知識奠定了基礎,所以說完全平方公式屬于代數學的基礎地位。
本節課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發現與驗證為學生體驗規律探索提供了一種較好的模式,培養學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數式的運算,培養學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數學工具。
重點:掌握完全平方公式,會運用公式進行簡單的計算。
難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。
(1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。
(2)進一步發展學生的符號感和推理能力,了解公式的幾何背景,感受數與形之間的聯系,學會獨立思考。
(3)通過推導完全平方公式及分析結構特征,培養學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。
(4)體驗完全平方公式可以簡化運算從而激發學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數學的自信心。
學情分析:課程標準提出數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上,本節課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創造欲、表現欲,所以只有能調動學生的學習熱情,本節內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節課要注意的問題。
學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流。
總結反思中獲得數學知識與技能。
教法:以啟發引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態。
在教學中,教師在精心設置教學環節中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數學思考、問題解決和情感態度等方面的表現。教師通過情境引入、提供問題引導學生從已有的知識為出發點,自主探究,發現問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養發現問題解決問題的能力。
在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發現問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。