教學計劃需要精心編寫和反復修改,以確保教學的系統性和嚴謹性。一起來看看下面這些教學計劃范文,或許能夠給您帶來一些靈感。
最新鴿巢問題單元教學設計大全(18篇)篇一
《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數學的一個基本原理,最先是由德國數學家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。
首先,用具體的操作,將抽象變為直觀。“總有一個筒至少放進2支筆”這句話對于學生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學生理解這句話呢?我覺得要讓學生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現“總有一個筒至少放進2支筆”這種現象,讓學生理解這句話。
其次,充分發揮學生主動性,讓學生在證明結論的過程中探究方法,總結規律。學生是學習的主動者,特別是這種原理的初步認識,不應該是教師牽著學生去認識,而是創造條件,讓學生自己去探索,發現。所以我認為應該提出問題,讓學生在具體的操作中來證明他們的結論是否正確,讓學生初步經歷“數學證明”的過程,逐步提高學生的邏輯思維能力。
再者,適當把握教學要求。我們的教學不同奧數,因此在教學中不需要求學生說理的嚴密性,也不需要學生確定過于抽象的“鴿巢”和“物體”。
《鴿巢問題》這是一類與“存在性”有關的問題,如任意13名學生,一定存在兩名學生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據的理論,我們稱之為“鴿巢問題”。
通過第一個例題教學,介紹了較簡單的“鴿巢問題”:只要物體數比鴿巢數多,總有一個鴿巢至少放進2個物體。它意圖讓學生發現這樣的一種存在現象:不管怎樣放,總有一個筒至少放進2支筆。呈現兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。
第二個例題是在例1的基礎上說明:只要物體數比鴿巢數多,總有一個鴿巢里至少放進(商+1)個物體。因此我認為例2的目的是使學生進一步理解“盡量平均分”,并能用有余數的除法算式表示思維的過程。
可能有一部分學生已經了解了鴿巢問題,他們在具體分得過程中,都在運用平均分的方法,也能就一個具體的問題得出結論。但是這些學生中大多數只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學生完全沒有接觸,所以他們可能會認為至少的情況就應該是“1”。
1、通過猜測、驗證、觀察、分析等數學活動,經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建模”思想。
2、經歷從具體到抽象的探究過程,提高學生有根據、有條理地進行思考和推理的能力。
3、通過“鴿巢原理”的靈活應用,提高學生解決數學問題的能力和興趣,感受到數學文化及數學的魅力。
經歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
游戲規則是:請這四位同學從數字1.2.3中任選一個自己喜歡的數字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
1、具體操作,感知規律。
教學例1:4支筆,三個筒,可以怎么放?請同學們運用實物放一放,看有幾種擺放方法?
(1)學生匯報結果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結果。
(3)小結:不管怎么放,總有一個筒里至少放進了2支筆。
(學情預設:學生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆。”)。
質疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結論的方法呢?
2、假設法,用“平均分”來演繹“鴿巢問題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結論?
學生思考——同桌交流——匯報。
2匯報想法。
預設生1:我們發現如果每個筒里放1支筆,最多放4支,剩下的1支不管放進哪一個筒里,總有一個筒里至少有2支筆。
3學生操作演示分法,明確這種分法其實就是“平均分”。
1、課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應該怎樣列式“平均分”。
[設計意圖:引導學生用平均分思想,并能用有余數的除法算式表示思維的過程。]。
根據學生回答板書:5÷2=2……1。
(學情預設:會有一些學生回答,至少數=商+余數至少數=商+1)。
根據學生回答,師邊板書:至少數=商+余數?
至少數=商+1?
2、師依次創設疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學們有什么發現嗎?
得出“物體的數量大于鴿巢的數量,總有一個鴿巢里至少放進(商+1)個物體”的結論。
板書:至少數=商+1。
師過渡語:同學們的這一發現,稱為“鴿巢問題”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“鴿巢原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
課件出示習題.:
1、三個小朋友同行,其中必有幾個小朋友性別相同。
2、五年一班共有學生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3、從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
[設計意圖:讓學生體會平常事中也有數學原理,有探究的成就感,激發對數學的熱情。]。
這節課我們學習了什么有趣的規律?請學生暢談,師總結。
最新鴿巢問題單元教學設計大全(18篇)篇二
教學內容:教科書第68、69頁例1、2。
教學目標:
1、使學生經歷將一些實際問題抽象為代數問題的過程,并能運用所學知識解決有關實際問題。
2、能與他人交流思維過程和結果,并學會有條理地、清晰地闡述自己的觀點。
教學重點:分配方法。
教學難點:分配方法。
教學方法:列舉法分析法。
學習方法:嘗試法自主探究法。
教學用具:課件。
教學過程:
一、定向導學(3分)。
(一)游戲引入。
1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現實生活中存在著的一種現象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。
(二)揭示目標。
理解并掌握解決鴿巢問題的解答方法。
二、自主學習(8分)。
1、看書68頁,閱讀例1:把4枝鉛筆放進3個文具盒中,可以怎么放?有幾種情況?
(1)理解“總有”和“至少”的意思。
(2)理解4種放法。
2、全班同學交流思維的過程和結果。
3、跟蹤練習。
68頁做一做:5只鴿子飛回3個鴿舍,至少有2只鴿子要飛進同一個鴿舍里。為什么?
(1)說出想法。
如果每個鴿舍只飛進1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進其中的一個鴿舍或分別飛進其中的兩個鴿舍。所以至少有2只鴿子飛進同一個鴿舍。
(2)嘗試分析有幾種情況。
(3)說一說你有什么體會。
三、合作交流(8)。
1、出示例2。
把7本書放進3個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?(1)合作交流有幾種放法。
不難得出,總有一個抽屜至少放進3本。
(2)指名說一說思維過程。
如果每個抽屜放2本,放了6本書。剩下的1本還要放進其中一個抽屜,所以至少有1個抽屜放進3本書。
2、如果一共有8本書會怎樣呢10本呢?
3、你能用算式表示以上過程嗎?你有什么發現?
7÷3=2……1(至少放3本)。
8÷3=2……2(至少放4本)。
10÷3=3……1(至少放5本)。
4、做一做。
11只鴿子飛回4個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
四、質疑探究(5分)。
小結:先平均分配,再把余數進行分配,得出的就是一個抽屜至少放進的本數。
2、做一做。
69頁做一做2題。
五、小結檢測(10)。
(一)小結。
物體的數量大于抽屜的數量,總有一個抽屜里至少放進(商+1)個物體。
(二)檢測。
1、填空。
(1)7只鴿子飛進5個鴿舍,至少有()只鴿子要飛進同伴的鴿舍里。
(2)有9本書,要放進2個抽屜里,必須有一個抽屜至少要放()本書。
(3)四年級兩個班共有73名學生,這兩個班的學生至少有()人是同一月出生的。4、任意給出3個不同的自然數,其中一定有2個數的'和是()數。
2、選擇。
3、幼兒園老師準備把15本圖畫書分給14個小朋友,結果是什么?
六、作業(6分)。
完成課本練習十二第2、4題。
板書。
抽屜原理。
物體的數量大于抽屜的數量,總有一個抽屜里至少放進(商+1)個物體。
最新鴿巢問題單元教學設計大全(18篇)篇三
“鴿巢”問題就是“抽屜原理”,教材通過三個例題來呈現本章知識,“鴿巢”問題教學反思。例1:本例描述“抽屜原理”的最簡單的情況,例2:本例描述“抽屜原理”更為一般的形式,例3:跟之前教材的編排是一樣的,是抽屜原理的一個逆向的應用。本節內容實際上是一種解決某種特定結構的數學或生活問題的模型,體現了一種數學的思想方法。讓學生經歷將具體問題數學化的過程,初步形成模型思想,體會和理解數學與外部世界的緊密聯系,發展抽象能力、推理能力和應用能力,是課標的重要要求。
興趣是學習最好的老師。所以在本節課我認真鉆研教材,吃透教材,盡量找到好的方法引課,在網上搜索了一個較好的引課設計,就照搬了:“同學們:在上新課之前,我們來做個“搶凳子”游戲怎么樣?想參與這個游戲的請舉手。叫舉手的一男一女兩個同學上臺,然后問,老師想叫三位同學玩這個游戲,但是現在已有兩個,你們說最后一個是叫男生還是女生呢?”同學們回答后,老師就說:“不管是男生還是女生,總有二個同學的性別是一樣的,你們同意嗎?”并通過三人“搶凳子”游戲得出不管怎樣搶“總有一根凳子至少有兩個同學”。借機引入本節課的重點“總有……至少……”。這樣設計使學生在生動、活潑的數學活動中主動參與。
文檔為doc格式。
最新鴿巢問題單元教學設計大全(18篇)篇四
:教材第70頁例3及練習十三相關題目。
1.在理解簡單的“鴿巢原理”的基礎上,使學生學會用此原理解決簡單的實際問題。
2.經歷把實際問題轉化為鴿巢問題的過程,了解用“鴿巢原理”解題的一般步驟,恰當運用“鴿巢原理”解決問題。
3.通過用“鴿巢問題”解決簡單的實際問題,激發學生的學習興趣,使學生感受數學的魅力。
教學重點:能運用“鴿巢原理”解決實際問題。
教學難點:能根據題意設計“鴿巢”。
教學準備:多媒體課件。
(二次備課)。
1.課件出示下列問題。
(1)把5只鴿子放進4個籠子里,總有一個籠子里至少放進()只鴿子。
(2)把7本書放進4個抽屜里,總有一個抽屜里至少放進()本書。
2.導入新課:上節課我們了解了“鴿巢原理”,這節課我們就用“鴿巢原理”解決問題。
點名讓學生匯報預習情況。(重點讓學生說說通過預習本節課要學習的內容,學到了哪些知識,還有哪些不明白的地方,有什么問題)。
學生提出猜想。
分組討論:如何把這道題轉化為“鴿巢問題”?
這道題其實就是把摸出的球(鴿子)放在兩種顏色的“鴿巢”中,結論就是有一個顏色“鴿巢”中至少有2個。
根據“鴿巢原理”(一),只要摸出的球的個數比它們的顏色種數多1,就能保證一定有2個球是同色的,所以答案是至少要摸出3個球。
有兩種顏色,只要摸出的球比它們的顏色至少多1,就能保證有兩個球同色。
2.引導學生總結用“鴿巢原理”解決問題的一般步驟。
(1)確定什么是鴿巢及有幾個鴿巢。
(2)確定分放的物體。
(3)用倒推的方法找到答案。
1.完成教材第70頁“做一做”第2題。
2.完成教材練習十三第3、4題。
一副撲克牌(不包括大、小王)有4種花色,每種花色各有13張,現在從中任意抽牌。
(1)最少要抽(13)張牌,才能保證一定有4張牌是同一種花色的。
(2)最少要抽(14)張牌,才能保證一定有2張牌是不同種花色的。
(3)最少要抽(14)張牌,才能保證一定有2張牌是數字相同的。
今天我們通過學習進一步理解了“鴿巢原理”,并運用它解決實際問題。
教材練習十三第5、6題。
獨立回答問題。
教師根據學生預習的情況,有側重點地調整教學方案。
獨立思考后,在小組內討論怎樣用“鴿巢原理”解決這些問題。
最新鴿巢問題單元教學設計大全(18篇)篇五
一堂好的數學課,我認為應該是原生態,充滿“數學味”的課。本節課我讓學生經歷了探究“鴿巢問題”的過程,初步了解了“鴿巢問題”,并能夠應用與實際。
一、情境導入,初步感知。
興趣是最好的老師,在導入新課時,我以4人的搶凳子游戲,初步感受至少有兩位同學相同的現象,抓住學生注意力。
二、教學時以學生為主體,以學定教。
由于課前讓學生做了預習,所以在課上我并沒有“滿堂灌”,而是先了解學生的已知和未知點,讓預習程度好的'同學來試著解決其他同學提出的問題,再師生質疑,完成對新知的傳授。這樣既培養了學生預習的習慣,又能讓學生找到知識的盲點,從而對本節課感興趣,同時又鍛煉了學生的語言表達能力。
三、通過練習,解釋應用。
四、適當設計形式多樣的練習,可以引起并保持學生的學習興趣。如,撲克牌的游戲,學生們非常感興趣,達到了預期的效果。
不足:
1、學生們語言表達能力還有待提高。
2、課堂中教師與速較快。
將本文的word文檔下載到電腦,方便收藏和打印。
最新鴿巢問題單元教學設計大全(18篇)篇六
鴿巢問題是我們數學中比較有意思且在生活中運用比較廣泛的問題。因此,在錄制一師一優課時我想到了給學生講這一節課,使學生更加清楚的認識到數學是源于生活,并運用于生活中的。
鴿巢問題又可以叫做抽屜原理,是一種在生活中常見的數學原理,許多游戲的設置都運用了該原理,例如搶凳子游戲,紙牌游戲等。因此,在講課開始我先用紙牌游戲中引出今天的鴿巢問題,讓學生帶著好奇心來學習本節課內容。接著我出示例題,先找一位同學演示3支筆放進2個筆筒中應該怎么放,并記錄下來,使學生明白小組應該怎樣進行活動并記錄。接著出示課本例1的題目,學生小組內通過剛才的方法很輕易的就找出一共有幾種方法,在找一位學生進行演示加強大家的認識。我有介紹了剛才學生們實驗的方法叫做枚舉法。并通過觀察引出概念總有一個筆筒里至少有2支鉛筆。接著讓學生們轉換思想求實有沒有更簡單的方法得出結論,學生通過實驗和討論得出可以用平均分的方法得到同樣的結論。并把其轉化為算式。
接著增加鉛筆和筆筒的個數仍能得到相同的結論,由此學生發現當鉛筆數比筆筒數多1時,總有一個筆筒至少有2支鉛筆的結論。把鉛筆和筆筒換成其他物品學生還能相似的結論,說明學生已經可以學移致用了。之后介紹鴿巢問題的發現者,增加學生的知識面。
最后,我又引到游戲揭示答案,再通過幾道層次遞進的題目的練習,使學生能夠靈活運用鴿巢問題,從而達到本節課的教學目的。
文檔為doc格式。
最新鴿巢問題單元教學設計大全(18篇)篇七
1、教學內容:人教版義務教育教科書六年級下冊第68頁例1及做一做。
2、教材地位及作用。
本單元用直觀的方法,介紹了“鴿巢問題”的兩種形式,并安排了很多具體問題和變式,幫助學生加深理解,學會利用“鴿巢問題”解決簡單的實際問題。實際上,通過“說理”的方式來理解“鴿巢問題”的過程就是一種數學證明的雛形,有助于提高學生的邏輯思維能力,為以后學習較嚴密的數學證明做準備。
(二),才能靈活運用這一原理解決各種實際問題。
要創造條件和機會,讓學生發表見解,發揮學生學習的主體性。
2、思維特點:知識掌握上,六年級的學生對于總結規律的方法接觸比較少,尤其對于“數學證明”。因此教師要耐心細致的引導,重在讓學生經歷知識發生、發展的過程,而不是生搬硬套,只求結論,要讓學生不但知其然,更要知其所以然。
根據《數學課程標準》和教材內容以及學生的學情,我確定本節課學習目標如下:
知識性目標:初步了解“鴿巢問題”的特點,理解“鴿巢問題”的含義,會用此原理解決簡單的實際問題。
能力性目標:經歷探究“鴿巢問題”的學習過程,通過實踐操作,發現、歸納、總結原理,滲透數形結合的思想。
情感性目標:通過用“鴿巢問題”解決簡單的實際問題,激發學生的學習興趣,感受到數學的魅力。
教學重點:引導學生把具體問題轉化成“鴿巢問題”。
教學難點:找出“鴿巢問題”解決的竅門進行反復推理。
教法上本節課主要采用了設疑激趣法、講授法、實踐操作法。根據六年級學生的理解能力和思維特征,為使課堂生動、高效,課堂始終以設疑及觀察思考討論貫穿于整個教學環節中,采用師生互動的教學模式進行啟發式教學。
學法上主要采用了自主合作、探究交流的學習方式。體現數學知識的形成過程,讓學生在自己的經驗中通過觀察,實驗,猜測,交流等數學活動形成良好的數學思維習慣,提高解決問題的能力,感受數學學習的樂趣。
在教學設計上,我本著“以學定教”的設計理念,把教學過程分四環節進行:設疑導入,激發興趣——自主操作,探究新知——歸納小結,形成規律——回歸生活,靈活應用。
在導入部分,通過抽撲克牌“魔術”,激發學生的興趣,引入新知。
根據學生學習的困難和認知規律,我在探究部分設計了三個層次的數學活動。
(一)實物操作,初步感知。
學生通過例1要求通過“把4枝鉛筆放入3個筆筒”的實際操作,解決3個問題:
1、怎樣放?
重點是讓學生明確如果只是放入每個筆筒中的枝數的排序不一樣,應視為一種分法,并引導其有序思考,為后面枚舉法的運用掃清障礙。
2、共有幾種放法?
這里主要是孕伏對“不管怎樣放”的理解。
3、認識“總有一個”的意義。
通過觀察筆筒中鉛筆枝數,找出4種放法中鉛筆枝數最多的筆筒中枝數分別有哪幾種情況,理解“總有一個”的含義,得到一個初步的印象:不管怎么放,總有一個筆筒放的枝數是最多的,分別是2枝,3枝和4枝。
(二)脫離具體操作,由形抽象到數。
通過“思考:把5枝鉛筆放入4個筆筒,又會出現怎樣的情況?”由學生直接完成表格,達成三個目的:
1、理解“至少”的含義,準確表述現象。
(1)通過觀察表格中枝數最多的筆筒里的數據,讓學生在“最多”中找“最少”。
(2)學會用“至少”來表達,概括出“5枝放4盒”、“4枝放3盒”時,總有一個筆筒里至少放入2枝鉛筆的結論。
2、理解“平均分”的思路,知道為什么要“平均分”。抓住最能體現結論的一種情況,引導學生理解怎樣很快知道總有一個筆筒里至少是幾枝的方法——就是按照筆筒數平均分,只有這樣才能讓最多的筆筒里枝數盡可能少。
3、抽象概括,小結現象。
通過“4枝放入3個筆筒”、”5枝放入4個筆筒”等不同的實例讓學生較充分地感受、體驗、發現相同的現象,讓學生抽象概括出“當物體數比抽屜數多1時,不管怎么放,總有一個抽屜至少放入2個物體”,初步認識鴿巢原理。
(三)學生自選問題探究。
首先設下疑問:“如果物體數不止比抽屜數多1,不管怎樣放,總有一個鉛筆盒中至少要放入幾枝鉛筆?”這一層次請學生理解當余數不是1時,要經歷兩次平均分,第一次是按抽屜的平均分,第二次是按余下的枝數平均分,只有這樣才能達到讓“最多的盒子里枝數盡可能少”的目的。
在學生經歷了真實的探究過程后,我將本節課研究過的所有實例通過課件進行總體呈現。讓學生通過比較,總結出抽屜原理中最簡單的情況:物體數不到抽屜數的2倍時,不管怎樣放,總有一個抽屜中至少要放入2個物體。
研究的問題來源于生活,還要還原到生活中去。
在教學的最后,請學生用這節課學的鴿巢原理解釋課始老師的魔術問題,進行首尾的呼應;再讓學生應用“鴿巢原理”解決的生活中簡單有趣的實際問題,激發學生的興趣,進一步培養學生的“模型”思想,讓學生能正確地找出問題中什么是待分的“物體”,什么是“抽屜”,讓學生體會抽屜的形式是多種多樣的。同時也讓學生感受到數學知識在生活中的應用,感受到數學的魅力。
最新鴿巢問題單元教學設計大全(18篇)篇八
審定人教版六年級下冊數學《數學廣角鴿巢問題》,也就是原實驗教材《抽屜原理》。
《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數學的一個基本原理,最先是由德國數學家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。
首先,用具體的操作,將抽象變為直觀。“總有一個筒至少放進2支筆”這句話對于學生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學生理解這句話呢?我覺得要讓學生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現“總有一個筒至少放進2支筆”這種現象,讓學生理解這句話。
其次,充分發揮學生主動性,讓學生在證明結論的過程中探究方法,總結規律。學生是學習的主動者,特別是這種原理的初步認識,不應該是教師牽著學生去認識,而是創造條件,讓學生自己去探索,發現。所以我認為應該提出問題,讓學生在具體的操作中來證明他們的結論是否正確,讓學生初步經歷“數學證明”的過程,逐步提高學生的邏輯思維能力。
再者,適當把握教學要求。我們的教學不同奧數,因此在教學中不需要求學生說理的嚴密性,也不需要學生確定過于抽象的“鴿巢”和“物體”。
《鴿巢問題》這是一類與“存在性”有關的問題,如任意13名學生,一定存在兩名學生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據的理論,我們稱之為“鴿巢問題”。
通過第一個例題教學,介紹了較簡單的“鴿巢問題”:只要物體數比鴿巢數多,總有一個鴿巢至少放進2個物體。它意圖讓學生發現這樣的一種存在現象:不管怎樣放,總有一個筒至少放進2支筆。呈現兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。
第二個例題是在例1的基礎上說明:只要物體數比鴿巢數多,總有一個鴿巢里至少放進(商+1)個物體。因此我認為例2的目的是使學生進一步理解“盡量平均分”,并能用有余數的'除法算式表示思維的過程。
可能有一部分學生已經了解了鴿巢問題,他們在具體分得過程中,都在運用平均分的方法,也能就一個具體的問題得出結論。但是這些學生中大多數只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學生完全沒有接觸,所以他們可能會認為至少的情況就應該是“1”。
1.通過猜測、驗證、觀察、分析等數學活動,經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建模”思想。
2.經歷從具體到抽象的探究過程,提高學生有根據、有條理地進行思考和推理的能力。
3.通過“鴿巢原理”的靈活應用,提高學生解決數學問題的能力和興趣,感受到數學文化及數學的魅力。
經歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
教具準備:相關課件相關學具(若干筆和筒)。
游戲規則是:請這四位同學從數字1.2.3中任選一個自己喜歡的數字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
1.具體操作,感知規律。
教學例1:4支筆,三個筒,可以怎么放?請同學們運用實物放一放,看有幾種擺放方法?
(1)學生匯報結果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結果。
(3)小結:不管怎么放,總有一個筒里至少放進了2支筆。
(學情預設:學生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆。”)。
質疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結論的方法呢?
2.假設法,用“平均分”來演繹“鴿巢問題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結論?
學生思考——同桌交流——匯報。
2匯報想法。
預設生1:我們發現如果每個筒里放1支筆,最多放4支,剩下的1支不管放進哪一個筒里,總有一個筒里至少有2支筆。
3學生操作演示分法,明確這種分法其實就是“平均分”。
1.課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應該怎樣列式“平均分”。
[設計意圖:引導學生用平均分思想,并能用有余數的除法算式表示思維的過程。]。
根據學生回答板書:5÷2=2……1。
(學情預設:會有一些學生回答,至少數=商+余數至少數=商+1)。
根據學生回答,師邊板書:至少數=商+余數?
至少數=商+1?
2.師依次創設疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學們有什么發現嗎?
得出“物體的數量大于鴿巢的數量,總有一個鴿巢里至少放進(商+1)個物體”的結論。
板書:至少數=商+1。
師過渡語:同學們的這一發現,稱為“鴿巢問題”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“鴿巢原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
課件出示習題:
1.三個小朋友同行,其中必有幾個小朋友性別相同。
2.五年一班共有學生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3.從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
……。
[設計意圖:讓學生體會平常事中也有數學原理,有探究的成就感,激發對數學的熱情。]。
這節課我們學習了什么有趣的規律?請學生暢談,師總結。
最新鴿巢問題單元教學設計大全(18篇)篇九
1.經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢問題”解決簡單的實際問題。
2.通過操作發展學生的類推能力,形成比較抽象的數學思維。
3.通過“鴿巢問題”的靈活應用感受數學的魅力。
重點:經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”。難點:理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
多媒體課件。
紙杯。
吸管。
一、課前游戲引入。
生:想。
師:我這里有一副撲克牌,我找五位同學每人抽一張。老師猜。(至少有兩張花色一樣)。
二、通過操作,探究新知。
(一)探究例1。
1、研究3根小棒放進2個紙杯里。
(1)要把3枝小棒放進2個紙杯里,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內交流。
(2)反饋:兩種放法:(3,0)和(2,1)。(教師板書)(3)從兩種放法,同學們會有什么發現呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發現的?(說得真有道理)。
(4)“總有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小結:在研究3根小棒放進2個紙杯時,同學們表現得很積極,發現了“不管怎么放,總有一個紙杯里放進2根小棒)。
2、研究4根小棒放進3個紙杯里。
(1)要把4根小棒放進3個紙杯里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)從四種放法,同學們會有什么發現呢?(總有一個紙杯里至少有2根小棒)。
(4)你是怎么發現的?
(5)大家通過枚舉出四種放法,能清楚地發現“總有一個紙杯里放進2根小棒”。
師:大家看,全放到一個杯子里,就有四個了。太多了。那怎么樣讓每個杯子里都盡可能少,你覺得應該要怎樣放?(小組合作,討論交流)(每個紙杯里都先放進一枝,還剩一枝不管放進哪個紙杯,總會有一個紙杯里至少有2根小棒)(你真是一個善于思想的孩子。)。
(6)這位同學運用了假設法來說明問題,你是假設先在每個紙杯里里放1根小棒,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)。
(8)在探究4枝鉛筆放進3個文具盒的問題,同學們的方法有兩種,一是。
3、類推:把5枝小棒放進4個紙杯,總有一個紙杯里至少有幾根小棒?為什么?
把6枝小棒放進5個紙杯,總有一個紙杯里至少有幾根小棒?為什么?
把7枝小棒放進6個紙杯,是不是總有一個紙杯里至少有幾根小棒?為什么?
把100枝小棒放進99個紙杯,是不是總有一個紙杯里至少有幾根小棒?為什么?
4、從剛才我們的探究活動中,你有什么發現?(只要放的小棒比紙杯的數量多1,總有一個紙杯里至少放進2根小棒。)。
5、小結:剛才我們分析了把小棒放進紙杯的情況,只要小棒數量多于紙杯數量時,總有一個紙杯里至少放進2根小棒。
這就是今天我們要學習的鴿巢問題,也叫抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯系吧?小棒相當于我們要準備放進抽屜的物體,那么紙杯就相當于抽屜了。如果物體數多于抽屜數,我們就能得出結論“總有一個抽屜里放進了2個物體。
小練習:
1、任意13人中,至少有幾人的出生月份相同?
2、任意367名學生中,至少有幾名學生,他們在同一天過生日?為什么?
3、任意13人中,至少有幾人的屬相相同?”
6、剛才我們研究的是小棒數比紙杯多1的情況,如果小棒比紙杯數多2呢?多3呢?是不是也能得到結論:“總有一個紙杯里至少有2根小棒。”
最新鴿巢問題單元教學設計大全(18篇)篇十
1、引導學生經歷鴿巢原理的探究過程,初步了解鴿巢原理,會運用鴿巢原理解決一些簡單的實際問題。
2、通過操作、觀察、比較、列舉、假設、推理等活動發展學生的類推能力,形成比較抽象的數學思維。
3、使學生經歷將具體問題“數學化”的過程,初步形成模型思想。
經歷鴿巢原理的探究過程,初步了解鴿巢原理。
理解鴿巢原理,并對一些簡單的實際問題加以模型化。
1、師:同學們,你們玩過撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)。
2、師:大家猜對了嗎?其實這里面藏著一個非常有趣的數學問題,叫做“鴿巢問題”。今天我們就一起來研究它。
師:研究一個數學問題,我們通常從簡單一點的情況開始入手研究。請看大屏幕。(生齊讀題目)。
1、教學例1:把4支鉛筆放進3個筆筒里,不管怎么放,總有一個筆筒里至少有2支鉛筆。
(1)理解“總有”、“至少”的含義。(ppt)總有:一定有至少:最少。
師:這個結論正確嗎?我們要動手來驗證一下。
探究之前,老師有幾個要求。(一生讀要求)。
(3)匯報展示方法,證明結論。(展示兩張作品,其中一張是重復擺的。)。
第一張作品:誰看懂他是怎么擺的?(一生匯報,發現重復的擺法)。
第二張作品:他是怎么擺的?這4種擺法有沒有重復的?還有其他的擺法嗎?板書:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
師:我們要證明的是總有一個筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報:第一種擺法中哪個筆筒滿足要求?只要發現有一個筆筒里至少有2支鉛筆就行了。)。
總結:把4支鉛筆放進3個筆筒中一共只有四種情況,在每一種情況中,都一定有一個筆筒中至少有2支鉛筆。看來這個結論是正確的。
師:像這樣把所有情況一一列舉出來的方法,數學上叫做“枚舉法”。(板書)。
(4)通過比較,引出“假設法”
引導學生說出:假設先在每個筆筒里放1支,還剩下1支,這時無論放到哪個筆筒,那個筆筒里就有2支鉛筆了。(ppt演示)。
(5)初步建模—平均分。
師:先在每個筆筒里放1支,這種分法實際上是怎么分的?
生:平均分(師板書)。
師:為什么要去平均分呢?平均分有什么好處?
生:平均分可以保證每個筆筒里的筆數量一樣,盡可能的少。這樣多出來的1支不管放進哪個筆筒里,總有一個筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個筆筒里,這樣就不能保證一下子找到最少的情況了)。
師:這種先平均分的方法叫做“假設法”。怎么用算式表示這種方法呢?
板書:4÷3=1……11+1=2。
師:現在我們把題目改一改,結果會怎樣呢?
ppt出示:把5支筆放進4個筆筒里,不管怎么放,總有一個筆筒里至少有幾支筆?(引導學生說清楚理由)。
師:為什么大家都選擇用假設法來分析?(假設法更直接、簡單)。
通過這些問題,你有什么發現?
交流總結:只要筆的數量比筆筒數量多1,總有一個筆筒里至少放進2支筆。
過渡語:師:如果多出來的數量不是1,結果會怎樣呢?
2、出示:5只鴿子飛進了3個鴿籠,總有一個鴿籠里至少飛進了幾只鴿子呢?
(1)同桌討論交流、指名匯報。
先讓一生說出5÷3=1……21+2=3的結果,再問:有不同的意見嗎?
再讓一生說出5÷3=1……21+1=2。
師:你們同意哪種想法?
(2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?
(3)明確:再次平均分,才能保證“至少”的情況。
(1)師:我們剛才研究的把筆放入筆筒、鴿子飛進鴿籠這樣的問題就叫做“鴿巢問題”,也叫“抽屜問題”。它最早是由德國數學家狄利克雷發現并提出的,當他發現這個問題之后決定繼續深入研究下去。出示例2。
(2)獨立思考后指名匯報。
師板書:7÷3=2……12+1=3。
(3)如果有8本書會怎樣?10本書呢?
指名回答,師相機板書:8÷3=2……22+1=3。
師:剩下的2本怎么放才更符合“至少”的要求?
為什么不能用商+2?
10÷3=3……13+1=4。
(4)觀察發現、總結規律。
歸納總結:總有一個抽屜里至少可以放“商+1”本書。(板書:商+1)。
師:利用鴿巢問題中這個原理可以解釋生活中很多有趣的問題。
1、做一做第1、2題。
2、用抽屜原理解釋“撲克表演”。
說清楚把4種花色看作抽屜,5張牌看作要放進的書。
通過這節課的學習,你有什么收獲或感想?
最新鴿巢問題單元教學設計大全(18篇)篇十一
教學內容:教科書第68頁例1。
教學目標:
1、使學生理解“抽屜原理”(“鴿巢原理”)的基本形式,并能初步運用“抽屜原理”解決相關的實際問題或解釋相關的現象。
2、通過操作、觀察、比較、說理等數學活動,使學生經歷抽屜原理的形成過程,體會和掌握邏輯推理思想和模型思想,提高學習數學的興趣。
教學重點:
經歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。
教學難點:
理解“抽屜原理”,并對一些簡單的實際問題加以“模型化”。
教學模式:
學、探、練、展。
教學準備:
多媒體課件一套。
教學過程:。
一、游戲導入。
1.師生玩“撲克牌魔術”游戲。
(2)玩游戲,組織驗證。
通過玩游戲驗證,引導學生體會到:不管怎么抽,總有兩張牌是同花色的。
2.導入新課。
剛才這個游戲當中,蘊含著一個數學問題,這節課我們就一起來研究這個有趣的問題。
二、呈現問題,探究新知。
課件出示自學提示:
(1)“總有”和“至少”是什么意思?
(2)把4支鉛筆放進3個筆筒中,可以怎么放?有幾種。
不同的放法?(請大家用擺一擺、畫一畫、寫一寫等方法把自己的想法表示出來。)。
(3)把4支鉛筆放進3個筆筒中,不管怎么放總有一個筆筒至少放進xxx支鉛筆?
(一)自主探究,初步感知。
1、學生小組合作探究。
2、反饋交流。
(1)枚舉法。
(2)數的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(3)假設法。
師:除了像這樣把所有可能的情況都列舉出來,還有沒有別的。
方法也可以證明這句話是正確的呢?
生:我是這樣想的,先假設每個筆筒中放1支,這樣還剩1支。這時無論放到哪個筆筒,那個筆筒中就有2支了。
師:你為什么要先在每個筆筒中放1支呢?
生:因為總共有4支,平均分,每個筆筒只能分到1支。
師:你為什么一開始就平均分呢?(板書:平均分)。
生:平均分就可以使每個筆筒里的筆盡可能少一點。
生:平均分已經使每個筆筒里的筆盡可能少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。
(4)確認結論。
師:到現在為止,我們可以得出什么結論?
生(齊):把4支鉛筆放進3個筆筒中,不管怎么放,總有一個筆筒里至少有2支鉛筆。
(二)提升思維,構建模型。
師:(口述)那要是。
(1)把5支鉛筆放進4個筆筒中,不管怎么放,總有一個筆筒里至少有xx支鉛筆。
(2)把6支鉛筆放進5個筆筒中,不管怎么放,總有一個筆筒里至少有xx支鉛筆。
(3)10支鉛筆放進9個筆筒中呢?100支鉛筆放進99個筆筒中。
2.建立模型。
師:通過剛才的.分析,你有什么發現?
生:只要鉛筆的數量比筆筒的數量多1,那么總有一個筆筒至少要放進2支筆。
師:對。鉛筆放進筆筒我們會解釋了,那么有關鴿子飛入鴿巢的問題,大家會解釋嗎?(課件出示)。
師:以上這些問題有什么相同之處呢?
生:其實都是一樣的,鴿巢就相當于筆筒,鴿子就相當于鉛筆。
師:像這樣的數學問題,我們就叫做“鴿巢問題”或“抽屜問題”,它們里面蘊含的這種數學原理,我們就叫做“鴿巢問題”或“抽屜問題”。(揭題)。
三、基本練習。
四、拓展提升。
五、課堂小結。
六、作業布置。
完成課本第71頁,練習十三,第1題。
最新鴿巢問題單元教學設計大全(18篇)篇十二
教學內容:
課本p63頁第1題,練習十四的第1~6題。
教學目標:
1、使學生初步學會根據除法的意義解決一些簡單的實際問題。
2、使學生懂得從數學的角度提出學過的數學問題,并能夠解決問題,培養學生應用數學的意識。
3、培養學生積極參與數學學習活動的興趣,對數學有好奇心和求知欲。在交流中養成傾聽他人想法以及尊重他人與人進行合作的良好習慣。
教學重點:
求一個數是另一個數的幾倍是多少的簡單問題以及涉及乘除兩步計算的實際問題。
教學難點:
用乘法口訣求商,按除數相同的規律進行整理。
教學準備:
實物投影、主題圖。
教學過程:
一、創設情景,引入談話。
師:同學們,我們前幾天學過了哪些知識,誰能說一下這些小朋友在干什么?
【設計意圖】:直奔主題,讓學生在最短的時間內直接明確學習的內容和任務。
二、合作交流,探求新知。
1、教學第63頁主題圖。
師:你看懂了什么?
引導學生觀察主題圖,同桌互相說一說題意。
生:咱們把除法算式有規律地排一下,還可以利用乘法口訣表的排列方式整理除法算式。
師:(1)發下一張空白的表格紙。
(2)組織學生根據45句乘法口訣寫出45道除法算式。
(3)讓學生以小組為單位按一定的規律合作整理除法算式,或者按除數相同的規律進行整理,培養學生井井有條的思維習慣,按規律辦事的思想方法。
【設計意圖】:利用乘法口訣的排列方式以小組為單位按一定的規律合作整理除法算式,培養學生井井有條的思維習慣,按規律辦事的思想方法。
三、知識應用,體驗成功。
1、學生做第64頁的第1題。
(1)先算出每道算式的結果,寫在對應動物的'下面,然后再將所得7個結果按從小到大的順序排列。
(2)要求學生熟練應用乘法口訣求商,同時學會有序地思考問題的方法。
2、游戲形式做第64頁第2題。
(1)先讓學生看清加、減、乘、除的運算符號。
(2)使學生初步形成百以內四則運算的口算技能。
3、學生獨立完成第65頁第4、6題。
4、做第65頁中第5題。
(1)先讓學生看懂圖意。
(2)再讓同桌兩人為一組進行對口令活動。
(3)使學生進一步理解乘除法之間的關系,理解“倍”的意義。
【設計意圖】:用多種形式進行練習,提高學生的學習興趣,鞏固學生對表內除法計算的理解與熟練。
四、回顧全課,總結提高。
這節課你有什么收獲?
五、隨堂練習。
教學反思:
最新鴿巢問題單元教學設計大全(18篇)篇十三
一、教學內容:。
教科書第68頁例1。
二、教學目標:
(一)知識與技能:通過數學活動讓學生了解鴿巢原理,學會簡單的鴿巢原理分析方法。
(二)過程與方法:結合具體的實際問題,通過實驗、觀察、分析、歸納等數學活動,讓學生通過獨立思考與合作交流等活動提高解決實際問題的能力。
(三)情感態度和價值觀:在主動參與數學活動的過程中,讓學生切實體會到探索的樂趣,讓學生切實體會到數學與生活的緊密結合。
三、教學重難點。
教學重點:經歷鴿巢問題的探究過程,初步了解鴿巢原理,會用鴿巢原理解決簡單的實際問題。
教學難點:通過操作發展學生的類推能力,形成比較抽象的數學思維。
四、教學準備:多媒體課件。
五、教學過程。
(一)候課閱讀分享:
同學們,大家好,課前老師讓大家收集了有關“鴿巢問題”的閱讀資料,現在就某某同學的閱讀在這候課的幾分鐘內與大家分享一下。
(二)激情導課。
好,咱們班人數已到齊,從今天開始,我們學習第五單元鴿巢問題,這節課通過數學活動我們來了解鴿巢原理,學會簡單的鴿巢原理分析方法。你準備好了嗎?好,我們現在開始上課。
(三)民主導學。
1、請同學們先來看例1。把4支鉛筆放進3個筆筒中,不管怎么放,總有1個筆筒里至少有2只鉛筆。
請你再把題讀一次,這是為什么呢?
對總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說最少有兩支鉛筆。或者是說,鉛筆的支數要大于或等于兩支。
課前老師已經讓大家完成前置性作業,就“4支鉛筆放進3個筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個數。我們發現有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數學中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個情況呢?
方法二:用“假設法”證明。
對,我們可以這樣想,如果在每個筆筒中放1支,先放3支,剩下的1支就要放進其中的一個筆筒。這時無論放在哪個筆筒,那個筆筒中就有2支,所以總有一個筆筒中至少放進2支鉛筆。(平均分)。
方法三:列式計算。
你能用算式表示這個方法嗎?
學生列出式子并說一說算式中商與余數各表示什么意思?
2、把5支鉛筆放進4個筆筒,總有一個筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設法、列式計算。
3、100支鉛筆,放進99個筆筒,總有一個筆筒至少要放進多少支鉛筆呢?
還能有枚舉法嗎?對,不能,枚舉法雖然比較直觀,但數據大的時候用起來比較麻煩。可以用假設法和列式計算。
4、表格中通過整理,總結規律。
你發現了什么規律?
當要分的物體數比鴿巢數(抽屜數)多1時,至少數等于2“商+1”。
5、簡單了解鴿巢問題的由來。
經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我把我們的這一發現,稱為筆筒問題。但其實最早發現這個規律的不是我們,而是德國的一個數學家“狄里克雷”。
(四)檢測導結。
好,我們做幾道題檢測一下你們的學習效果。
1、隨意找13位老師,他們中至少有2個人的屬相相同。為什么?
3、5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。為什么?
(五)全課總結。
今天你有什么收獲呢?
(六)布置作業。
作業:兩導兩練第70頁、71頁實踐應用1、4題。
最新鴿巢問題單元教學設計大全(18篇)篇十四
教科書第68頁例1。
(一)知識與技能:通過數學活動讓學生了解鴿巢原理,學會簡單的鴿巢原理分析方法。
(二)過程與方法:結合具體的實際問題,通過實驗、觀察、分析、歸納等數學活動,讓學生通過獨立思考與合作交流等活動提高解決實際問題的能力。
(三)情感態度和價值觀:在主動參與數學活動的過程中,讓學生切實體會到探索的樂趣,讓學生切實體會到數學與生活的緊密結合。
教學重點:經歷鴿巢問題的探究過程,初步了解鴿巢原理,會用鴿巢原理解決簡單的實際問題。
教學難點:通過操作發展學生的類推能力,形成比較抽象的數學思維。
多媒體課件。
(一)候課閱讀分享:
同學們,大家好,課前老師讓大家收集了有關“鴿巢問題”的閱讀資料,現在就某某同學的閱讀在這候課的幾分鐘內與大家分享一下。
(二)激情導課。
好,咱們班人數已到齊,從今天開始,我們學習第五單元鴿巢問題,這節課通過數學活動我們來了解鴿巢原理,學會簡單的鴿巢原理分析方法。你準備好了嗎?好,我們現在開始上課。
(三)民主導學。
1、請同學們先來看例1。把4支鉛筆放進3個筆筒中,不管怎么放,總有1個筆筒里至少有2只鉛筆。
請你再把題讀一次,這是為什么呢?
對總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說最少有兩支鉛筆。或者是說,鉛筆的支數要大于或等于兩支。
課前老師已經讓大家完成前置性作業,就“4支鉛筆放進3個筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個數。我們發現有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數學中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個情況呢?
方法二:用“假設法”證明。
對,我們可以這樣想,如果在每個筆筒中放1支,先放3支,剩下的1支就要放進其中的一個筆筒。這時無論放在哪個筆筒,那個筆筒中就有2支,所以總有一個筆筒中至少放進2支鉛筆。(平均分)。
方法三:列式計算。
你能用算式表示這個方法嗎?
學生列出式子并說一說算式中商與余數各表示什么意思?
2、把5支鉛筆放進4個筆筒,總有一個筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設法、列式計算。
3、100支鉛筆,放進99個筆筒,總有一個筆筒至少要放進多少支鉛筆呢?
還能有枚舉法嗎?對,不能,枚舉法雖然比較直觀,但數據大的時候用起來比較麻煩。可以用假設法和列式計算。
4、表格中通過整理,總結規律。
你發現了什么規律?
當要分的物體數比鴿巢數(抽屜數)多1時,至少數等于2“商+1”。
經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我把我們的這一發現,稱為筆筒問題。但其實最早發現這個規律的不是我們,而是德國的一個數學家“狄里克雷”。
(四)檢測導結。
好,我們做幾道題檢測一下你們的學習效果。
1、隨意找13位老師,他們中至少有2個人的屬相相同。為什么?
3、5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。為什么?
(五)全課總結今天你有什么收獲呢?
(六)布置作業。
作業:兩導兩練第70頁、71頁實踐應用1、4題。
最新鴿巢問題單元教學設計大全(18篇)篇十五
教學目標:
1.學生經歷解決問題的過程,學會用除法兩步計算解決問題。
2.學生通過解決具體問題,獲得一些用除法計算解決問題的活動經驗,感受數學在日常生活中的'作用。
3.在解決問題的過程中,放手讓學生自主探究,培養學生學習的自主性,感受解決問題方法的多樣性。
教學過程:
一、復習舊知,引入新課。
1.復習舊知,解決問題。
(1)有24瓶牛奶飲料,如果每箱可以裝4瓶,可以裝幾箱?
學生獨立練習,匯報解決過程,師生簡單評價。
2.教師談話,引入新課。
我們這節課繼續學習dd解決問題。
設計意圖:復習除法一步計算和乘法兩步計算的解決問題,為學生學習新課做好知識鋪墊和心理準備。引入新課,指明學習任務,簡明扼要。
二、創設情境,探究新知。
(一)自主探究、學習新知。
1.創設情境,學生搜集信息。
多媒體播放學生團體操表演的畫面,指出:團體操表演是運動會上的又一項內容,并顯示出“這場團體操有60人表演”的信息。
2.學生說出所觀察、搜集到的信息,提出一個兩步計算的問題:每個小圈有多少人?
3.學生自主探究解決方法,然后同桌交流,允許有困難的學生先交流再解答。
4.個別匯報解決方法和結果,鼓勵學生提出不同的解決問題的方法。
5.全體學生針對不同的解決方法,進行評價,表揚有不同解決問題方法的學生。
(二)學生自主解決教科書第99頁的做一做。
1.學生獨立看圖獲取信息,獨立解決,鼓勵解決方法的多樣性。
2.學生互相交流自己的解決過程和方法。
3.匯報解決問題的過程和方法。
4.組織學生進行評價。
設計意圖:充分調動學生的學習經驗和生活經驗,讓學生自主收集、理解數學信息,采用獨立嘗試、討論等方式,讓學生主動探索解決問題的方法,體現學生學習的自主性;鼓勵學生尋找解決問題的多種方法,對于學生合乎情理的闡述,給予積極鼓勵,激發學生探索的欲望,增強信心,提高解決問題的能力。
三、實踐應用、鞏固提高。
1.解決練習二十三的第10題。
學生獨立練習,鼓勵解決方法的多樣性,學生匯報解決方法,學生可能出現的解決方法:
19600÷4÷2=1200(千克);。
29600÷2÷4=1200(千克)。
讓學生充分說明算理,其他學生補充、評價。
2.解決練習二十三的第14題。
讓學生看圖獲取信息,明確問題,獨立解決。
學生匯報解決問題的方法和過程。可能出現:
1954÷2÷3=159(張);。
2954÷3÷2=159(千克);。
33×2=6(場)954÷6=159(千克)。
組織學生討論,使學生明確:有些問題既可以用除法兩步計算解決,也可以用乘法兩步計算解決。
3.編題、解題。
教師先給出學生三個數:240、6和2,然后讓學生聯系生活中的一些事情,用這三個數編出一道用除法兩步計算解決的問題,然后獨立解決,互相檢查。
4.分組解決練習二十三的第15、16題。
設計意圖:分層練習,讓學生及時鞏固新知識,在練習過程中,進一步培養學生搜集信息、整理信息的能力,積累用除法兩步計算解決實際問題的經驗。在解決問題的過程中,通過交流,發現有些問題可以用多種不同的解決方法進行解決,感受到解決問題方法的多樣性,同時讓學生感受到生活中存在很多的數學問題,培養學生用數學眼光觀察周圍事物的習慣和應用意識,提高學生解決問題的能力。
四、總結全課,自我評價。
讓學生說一說通過本節課的學習有什么收獲,評價自己在本節課的表現。
設計意圖:讓學生在日常的學習過程中,學會反思、學會評價,使學生養成良好的學習習慣,形成學習方法。
最新鴿巢問題單元教學設計大全(18篇)篇十六
審定人教版六年級下冊數學《數學廣角鴿巢問題》,也就是原實驗教材《抽屜原理》。
設計理念。
《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數學的一個基本原理,最先是由德國數學家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。
首先,用具體的操作,將抽象變為直觀。“總有一個筒至少放進2支筆”這句話對于學生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學生理解這句話呢?我覺得要讓學生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現“總有一個筒至少放進2支筆”這種現象,讓學生理解這句話。
其次,充分發揮學生主動性,讓學生在證明結論的過程中探究方法,總結規律。學生是學習的主動者,特別是這種原理的初步認識,不應該是教師牽著學生去認識,而是創造條件,讓學生自己去探索,發現。
所以我認為應該提出問題,讓學生在具體的操作中來證明他們的結論是否正確,讓學生初步經歷“數學證明”的過程,逐步提高學生的邏輯思維能力。
再者,適當把握教學要求。我們的教學不同奧數,因此在教學中不需要求學生說理的嚴密性,也不需要學生確定過于抽象的“鴿巢”和“物體”。
教材分析。
《鴿巢問題》這是一類與“存在性”有關的問題,如任意13名學生,一定存在兩名學生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據的理論,我們稱之為“鴿巢問題”。
通過第一個例題教學,介紹了較簡單的“鴿巢問題”:只要物體數比鴿巢數多,總有一個鴿巢至少放進2個物體。它意圖讓學生發現這樣的一種存在現象:不管怎樣放,總有一個筒至少放進2支筆。呈現兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。
第二個例題是在例1的基礎上說明:只要物體數比鴿巢數多,總有一個鴿巢里至少放進(商+1)個物體。因此我認為例2的目的是使學生進一步理解“盡量平均分”,并能用有余數的除法算式表示思維的過程。
學情分析。
可能有一部分學生已經了解了鴿巢問題,他們在具體分得過程中,都在運用平均分的方法,也能就一個具體的問題得出結論。但是這些學生中大多數只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學生完全沒有接觸,所以他們可能會認為至少的情況就應該是“1”。
教學目標。
1.通過猜測、驗證、觀察、分析等數學活動,經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建模”思想。
2.經歷從具體到抽象的探究過程,提高學生有根據、有條理地進行思考和推理的能力。
3.通過“鴿巢原理”的靈活應用,提高學生解決數學問題的能力和興趣,感受到數學文化及數學的魅力。
教學重點。
經歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
教學難點。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
教具準備:相關課件相關學具(若干筆和筒)。
教學過程。
一、游戲激趣,初步體驗。
游戲規則是:請這四位同學從數字1.2.3中任選一個自己喜歡的數字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
二、操作探究,發現規律。
1、具體操作,感知規律。
教學例1:4支筆,三個筒,可以怎么放?請同學們運用實物放一放,看有幾種擺放方法?
(1)學生匯報結果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結果。
(3)小結:不管怎么放,總有一個筒里至少放進了2支筆。
(學情預設:學生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆。”)。
設計意圖:鴿巢問題對于學生來說,比較抽象,特別是“不管怎么放,總有一個筒里至少放進了2支筆。”這句話的理解。所以通過具體的操作,枚舉所有的情況后,引導學生直接關注到每種分法中數量最多的筒,理解“總有一個筒里至少放進了2支筆”。讓學生初步經歷“數學證明”的過程,訓練學生的邏輯思維能力。
質疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結論的方法呢?
2、假設法,用“平均分”來演繹“鴿巢問題”。
1、思考,同桌討論:要怎么放,只放一次,就能得出這樣的結論?
學生思考——同桌交流——匯報。
2、匯報想法。
預設生1:我們發現如果每個筒里放1支筆,最多放4支,剩下的.1支不管放進哪一個筒里,總有一個筒里至少有2支筆。
3、學生操作演示分法,明確這種分法其實就是“平均分”。
三、探究歸納,形成規律。
1、課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應該怎樣列式“平均分”。
設計意圖:引導學生用平均分思想,并能用有余數的除法算式表示思維的過程。
根據學生回答板書:5÷2=2……1。
(學情預設:會有一些學生回答,至少數=商+余數至少數=商+1)。
根據學生回答,師邊板書:至少數=商+余數?
至少數=商+1。
2.師依次創設疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學們有什么發現嗎?
得出“物體的數量大于鴿巢的數量,總有一個鴿巢里至少放進(商+1)個物體”的結論。
板書:至少數=商+1。
設計意圖:對規律的認識是循序漸進的。在初次發現規律的基礎上,從“至少2支”得到“至少商+余數”個,再到得到“商+1”的結論。
師過渡語:同學們的這一發現,稱為“鴿巢問題”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“鴿巢原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
四、運用規律解決生活中的問題。
課件出示習題.:
1.三個小朋友同行,其中必有幾個小朋友性別相同。
2.五年一班共有學生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3.從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
……。
設計意圖:讓學生體會平常事中也有數學原理,有探究的成就感,激發對數學的熱情。
五、課堂總結。
這節課我們學習了什么有趣的規律?請學生暢談,師總結。
最新鴿巢問題單元教學設計大全(18篇)篇十七
1、借助直觀學具演示,經歷探究過程。教師注重讓學生在操作中,經歷探究過程,感知、理解鴿巢問題。
2、教師注重培養學生的“模型”思想。通過一系列的操作活動,學生對于枚舉法和假設法有一定的認識,加以比較,分析兩種方法在解決鴿巢問題的優超性和局限性,使學生逐步學會運用一般性的數學方法來思考問題。
3、在活動中引導學生感受數學的魅力。本節課的“鴿巢問題”的建立是學生在觀察、操作、思考與推理的基礎上理解和發現的,學生學的積極主動。特別以游戲引入,又以游戲結束,既調動了學生學習的積極性,又學到了抽屜原理的知識,同時鍛煉了學生的思維。在整節課的教學活動中使學生感受了數學的魅力。
最新鴿巢問題單元教學設計大全(18篇)篇十八
本節課是數學廣角內容,也叫“抽屜原理”。實際上是一種解決某種特定結構的數學或生活問題的模型,體現了一種數學的思想方法。反思如下:
1.從學生喜歡的“游戲”入手,激發學生學習的興趣和求知欲望,從而提出需要研究的數學問題。這樣設計使學生在生動、活潑的數學活動中主動參與、主動實踐、主動思考,使學生的數學知識、數學能力、數學思想、數學情感得到充分的發展,從而達到動智與動情的完美結合,全面提高學生的整體素質。
2.引導學生在經歷猜測、嘗試、驗證的過程中逐步從直觀走向抽象。
在例1中針對實驗的所有結果,在學生總結表征的基礎上,進而提出“你還可以怎樣想?”的問題,組織學生展開討論交流。我引導學生借助平均分即每個筆筒里先只放1支,這時學生看到還剩下1支鉛筆,這1支鉛筆不管放入其中的哪一個筆筒,這個筆筒都會有2支鉛筆。進一步引導學生加深對“至少有一個筆筒中有2支鉛筆”的理解。最后,組織學生進一步借助直觀操作,討論諸如“5支鉛筆放進4個筆筒,不管怎么放,總有一個筆筒中至少有2支鉛筆,為什么?”的問題,并不斷改變數據(鉛筆數比筆筒數多1),讓學生繼續思考,引導學生歸納得出一般性的結論:(+1)支鉛筆放進個筆筒里,總有一個筆筒里至少放進2支鉛筆。注重讓學生在觀察、實驗、猜想、驗證等活動中,發展合情推理能力,培養學生能進行有條理的思考,能比較清楚地表達自己的思考過程與結果,經歷與他人合作交流解決問題的過程。
本節課首先通過三個基礎練習回顧了“鴿巢原理”,接下來的練習題是鴿巢問題的原理比較簡單,但是在實際的題目當中,最主要的.是幫助學生在不同的題目中找出該道題目的“鴿巢”是什么,然后要放到“鴿巢”里的東西是什么,只有幫助學生在解題時有了構建鴿巢問題模型的能力,才能使學生真正的理解鴿巢問題,以便更好地解決鴿巢問題。
鴿巢問題的出題方式都比較有趣,可以涉及生活的許多不同的方面。在解決這些問題時可以讓學生都動手,構解題的模型,用實物去解決問題,教師要提高學生的這種能力,才能讓學生真正地學會學習,產生學習數學動力,掌握學習數學的方法。