教案模板的內容包括教學目標、教學重點、教學步驟、教學方法、教學評價等,它可以幫助教師系統地組織教學內容。下面是一些經過實踐檢驗的教案模板,它們經過精心設計和改進,已經在實際教學中取得了良好效果。
商的變化規律說課稿范文(16篇)篇一
2、掌握交變電流的變化規律及表示方法,理解描述正弦交流電的物理量的物理含義.。
3、理解正弦交流電的圖像,能從圖像中讀出所需要的物理量.。
5、理解交流電的有效值的概念,能用有效值做有關交流電功率的計算.。
能力目標。
1、掌握描述物理規律的基本方法——文字法、公式法、圖像法.。
2、培養學生觀察能力、空間想象能力、立體圖轉化為平面圖進行處理問題的能力.。
3、培養學生運用數學知識解決處理物理問題的能力.。
情感目標。
分析:線圈。
bc。
da。
始終在平行磁感線方向轉動,因而不產生感應電動勢,只起導線作用.。
(1)線圈平面垂直于磁感線(甲圖),
ab。
cd。
邊此時速度方向與磁感線平行,線圈中沒有感應電動勢,沒有感應電流.、
cd。
cd。
邊的瞬時速度方向,跟線圈經過圖(乙)位置時的速度方向相反,產生的感應電動勢方向也跟在(圖乙)位置相反.邊線速度以磁感線的夾角也等于,這時。
ab。
邊中的感應電動勢為:
同理,
cd。
邊切割磁感線的感應電動勢為:
就整個線圈來看,因。
ab。
cd。
商的變化規律說課稿范文(16篇)篇二
1、教學內容:
這節課內容是人教版四年級上冊第三單元的例題、想想、做做第1—4題。
2、教材分析:
本節課是在學生已經學習了三位數乘兩位數和使用計算器進行計算的基礎上,引導學生借助計算器探索積的一些變化規律,掌握這些規律,為學生進一步加深對乘法運算的理解以及今后自主探索和理解小數乘除法的計算方法做好準備。
教材首先出示2×6=12、20×6=120、200×6=1200,讓學生依據給出的乘法算式,探索當一個因數不變,另一個因數乘一個數,得到的積會有什么變化,引導學生作出猜想。再列舉一些例子,用計算器計算來驗證猜想。引導學生觀察,學生比較容易發現規律,提出猜想,用計算器進行驗證。由于研究的是關于運算的規律,勢必涉及較大數的計算,為了將學生的思維從繁雜的計算中解脫出來,使學生更加關注規律的發現過程,所以用計算器作為探索規律的工具。
3、說教學目標。
基于以上認識,我從知識和能力、過程與方法、情感態度與價值觀三個維度設計了以下教學目標:
(1)借助計算器的計算,使學生探索并掌握一個因數不變,另一個因數乘幾,積也隨著乘幾的變化規律。
(2)經歷觀察、比較、猜想、驗證和歸納等一系列的數學活動,體驗探索和發現數學規律的基本方法,進一步獲得一些探索數學規律的經驗,發展思維能力。
(3)通過學習活動的參與,培養學生合作交流的能力,并在探索活動中感受數學結論的嚴謹性與正確性,獲得成功的體驗,增強學習數學的興趣和自信心。
4、教學重點:使學生探索并掌握一個因數不變,另一個因數乘幾(或除以幾),積也隨著乘幾(或除以幾)的變化規律。
教學難點:在探索和發現規律上,能更多的體驗一般策略和方法,發展數學思考。
5、課前準備:課件、學生每人計算器一個、學生每人一張空白表格。
(1)教法:讓學生在具體的情境中用觀察、驗證來探索積的變化規律,教師引導與學生自主探究相結合,充分發揮學生學習的主動性。
(2)學法:通過觀察交流,讓學生經歷提出猜想、驗證猜想、表述規律、應用規律的自主探索過程,獲得探索數學規律的經驗。
結合本課特點,我設計了以下五個教學環節:
(1)課件出示我校為福利院捐款獻愛心的照片,創設我校師生為福利院捐款買物品的情境,已知每千克橙子6元,買2千克多少元?買20千克?買200千克呢?不僅使學生感知捐款的意義,還為學生學習新知創設熟悉的情景。
(2)引導學生列出第一個問題的算式,計算出結果。并使學生清楚地知道算式中的三個數分別叫做一個因數、另一個因數和積。
(1)6×2=12。
(2)6×20=120。
(3)6×200=1200。
(3)引導學生觀察、比較,思考積會怎樣變化。提出猜想:一個因數不變,另一個因數乘幾,積也隨著乘幾。
『設計理念』這樣的設計是想讓學生解決生活中的實際問題,激發學生的學習興趣,培養學生的數感及提出數學猜想的意識和能力。
為您提供優質資源!
為您提供優質資源!
一個因數另一個因數積積的變化。
(1)6×2=12。
(2)6×20=120。
(3)6×200=1200。
(2)引導學生舉例,進一步驗證猜想。同桌相互合作,寫出任意一組算式:一個因數不變,另一個因數乘一個數。用計算器或者筆算算出結果,進行比較。全班交流,通過交流進一步確認猜想成立。
(3)語言表述規律,小結探索方法。首先讓學生說規律,然后講出探索的方法:如用計算器計算,提出猜想、驗證猜想、不完全歸納等。
『設計理念』新課標當中指出:把現代信息技術作為學生學習數學和解決問題的強有力工具,使學生樂意并有更多的精力投入到現實的探索性的數學活動中來。因此這一環節我讓學生充分利用計算器,運用不完全歸納法,通過具體豐富的實例驗證猜想,讓學生用數學語言準確地描述自己發現的規律。引導學生掌握數學規律與知識的獲得方法,充分發揮學生學習的主動性,培養學生的合作交流的能力,幫助學生在自主探究和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,使學生終生受益。
(1)課本p83想想做做第1題。采用題組的形式讓學生應用規律直接寫出乘法算式的積。完成后再讓學生說說是怎樣想的,使學生進一步熟悉積的變化規律。
(2)用規律解釋口算、筆算、和簡算。
口算:16×5=16×500=16×5000=。
豎式計算:17×517×5017×500。
簡便計算:125×48=125×8×6。
讓學生口頭回答,體會積的變化規律的應用,進一步明確乘數末尾有0的乘法的口算、筆算方法,以及積的變化規律在乘法計算中的巧妙應用。
(3)補充題:2008年的奧運會在北京舉行,小明的爸爸決定去北京觀看一些比賽項目,為中國健兒加油。
如果坐汽車,每小時行使60千米,4小時可以多少千米?
如果坐火車,火車的速度是汽車的`2倍,同樣的時間可以行使多少千米?
這題的第2個問題中蘊含著兩種解題思路,讓學生說一說、比一比。一種是根據速度×時間=路程的數量關系,先算出變化了的那個因數是多少,再求積。另一種是根據一個因數不變,另一個因數乘以幾,原來的積也乘以幾解決問題。兩種方法得出的積相同,使學生體會積的變化規律是客觀存在的普遍規律。
『設計理念』在層次分明,形式多樣的練習中,通過讓學生想一想、填一填、說一說,使學生在規律的應用中逐步加深對積的變化規律的理解。
36×5400=18×24=。
36×540=180×240=。
36×54=1800×2400=。
『設計理念』這一環節是通過兩組題目的計算,讓學生用本節課的研究問題的方法繼續探索積的變化規律,使得積的變化規律的內涵得到延伸,讓學生對這一規律有進一步的理解。
通過今天這節課的學習,你有了什么收獲?還有哪些疑問?
『設計理念』在回憶中總結全課,培養學生的反思意識與能力。
綜觀全課,我給學生營造了寬松的學習氛圍,讓學生在主動觀察、討論交流、猜想驗證等數學活動中,通過看、想、說的過程,逐步探索出一個因數不變,另一個因數乘幾,積也隨著乘幾的變化規律。這樣的探索過程豐富了學生學習的體驗,加深了學生的思考,突破了學生思維和經驗的障礙,而且為學生創造了猜測與驗證、辨析與交流的空間,激發了他們的學習興趣,讓學生真正成為了學習的主人,使課堂充滿生命的活力。
商的變化規律說課稿范文(16篇)篇三
本節課內容是人教版小學數學四年級上冊87頁的內容,本節課是在學生學習了筆算除法的基礎上學習的,并為后面學習學習小數乘除法、分數、比的基本性質等知識奠定了基礎,起到了承上啟下的作用。
依據《新課程標準》要求、數學的學科特征和學生的年齡特點,我確定本節課的教學目標為:
知識與技能目標:理解并掌握商的變法規律,培養學生初步的抽象、概況能力。
過程與方法目標:經歷對商的變法規律的探究過程,體驗觀察、比較、抽象、概況的思想和方法。
情感態度與價值觀目標:在學習過程中,感受數學知識之間的邏輯之美,激發學生的探索精神,培養創新能力。
根據《數學課程標準》對本學段的教學要求,為了使學生順利的達到教學目標,依據學生已有的生活經驗和知識基礎,我確立了本課的教學重點是:理解商的變化規律。;教學難點是:掌握商的變化規律解。
教無定法,貴在得法。新課標指出,有效地學習活動必須建立在學生的知識發展水平和已有的知識經驗基礎之上。四年級小學生的認知水平正處于具體到抽象的過程,根據他們的這些特征,以及教學內容的特點,我在教學中采用以情景教學法、觀察發現法為主,以多媒體演示法為輔的教學方法。
《新課程標準》中提出:學生的學習應當是一個生動活潑的、主動的和富有個性的過程,認真聽講、積極思考、動手實踐、自主探索、合作交流等都是學習數學的重要方式。因此,觀察法、動手實踐、自主探究、合作交流是本節課學生的主要學習方式。
我認為,鉆研教材,研究教法和學法是搞好教學的前提和基礎,而合理安排教學程序卻是教學成功的關鍵一環。為了讓學生學有所獲,這一節課我設計了四個教學環節:
第一個環節:創設情境,激發興趣。首先,我設計了孫悟空分餅的故事導入新課,創設情境,由故事引導學生去探索,激發學生的學習興趣。這樣設計的目的是,讓孩子從開始就充滿好奇心,滿懷興趣的參與學習,教學過程始終吸引孩子,把他們帶入探索問題,發現規律的境界。
第二環節:探索交流,解決問題。
這個環節是課堂教學的中心環節,新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了3個教學活動。
活動一:探究除數不變,商隨被除數的變化而變化。
教學例8時,利用學生已有的知識和經驗基礎,放手讓學生通過計算觀察、比較等活動去發現規律。然后,讓學生用簡潔的語言總結表述規律,我加以糾正或補充。最后讓學生舉例驗證規律,進一步加深理解。
活動二:探究被除數不變,商隨除數的變化而變化。
我放手讓學生用探索第一個規律的方法,獨立觀察思考,也可以同桌或小組之間互相交流,然后匯報,結合課件演示,師生互動,產生共鳴。再舉例驗證。促使學生積極主動參與獲取知識的過程,激發學生創新潛能。
活動三:商不變的性質。
有了前面兩個規律的形成,第三個規律商不變的規律完全放手讓學生探究,借助課件演示讓學生明白比較時可以互相比,也可以同第一個比,但規律是一定的。
通過以上活動,其目的是讓學生充分經歷了觀察、比較、分析、歸納、概括等數學活動與數學思考,在動眼、動手、動口、動腦中充分感知,發現并歸納總結出理解商的變化規律。
第三環節:鞏固應用,內化提高。
對于新知需要及時組織學生鞏固運用,才能得到理解和內化。本環節我依據教學目標和學生在學習中存在的問題,對課本做一做及練習十七的題目加以整理和歸類,有針對性練習。使學生在解決這些問題的過程中,進一步理解、鞏固新知,訓練思維的靈活性、敏捷性、創造性,使學生的創新精神和實踐能力得到進一步提高。
第四環節:回顧整理,反思提升。
今天你學會了什么?你有什么收獲?你有什么感想?
通過全課總結,使學生對自己的學習過程、學習方法、學習成果等進行反思、評價。同時又可以培養學生的概括表達和自我評價的能力,以增強學生的自信心和榮譽感,使學生體驗獲得成功的樂趣。
以上就是我說課的全部內容,謝謝各位評委老師!
商的變化規律說課稿范文(16篇)篇四
教學內容:
探索當一個因數不變時,另一個因數與積的變化規律情況。(課文第58頁的例4,“做一做”及相應的練習)。
教學目標:
2、使學生經歷變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。
3、嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。
4、初步獲得探索規律的一般方法和經驗,發展學生的`推理能力。
5、培養學生初步的抽象、概括能力及善于觀察、勤于思考、勇于探索的良好習慣。
教學重點:
教學難點:
教具準備:
課件、計算器。
教學過程:
一、研究“兩數相乘,其中一個因數變化,它們的積如何變化的規律。
1、研究問題,概括規律。
(1)兩數相乘,一個因數不變,另一個因數乘幾時,積怎么變化。
6×2=。
6×20=。
6×200=。
組織小組交流。
教師出示課件二進行集體交流。
教師出示課件三:根據8×50=400,直接寫出積。
16×50=。
32×50=。
學生自做后教師演示。
歸納規律:兩數相乘,當一個因數不變,另一個因數乘幾時,積也要乘幾。
教師出示課件四,學生小組合作計算。
80×4=。
40×4=。
20×4=。
引導學生概括:兩數相乘,當一個因數不變,另一個因數除以幾時,積也要除以幾。
(3)整體概括規律。
問:誰能用一句話將發現的兩條規律概括為一條?
教師出示課件五。
兩數相乘,一個因數不變,另一個因數乘(或除以)幾,積也要乘(或除以)幾。
2、驗證規律。
先用積的變化規律填空,再用筆算或計算器驗算。
教師出示課件六:
12×8=40×21=。
12×16=40×7=。
12×32=20×21=。
12×64=。
3、應用規律。
完成例4下面的做一做和練習9的1-――4題。
學生完成后,教師出示課件7―10進行集體訂正。
二、研究“兩數相乘,兩個因數都發生變化,積變化的規律“。
1、獨立思考,發現規律。
完成下列計算,說規律。
18×24=432。
(18×2)×(24÷2)=(18÷2)×(24×2)=。
2、組織全班交流,概括規律:兩數相乘,一個因數乘(或除以)幾,另一個因數除以(或乘)幾,它們的乘積不變。
三、鞏固新知。
教師出示課件11根據12345679×9=111111111,直接寫出下面各題的積。
集體訂正。
四、總結:
這節課有什么收獲?
五、作業:
第59頁4、5。
商的變化規律說課稿范文(16篇)篇五
《積的變化規律》是在學生掌握一定的乘除法計算方法和用計算器進行計算的基礎上教學的,本課用計算器來探索一些積的變化規律。
本課的教學思路:用口算導入,其中口算中安排了一些因數變化的對比題,如:25×4和25×8等。口算完成后,教師板書:3564×158=?你能口算嗎?怎么辦?使學生明白用計算器方便我們進行大數目的或復雜的運算。
新課教學,出示教材中的例題,幫助學生理解題意:積的變化是什么意思?跟誰比變化了?怎樣計算?在計算前,先讓學生猜一猜:你覺得積會怎樣變?能提出你的猜想嗎?然后學生借助計算器進行計算,填寫教材中的表格。集體交流,提出問題:你的猜想正確嗎?那在其他的乘法算式中還有沒有這樣的規律呢?寫出一道算式,運用剛才的方法去試一試,并在你的小組里交流。小組匯報,并總結出積的變化規律——一個因數不變,另一個因數乘幾,得到的積就是原來的積乘幾。
鞏固練習,由淺入深。先是模仿例題的練習,根據規律直接填表;然后是直接根據一道算式填出變化后的得數;最后是應用規律解決生活中的實際問題,如:購買同一種商品,數量發生變化,總價也跟著發生相同的變化。
教學后,有幾點體會:
一、在充分經歷中感悟。
在本課教學中,我就充分注意這一點,注重讓學生充分參與積的變化這個規律的發現,充分調動學生參與的主動性,讓學生在大量的舉例、充分地觀察中去感悟積的變化的規律,初步構建自己的認知體系。
二、在充分感悟中提煉。
在本課教學中,學生通過舉例、觀察對積的變化規律有了初步的感悟、也有了初步的理解,但學生在描述規律時,語言總是不夠準確、表述總是不夠完整。此時,我充分地發揮了自己的主導作用,抓住一些關鍵的例子、抓住一些關鍵的詞語讓學生去推敲、去體會,最終引導學生完整、準確地描述出積變化的規律,并通過一些重點詞的理解,使學生更加深刻地理解規律,構建起完整的認知體系。
不足之處:
一、教師的語言不夠凝練。如:引導學生用計算器探索變化規律時,提的問題太多,不利于學生獨立分析和思考。
二、缺乏耐心,不善等待。如:第1題練習,當學生沒有自覺地應用規律進行計算時,教師缺乏耐心,直接請發現規律的同學起來說。如果當時能引導這位同學觀察一下,因數怎樣變化的,能不能不計算就報出積是多少?等待會讓課堂和諧和大氣。
三、練習設計可以更有深度。如:設計逆向思維的練習,在表格中加入已知積的變化求因數的變化;拓展練習,因數同時變化,求積等。
將本文的word文檔下載到電腦,方便收藏和打印。
商的變化規律說課稿范文(16篇)篇六
教學目標:
教學難點:通過觀察、比較、探索商不變的規律。
教學過程:
1.導入。
在上課之前,我們要先來做個游戲,題目是搶答,在游戲開始之前,老師要說規則,規則很簡單就是要等老師說開始之后舉手搶答,不可以亂喊亂叫。現在老師開始出題了,同學們看仔細了哦。
板書:80÷4=150÷15=。
80÷8=300÷15=。
80÷16=450÷15=。
同學們真棒,這么快就搶答完畢了,真是搶答高手!
2.搶答結束,現在老師請同學們仔細觀察左邊的一組算式,其中的被除數、除數、商都有什么變化特點呢?同桌討論下,一會兒老師要請同學們來說說你們的發現。
糾正錯誤,出示,被除數不變,除數擴大(縮小)幾倍,商反而縮小(擴大)幾倍。你真厲害真會概括。
現在請同學們看看右邊的這組算式,你們能發現什么呢?可以采用剛剛的觀察方法來說一說。還可以用剛剛概括地方法說一說規律。
除數不變,被除數擴大(縮小)幾倍,商也擴大縮小幾倍。
同學真會觀察發現,這么快就找到了商的變化規律,除數和被除數變化時,商一定變化嗎?怎么樣商才不變呢?先認真想想,想好的同學舉手告訴老師,一會兒老師要請同學說說你的猜想。
64÷16=認真觀察你有什么發現呢?
看來同學們都有發現,那現在先和同桌說說你的發現。
2得出一種猜想,你們可真是會猜想,現在打開書本93頁,完成表格,驗證下你們的猜想。通過表格,證明你們的猜想在表格中是成立的,那現在請同學們趕緊舉個例子證明自己的發現吧。小組討論,這些算式對不對呢?通過同學們的動手實踐,我們得出了商不變的規律。
3得出多種猜想時,同學的猜想可真不少,學生說猜想老師板書,請同學們舉舉例子證明自己的猜想。剛剛同學用自己的例子證明了猜想,現在請同學們打開課本93頁,再一次驗證下你們的猜想。通過同學們的動手實踐,我們得出了商不變的規律。
被除數、除數同時擴大或縮小相同的倍數,商不變。(齊讀)。
3、鞏固練習,光說不練可不好,現在老師就要讓大家練一練。
120÷40=640÷80=810÷90=360÷60=。
7200÷400=2400÷200=6400÷800=。
哪一組舉手的人最多老師就請哪一組開火車。其他組的同學認真聽,他們組的答案對不對。
(2)學習了商不變的規律可以使我們的計算更為便捷,做一做。
196÷4=392÷8=1960÷40=19600÷400=。
28÷4=56÷8=168÷24=1680÷240=。
課堂小結:通過這一節課的學習,你們都有什么收獲呢?起來說一說。
商的變化規律說課稿范文(16篇)篇七
王老師這節課的設計是按照“讓學生在觀察、思考、抽象、概括的過程中逐漸形成規律,并進行驗證與應用”這幾個環節來開展教學的。教學過程清晰,科學,構建“研究問題——歸納規律——驗證規律——運用規律”的教學主線,教學目標明確,教學環節清晰、流暢,教學語言生動豐富,學生的主體性和教師的主導性得到了很好的體現,而且從學生在課堂上的表現來看,教學效果是很明顯的。總的來說,教師作為學生學習活動的組織者給學生提供了自主探索的空間,引導學生在觀察、猜測、反思等活動中逐步體會數學知識的產生、形成與發展的過程。使學生拓展思路,樂于質疑,樂于合作。下面就本節課的教學活動來談談自己的看法和建議:
1、復習導入時,王老師創設了看誰算的快的口算活動,這為探索積的變化規律做好了鋪墊。緊接著教師出示30×8=240,讓學生說出算式各部分的名稱后,教師直接總結出“當一個因數不變,另一個因數變化,積會怎樣變化呢”引出課題。我覺得這里處理較突兀,如果教師能引導學生從口算的式子中找乘法算式各部分的名稱,然后引導學生認真觀察其中的一組算式,讓學生自己去發現“一個因數不變,另一個因數變化,積也發生了變化”從而順勢引出新課,這樣引導學生自主的發現和猜想,為新知的學習做好鋪墊。
2、自主學習問題設計有漸進性,符合學生的認識特點。王老師讓學生自主地進行探索和交流,鼓勵學生獨立思考、發現規律,讓學生把自己的發現組內交流,交流中鼓勵學生用一句話概括出規律來,引導學生在觀察、猜測等活動中逐步體會積的變化規律。如果能給學生留出充足的探索時間和空間,讓學生真正理解了積的變化規律,那么在下一個例題的學習中學生會輕松很多,教師也可以真正做到放手讓學生自學。
3、在探索規律的學習活動中,教師構建了“研究問題—歸納規律—驗證規律—運用規律“的教學主線,讓學生經歷想辦法、找問題、找方法的過程,并能尊重每一個學生的個性,鼓勵學生用自己的語言表達想法和歸納規律。培養了學生初步的概括和表達能力,同時學生獲得了探索規律的一般方法和經驗,發展了學生的推理能力。四、應重視對中下等學生的指導。由于本節課例題比較簡單,大部分學生通過口算就能直接算出答案,無需通過積的變化規律進行計算,這就給部分思維發散性較差的學生形成了一個假象,以至無法真正懂得該規律的應用。作為數學老師,在課堂上要特別關注思維慢一些的學生,加強對他們的引導,使他們能更積極的更有目標的去思考,增強他們的自信心,從而能主動的去獲取知識。
商的變化規律說課稿范文(16篇)篇八
特別值得一提的是這節課楊老師用了豐富的表揚語,這點值得我學習。最后我再提一點小小的不成熟的建議:剛引入時青蛙的只數和眼睛的倍數關系同時又引出只數與腿數的關系。要是讓學生帶著疑問自己發現他們間的倍數關系是不是效果更佳。
商的變化規律說課稿范文(16篇)篇九
《商的變化規律》一課屬于比較傳統的知識,它是在學生學習了筆算乘法、除法的基礎上進行教學的。與舊教材相比,教材對本知識點作了適當調整:舊教材中只研究了商不變的規律,而新教材中卻改為了商的變化規律,引導學生探討被除數不變商隨除數變化的規律和除數不變商隨被除數變化的規律,提升了學生自由探究數學問題的空間,因此頗具挑戰性。那么老師怎樣做到“老課新上”?做到在“主動教育”模式下始終讓學生成為課堂教學活動中的小主人,怎樣在自主活動中發現問題、探索問題、解決問題以及主動優化,努力實現數學課堂的真正高效?基于以上幾點,我們的教學策略定為:扶放結合、引導探索、自主參與、學會學習、培養能力。
在課堂呈現上余老師緊緊地把握住了以下三點:
1、“問題生成單”是主動教育課堂的“魂”。
我校的“主動教育”教學模式的基石是“問題生成單”,我們在設計本節課之處就始終用“問題生成單”作為課堂的主線,經歷試教之處的時間不夠用、教學環節不夠精簡、課堂探究不夠深入、課堂效率不夠高效等問題后,我們對預習生成單進行了再次設計,將教材中簡單、靜態、結果性的文本,設計成為豐富、生動、過程化的“問題生成單”,讓問題生成單成為整堂課的“魂”。在整堂課中,“問題生成單”分三次呈現。
第一次呈現:在開課環節,教師設計了第一層次的舊知復習,用積的變化規律舊知為新知搭橋鋪墊,為探討除法中商的變化規律起到了方法上的遷移。
第二次呈現:教師要求學生根據問題生成單研究當被除數不變時,研討除數變商會怎樣?除數不變,商會隨著被除數的變化而發生怎樣的變化,起到了為學生分散難點的目的。
第三次呈現:老師要求學生根據第二次的呈現,對被除數、除數都變,商會怎樣變進行合理猜想。
一張小小的問題生成單凝聚著老師課前精心解讀教材的心血,三次精彩的呈現為學生提供了探究的空間,使學生為完成一定任務而進行設想、預見、磋商、探究、討論、辯解,思維發生碰撞,構筑了課堂上有活力、有價值的教學資源,成為了主動教育的“魂”,進而促進學生在有限的40分鐘課堂里獲得了最高效的主動發展。
2、“學生自主探究”成為了主動教育課堂的“根”。
“讓過程和方法進課堂”可謂余老師上課的特色。整節課余老師非常注重培養學生在學習過程中對數學問題的探究,體現了學生的主動和教師的主導,師生和諧共榮,極符學生的認知規律、新課程標準和我校主動教育模式要求。課堂上我們看到教師始終把激勵學生學習、為學生搭建學習平臺作為教學的主線,讓小組中的每個學生都在寬松的氛圍中,始終處于一種積極求知、好學向上的狀態,奠定了學好數學信心的基礎;同時重視合作、探究,使得學生愿意與伙伴交流,敢于自由表達自己的想法,在參與中體驗到學習的樂趣。
課堂上一次次探究活動真正成為師生互動、生生互動,共同發展的數學活動過程,使學生在課堂上有了自主,有了發揚個性、施展才能的空間,成為了主動教學的“根”。
3、“學生自主構建、歸納、總結、提煉”,成為主動教育課堂新的增長點!
課堂中余老師緊緊抓住探究三條規律的過程,注重讓學生構建思考問題的方法,啟發學生有序觀察,多角度、多方向去挖掘思路,引導學生參與到發現規律、探究規律、總結規律的過程中。在學生發現商的變化有某種規律的萌動時,余老師鼓勵學生:“用自己的話講一講發現的規律。”并及時給予肯定,讓學生在觀察、比較、思考、嘗試中,實現師生互動、生生互動,激活了學生主動參與獲取知識的過程。
整節課教師下放“教學”,只作點拔,成為活動的組織者,巧妙設疑,引導學生去發現問題,解決問題,拓展他們的解題思路,既重視學生獨立思考的過程,又重視發揮集體的智慧,給學生提供了多向交流的機會。學生在靜思、合作、商討中,輕松、愉快地學到知識,增長本領,從而達到樂學、會學、創造學的境界。
本課在探究新知的過程中,亦學亦練,注重了知識的生成與鞏固,學與練相得益彰。同時教師非常注重總結性的語言,能適時地把學生表達的變化規律的用語,加以提煉并呈現給學生,使學生在全面了解商的變化規律的同時,又培養了學生用數學語言表達數學規律能力。
1、“積”、“商”是一對矛盾的統一體,學生極易混淆,建議可先復習乘法、除法的概念及算式各部分名稱,做好知識儲備,便于學生表述規律。
2、教師還應加強指導學生表述完整的練習,同時要適時引導、及時糾正,比如學生總結第一個規律時,說被除數不變,除數擴大(或縮小)幾倍,商就擴大或縮小幾倍。
主動教育是一種教育思想,教育策略,教育藝術,教育境界。教師大膽地把舞臺和空間讓給學生,把自己隱蔽起來,讓學生充分發揮其主動性,這樣,課堂就綻放出空靈之美。當然,“冰凍三尺非一日之寒”!模式的創新、思維的轉變,也都不是一蹴而就的過程。我們也從這節課中看到了自身許多的不足。
創新終歸出于實踐,期待在以后的實踐中與我們的孩子們共同轉變、攜手同行!正如我校“主動教育”教學理念中提出的“關注學生興趣,興趣煥發生命精彩;關注學生習慣,習慣影響學生未來;關注學生質疑,質疑引發智慧覺醒。”
商的變化規律說課稿范文(16篇)篇十
我講的是人教版小學數學四年級上冊第五單元“商的變化規律”,這是一節新授課,“商不變的規律”是一個新的數學規律。在小學數學中占有很重要的地位,它是進行除法簡便運算的依據,也是今后學習小數乘、除法、分數、比的基本性質等的基礎。在學習本節課前學生已經掌握了除數是兩位數的除法法則,為本節課的學習提供了知識鋪墊和思想孕伏。通過計算比較,提出問題,引導學生思考發現商的變化規律,這部分內容不但可以鞏固所學的計算知識,同時培養了學生初步的抽象,概括能力,以及善于觀察、勤于思考,勇于探索的良好習慣。
通過本節課的教學,使學生理解掌握商不變的性質,會用商不變的性質對口算除法進行簡便運算。學生在參與,觀察,比較,猜想,概括,驗證等學習過程中體驗成功,同時滲透初步的辯證唯物主義思想啟蒙教育。
根據課程標準要求:小學數學教學要達到知識與技能,過程與方法,情感態度與價值觀三維目標的有機結合,由此我定了一下教學目標:
通過計算,觀察,比較,探索,使學生發現商隨除數(或被除數)的變化而變化的規律。培養學生初步抽象和概括的能力。培養學生善于觀察,勤于思考,勇于探索的良好習慣,激發學生對數學學習的'興趣。
教學重點難點:通過觀察比較,探討發現商的變化規律,掌握規律。
教學方法:探究法,合作法,觀察法,比較法。
教具準備:實物投影,題卡、小黑板。
我們的校本研修主題是:在數學課堂中如何使用激勵性語言。我在本節課中的每一個教學環節,都要抓住適當的時機,適時,適當,適量的對學生進行激勵性評價,建立評價目標多元,評價方法多樣的評價體系,以達到全面了解學生的數學學習歷程,激勵學生學習熱情,促進學生全面發展的目的。
本節課我根據教學內容的編排特點和兒童的認知發展規律,引導學生用眼睛觀察,比較相關算式的內在聯系;動腦去想,抽象出“變”的規律;動口去說,概括出商的變化規律,讓學生在多種感官的協同活動中主動獲取知識。而學生也在創設的情景中,圍繞中心問題通過觀察比較,探究規律,發現規律,表述規律,應用規律,同時也培養了學生的自主觀察、發現、抽象概括、語言表達能力以及創新精神。
在整堂課中,始終圍繞著觀察算式、找出規律、表述規律,充分體現了學生主動參與學習的積極性。
我把整個教學過程分為六大環節進行的。
第一環節談話引入,有利于吸引孩子注意力,激發學生學習興趣。
第二環節,探究新知。我把例題用投影展示,既直觀形象,又節省時間,快速達到目標。在這一環節當中有三個變化規律要探討,第一個規律是被除數不變,商隨除數的變化而變化的,因為被除數不變時,商和除數是成反比例的,這對學生來講可能較難理解,所以我采取幫扶的方法,一來減緩知識梯度,二來培養了學生自主探究的方法,為第二個除數不變,商隨被除數的變化而變化的規律探究,奠定了自學的基礎,再放手讓學生自學這一規律,就很容易了。第三個規律,是被除數和除數同時變化,相同的倍數(零除外)商不變。這是本課的重點內容,我采用了小組合作學習的方法,因為數學課程標準指出:數學教學活動必須建立在學生的認知發展水平和已有知識經驗基礎之上,教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能,數學思想和方法,獲得廣泛的數學活動的廣泛經驗。這樣既培養的學生的合作意識與合作能力,又充分體現了教師是數學學習的組織者、引導者與合作者。
第三環節是運用規律。采取了由易到難的設計方案,首先完成練習十七的四題,直接運用本節課所學的規律;第二完成五題,雖然也是運用商不變的規律,但是題型稍有變化,練習題不是成組出現的提高了一點難度。
第四環節,拓展訓練。難度在此基礎上又加大了一點,即鍛煉學生的思維能力,又加深了對商不變規律的進一步理解。反饋練習加深鞏固,進一步熟悉商的變化規律,了解商的變化規律的應用價值。
第五環節,歸納總結,啟發學生回顧本節課學習的知識,讓學生根據板書了解本節課知識重點,從而形成完整的知識結構體系。
六、板書設計、
這樣設計的板書簡潔明了,使學生對本課的重點一目了然。在對比下,便于學生掌握商的變化規律。
商的變化規律說課稿范文(16篇)篇十一
我教學的內容是人教課標版數學四年級上冊第五單元例5“商的變化規律”。
“商的變化規律”在小學數學中占有很重要的地位,它是進行除法簡便運算的依據,也是今后學習小數乘除法、分數、比的基本性質等知識的基礎。教材中利用學生已有的計算技能,通過計算比較,提出問題引導學生思考發現商的變化規律。這部分內容不但可以鞏固所學的`計算知識,同時培養了學生初步的抽象、概括能力以及善于觀察、勤于思考、勇于探索的良好的學習習慣。
本節課的教學目標是:
1、通過觀察、比較、探索,使學生發現商隨除數(或被除數)的變化而變化的規律。
2、培養學生初步抽象、概括能力。
3、培養學生善于觀察、勤于思考、勇于探索的良好習慣。
本節課我根據教學內容的編排特點和兒童的認知發展規律,引導學生用眼觀察,比較相關算式的內在聯系;動腦去想,抽象出“變與不變”的規律;動口去說,概括出商的變化規律,讓學生在多種感官的協同活動中主動獲取知識。
而學生也在創設的情境中,圍繞中心問題通過觀察比較,探究規律,發現規律,表述規律,應用規律,同時也培養了學生的自主發現、抽象概括、語言表達能力以及創新精神。
一開始我選擇這一個內容,還以為只學習“商不變的性質”這一條規律,可是經過仔細閱讀教材之后,才發現這節課要解決的是商的三條規律,這樣一來,這節課的內容就很多,從量上來講就很足,一堂課要完成這么多的內容,這給我上好這堂課出了一個大難題。于是,思考過后,要同時完成這些內容,那么這節課就只能定位在讓學生通過觀察、比較、探索,使學生發現商隨除數(或被除數)。
的變化而變化的規律,并且能應用這些規律解決一些簡單的問題。
教材編排的時候,把被除數不變時,商隨除數變化而變化的規律放在最前面,接著是除數不變時,商隨著被除數的變化而變化的規律,最后是商不變的性質。因為我們知道被除數不變時,商和除數是成反比例的,這對學生來講可能較難理解,于是,我把除數不變時,商的變化規律放在第一個,這樣在正比例的基礎上,再來學習反比例,學生想度來說較容易理解。
在整堂課中,始終圍繞著觀察算式、得出規律、表述規律和應用規律來進行教學。當然學生在學習這三條規律時,也是一條比一條輕松。第一條規律學生在教師的引導下,順利的得出,第二條第三條規律就放手讓學生學生自己去觀察算式,發現規律,表述規律,充分體現了學生的主體性和主動性。
在這里我要感謝那些不厭其煩地一遍又一遍聽我試講,不斷幫我改教案、幫我指點的老師,真的感謝你們!另外,在我的課中還有很多不足之處,懇請在場的各位領導和老師批評指正,希望你們能給我多提一些寶貴的建議。
商的變化規律說課稿范文(16篇)篇十二
例[4]通過學生觀察兩組乘法算式,引導學生探索當其中一個因數不變時,另一個因數和積的變化情況,并從中歸納出因數和積的變化規律,滲透變與不變的函數變化規律。第一組呈現的是:當一個因數不變,另一個因數擴大幾倍,積也擴大幾倍;第二組呈現的是:當一個因數不變,另一個因數縮小成原來的幾分之一,積也縮小成原來的幾分之一。在教學中,側重的是讓學生在計算練習中理解數的變化,至于如何準確的表述出來,并不重要。
練習九的5題練習題都是應用積的變化規律來解決實際問題的,要引導學生先找到變化規律,理解題意后再解答。特別是第4題,蘋果5元3千克,不能算出1千克多少元,只能應用變化規律來解答:5元能買3千克,打算買6千克,千克數是原來的2倍,積也是原來的2倍,即5×2=10元。
教學目標。
(2)、初步獲得探索規律的一般方法和經驗,發展學生的推理能力。
(3)、培養學生初步的抽象、概括能力及善于觀察、勤于思考、勇于探索的良好習慣。
教學設計:
一出示嘗試題,喚起學生得探求新知的欲望。
同學們的計算能力非常強,能快速口算這些題嗎?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
二、自主學習,探索新知。
1、現在就請同學們以小組為單位,互相交流自己寫得算式,并說一說你是怎樣想的?
點撥:擴大的倍數相同。
教師進一步引導:剛剛在這組算式里同學們發現,一個因數不變,另一個因數擴大10倍,積也擴大10倍。
如果讓你接著再往下寫,你還能再寫出來嗎?
3、猜一猜,如果一個因數不變,另一個因數擴大5倍,積會有怎樣的變化?
請同學們寫出一組這樣的算式驗證一下。學生寫出后匯報。
如果擴大30倍呢?如果擴大100倍呢?
你能試著用一句話來概括一下我們發現的這些規律嗎?
讓我們一起把剛才的發現記錄下來:(板書)一個因數不變,另一個因數擴大幾倍,積也擴大相同的倍數。
根據我們發現的規律,同學們來查一查你寫的算式,對嗎?
板書:一個因數不變,另一個因數縮小幾倍,積也縮小相同的倍數。
誰來出一組算式,驗證一下我們的猜想!
4、同學們,你能把我們發現的規律用一句話來概括嗎?
板書:一個因數不變,另一個因數擴大(或縮小)幾倍,積也擴大(或縮小)相同的倍數。
5、你還有什么問題嗎?
剛才同學們通過積極得動腦思考,交流探究,發現了……(學生讀板書)這也就是我們這節課重點學習的“積的變化規律”(同時板書課題)。
運用這個規律,能幫助我們解決許多的數學問題。想不想試一試?
三、鞏固拓展,運用新知。
教學建議和教學思路。
本課內容的學習需要學生的自主探索和合作交流,因此,教學時可以讓學生以小組為單位,互相交流自已的想法和發現的規律,對所得到的信息、資源進行整合、概括,教師則作適時的提示、補充和糾正。
商的變化規律說課稿范文(16篇)篇十三
“商的變化規律”在小學數學中占有很重要的地位,它是進行除法簡便運算的依據,也是今后學習小數乘除法、分數、比的基本性質等知識的基礎。教材中利用學生已有的計算技能,通過計算比較,提出問題引導學生思考發現商的變化規律。這部分內容不但可以鞏固所學的計算知識,同時培養了學生初步的抽象、概括能力以及善于觀察、勤于思考、勇于探索的良好的學習習慣。
本節課的教學目標是:
1、通過觀察、比較、探索,使學生發現商隨除數(或被除數)的變化而變化的規律。
2、培養學生初步抽象、概括能力。
3、培養學生善于觀察、勤于思考、勇于探索的良好習慣。
教學重難點:通過觀察、比較、探討發現商的變化規律。
本節課我根據教學內容的編排特點和兒童的認知發展規律,引導學生用眼觀察,比較相關算式的內在聯系;動腦去想,抽象出“變與不變”的規律;動口去說,概括出商的變化規律,讓學生在多種感官的協同活動中主動獲取知識。
而學生也在創設的情境中,圍繞中心問題通過觀察比較,探究規律,發現規律,表述規律,應用規律,同時也培養了學生的自主發現、抽象概括、語言表達能力以及創新精神。
一開始我選擇這一個內容,還以為只學習“商不變的性質”這一條規律,可是經過仔細閱讀教材之后,才發現這節課要解決的是商的三條規律,這樣一來,這節課的內容就很多,從量上來講就很足,一堂課要完成這么多的內容,這給我上好這堂課出了一個大難題。于是,思考過后,要同時完成這些內容,那么這節課就只能定位在讓學生通過觀察、比較、探索,使學生發現商隨除數(或被除數)。
的變化而變化的規律,并且能應用這些規律解決一些簡單的問題。
教材編排的時候,把被除數不變時,商隨除數變化而變化的規律放在最前面,接著是除數不變時,商隨著被除數的變化而變化的規律,最后是商不變的性質。因為我們知道被除數不變時,商和除數是成反比例的,這對學生來講可能較難理解,于是,我把除數不變時,商的變化規律放在第一個,這樣在正比例的基礎上,再來學習反比例,學生想度來說較容易理解。
在整堂課中,始終圍繞著觀察算式、得出規律、表述規律和應用規律來進行教學。當然學生在學習這三條規律時,也是一條比一條輕松。第一條規律學生在教師的引導下,順利的得出,第二條第三條規律就放手讓學生學生自己去觀察算式,發現規律,表述規律,充分體現了學生的主體性和主動性。
在這里我要感謝那些不厭其煩地一遍又一遍聽我試講,不斷幫我改教案、幫我指點的老師,真的感謝你們!另外,在我的課中還有很多不足之處,懇請在場的各位領導和老師批評指正,希望你們能給我多提一些寶貴的建議。
商的變化規律說課稿范文(16篇)篇十四
教學內容:人教版小學數學四年級上冊第58—59頁內容。
教材分析:積的變化規律是學生計算思維能力的一次飛躍,它是學生的思維由單一、松散向靈活、多樣化轉變的一個突破口。它是在學生熟練掌握兩位數乘法口算、筆算基礎上進行的,同時又是學生對以前所學乘法計算的一個規律性的總結,它引導學生學會從一般現象中尋找規律,為學生今后學習相關內容提供必要的思維模式。
學情分析:四年級的學生已具有初步的分析和探索能力,本節課在教學安排上充分體現了以學生為主體,去探究新知。
教學目標:
知識與技能:使學生經歷積的變化規律的發現過程,嘗試用簡潔的語言表達積的變化規律。
過程與方法:1、初步獲得探究規律的一般方法和經驗,發展學生的推理能力。
2、在學習過程中培養學生的探究能力,合作交流能力和歸納總結能力。
情感與態度:在經歷探究的過程中,使學生感受到發現數學中的規律是一件十分有趣的事情。
教學準備:課件。
教學過程:
一、遷移舊知,巧導入。
同學們,剛才我們相互了解了,其實,我最想知道的是,你們的計算能力強不強?真的很強嗎?我可找到對手了。
2、543+380=()。
1、543+382=()。
3、546+382=()。
師:出示1題,用自己喜歡的方法算,有困難的同學可筆算。
師:大家算的真的挺快啊,這是個小小的熱身,比賽開始。
出示2題,這么快啊,快說說你是怎么算的?
預設:
生:我發現543是一樣的,382變成380少了2。所以我想,和也少2,就是923。師板書學生的發現。
師:好眼力,通過你的細心觀察,發現了規律,還能利用規律,形成了計算的技巧。敢不敢再來一道。
出示3題。學生用剛才發現的規律很快的說出了結果,有困難的學生也會了方法。
師:說說你為什么算的快?
預設:我發現,382沒變,546比543多3,所以,和也多3,就是928。
師:你能不能把你的發現,用自己的話說說呢?
預設:如果一個加數不變,另一個加數加幾,和就加幾,要是另一個加數減幾,和就減幾。
(設計意圖:小小的巧算環節,兼顧著不同學生的需求,會使學生的特殊需要得到滿足。將學生的學習興趣充分調動起來了,由不會巧算到算得很快。同時為探究積的變化規律作了一個很好的鋪墊。學生很自然的利用知識的遷移,去探究新知。也暗示了先觀察,再發現規律,并運用規律,這一探究的方法。)。
二、引導觀察,巧探究。
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
師:先自己算算,再想一想你發現了什么,在小組中交流你的發現,準備匯報。
匯報:先說結果,哪小組愿意上來邊指邊說你們的發現?
預設:1、在第一組中,6是一樣的,第二個因數變了,積也不一樣。
2:我發現6都是一樣的,第二個因數一個比一個后面多一個0。積也多一個0。
3:我發現6不變,第二個因數2乘10得20,積也乘了10。第二個因數乘100,積也乘100.(組內可補充)。
師:在第二組中有沒有這樣的規律呢?哪組愿意說?
預設:我發現4不變,5乘2的10,積由20乘2得40。5乘4得20,積也乘4得80。
師:能不能把你們的發現用一句話概括呢?
預設:一個因數不變,另一個因數乘幾,積也乘幾。
師:一個因數不變,另一個因數乘4,積會怎樣?
一個因數不變,另一個因數乘4,積乘5,行嗎?為什么?
(說明這兩個“幾”是一樣的數。)。
(設計意圖:這一環節讓學生充分經歷了學習的過程,學會了研究問題的一般方法:研究具體問題---歸納發現的規律---解釋說明規律。使學生嘗到了探究新知的甜頭,感受到探究的快樂。)。
師:你們真的太厲害了,其實啊,在這算式中還有規律呢?剛才我們是怎么觀察的?(從上往下),如果我們倒著看,你又能發現什么呢?先想想,在于小組同學交流。
請2-3個組匯報。(邊指邊說)。
預設:1、一個因數不變都是6,另一個因數除以10,積也除以10。
2、一個因數不變,另一個因數除以4,積也除以4.
……。
你能不能也用一句話概括一下你的發現呢。
預設:一個因數不變,另一個因數除以幾,積也除以幾。
有沒有想說的?
(設計意圖:既然是猜想,給了學生更加廣闊的思維和想象的空間。前面已經探究出一個規律,這里教師就放手了,讓學生用剛才掌握的研究過程實現方法的遷移運用。最后疑問的提出,是想看看學生能不能想到0除外的問題。)。
師:孩子們我們數學追求的是準確,簡練。你能不能把這兩句話合并為一句呢?先獨立想,在匯報。
總結規律:一個因數不變,另一個因數乘(或除以)幾,積也乘(或除以)幾。
這條規律是不是真的試用呢,你能用這個規律寫一組算式嗎?
要求:同桌合作,左邊的同學寫一個算式,右邊的同學運用規律寫一個算式。比一比誰做的快。
匯報,這幾組同學說的都是一個因數不變,另一個因數乘幾,積也乘幾的算式。還可以寫怎樣的呢?(除以幾的)再寫一組,同桌交換。
誰和老師合作,你說一個算式,我來寫第二個,好嗎?
預設:當學生說算式7×9=63我來寫了,我想讓7不變……。
7×=可以嗎?
預設:不可以,因為0不能做除數,學生會發現,在這條規律中應加上(0除外)。
(設計意圖:讓學生動腦、動口、動手,相互交流,進一步培養學生的合作交流意識。這個設計表面看是對新知的鞏固,其實,暗含著對0除外的問題解決。同時讓學生體會到對待數學要有嚴謹的態度。)。
三、鞏固拓展,巧運用。
1、師:我們找到了規律,有什么用啊?我們來做組練習吧。(課件出示)。
2、想想?是誰。
4×50=200。
(4×2)×50=200×?
4×(50×3)=200×?
(4×2)×(50×3)=200×?
(設計意圖:練習的設計充分體現了層次性、靈活性、啟發性、挑戰性。通過學生進行不同類型的練習,可以有效的激發學生的學習興趣,拓展學生的思維空間,是不同的學生得到不同的發展。)。
四、課堂小結:孩子們,短暫的40分鐘過得很愉快,你們開心嗎?這節課你都記住了什么。
板書設計:
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
規律:------------------。
課后反思:
本節課充分體現了“讓過程和方法進課堂”的新理念。
1.精心選題,巧引入。
俗話說,良好的開端是成功的一半。在課的伊始,利用學生的好勝心里,引導觀察,激發學生的欲望,扣住學生的心弦,有利于架起已知與未知的橋梁,發現一些新的結論。
2.合作探究,體快樂。
本節課我引領學生經歷科學發現的完整過程,注重學生對比較,猜測,驗證,思辨等數學方法的習得,同時讓學生在探究過程中獲得成功的體驗,積累探究經驗,從而為學生探究能力的提高提供了全方位的保障。讓學生學得開心,真正體驗到學習得快樂!
3.學練結合,顯梯度。
本節課在探究新知的過程中,亦學亦練,注重了知識的生成與鞏固,學練相得彰顯,最后練習的設計既注重了基礎知識鞏固,又注重了不同層次學生的需求。
整節課的設計,把自主、合作、探究落到了實處。
商的變化規律說課稿范文(16篇)篇十五
2、經歷“積的變化規律”的發現、表達和應用的過程,初步獲得探索規律的方法和經驗,發展概括、推理能力。
3、感受探索、運用規律的樂趣。
一、從生活中來。
結合這三個算式說說你的發現。
二、探索規律。
1、發現規律。
請同學們拿出學習單一,有兩組算式,大家可以選擇其中一組研究,也可以兩組都完成。
在研究之前請同學讀一讀學習建議。
我們來聽聽他們是怎么思考的。
按什么順序觀察的第一個因數,從()到()乘幾,第二個因數不變。積也乘幾,看來觀察得越全面,得到的結論才能越完整。
2、表達規律。
匯報,強調幾相同,0除外。把這條規律寫在黑板上。那這條重要的規律就是積的變化規律。
3、像剛才那樣,我們用大量的不同的例子來概括這個規律的方法,叫做不完全歸納法。
4、應用規律。
1、你能根據8×50﹦400,直接寫出下面各題的積。
三、到生活中去。
商的變化規律說課稿范文(16篇)篇十六
一、解讀教材:
《商的變化規律》一課屬于比較傳統的知識,它是在學生學習了筆算乘法、除法的基礎上進行教學的。與舊教材相比,教材對本知識點作了適當調整:舊教材中只研究了商不變的規律,而新教材中卻改為了商的變化規律,引導學生探討被除數不變商隨除數變化的規律和除數不變商隨被除數變化的規律,提升了學生自由探究數學問題的空間,因此頗具挑戰性。那么老師怎樣做到“老課新上”?做到在“主動教育”模式下始終讓學生成為課堂教學活動中的小主人,怎樣在自主活動中發現問題、探索問題、解決問題以及主動優化,努力實現數學課堂的真正高效?基于以上幾點,我們的教學策略定為:扶放結合、引導探索、自主參與、學會學習、培養能力。
二、課堂呈現:
在課堂呈現上余老師緊緊地把握住了以下三點:
1、“問題生成單”是主動教育課堂的“魂”。
我校的“主動教育”教學模式的基石是“問題生成單”,我們在設計本節課之處就始終用“問題生成單”作為課堂的主線,經歷試教之處的時間不夠用、教學環節不夠精簡、課堂探究不夠深入、課堂效率不夠高效等問題后,我們對預習生成單進行了再次設計,將教材中簡單、靜態、結果性的文本,設計成為豐富、生動、過程化的“問題生成單”,讓問題生成單成為整堂課的“魂”。在整堂課中,“問題生成單”分三次呈現。
第一次呈現:在開課環節,教師設計了第一層次的舊知復習,用積的變化規律舊知為新知搭橋鋪墊,為探討除法中商的變化規律起到了方法上的遷移。
第二次呈現:教師要求學生根據問題生成單研究當被除數不變時,研討除數變商會怎樣?除數不變,商會隨著被除數的變化而發生怎樣的變化,起到了為學生分散難點的目的。
第三次呈現:老師要求學生根據第二次的呈現,對被除數、除數都變,商會怎樣變進行合理猜想。
一張小小的問題生成單凝聚著老師課前精心解讀教材的心血,三次精彩的呈現為學生提供了探究的空間,使學生為完成一定任務而進行設想、預見、磋商、探究、討論、辯解,思維發生碰撞,構筑了課堂上有活力、有價值的教學資源,成為了主動教育的“魂”,進而促進學生在有限的40分鐘課堂里獲得了最高效的主動發展。
2、“學生自主探究”成為了主動教育課堂的“根”。
“讓過程和方法進課堂”可謂余老師上課的特色。整節課余老師非常注重培養學生在學習過程中對數學問題的探究,體現了學生的主動和教師的主導,師生和諧共榮,極符學生的認知規律、新課程標準和我校主動教育模式要求。課堂上我們看到教師始終把激勵學生學習、為學生搭建學習的平臺作為教學的主線,讓小組中的每個學生都在寬松的氛圍中,始終處于一種積極求知、好學向上的狀態,奠定了學好數學信心的基礎;同時重視合作、探究,使得學生愿意與伙伴交流,敢于自由表達自己的想法,在參與中體驗到學習的樂趣。
課堂上一次次探究活動真正成為師生互動、生生互動,共同發展的數學活動過程,使學生在課堂上有了自主,有了發揚個性、施展才能的空間,成為了主動教學的“根”。
3、“學生自主構建、歸納、總結、提煉”,成為主動教育課堂新的增長點!
課堂中余老師緊緊抓住探究三條規律的過程,注重讓學生構建思考問題的方法,啟發學生有序觀察,多角度、多方向去挖掘思路,引導學生參與到發現規律、探究規律、總結規律的過程中。在學生發現商的變化有某種規律的萌動時,余老師鼓勵學生:“用自己的話講一講發現的規律。”并及時給予肯定,讓學生在觀察、比較、思考、嘗試中,實現師生互動、生生互動,激活了學生主動參與獲取知識的過程。
整節課教師下放“教學”,只作點拔,成為活動的組織者,巧妙設疑,引導學生去發現問題,解決問題,拓展他們的解題思路,既重視學生獨立思考的過程,又重視發揮集體的智慧,給學生提供了多向交流的機會。學生在靜思、合作、商討中,輕松、愉快地學到知識,增長本領,從而達到樂學、會學、創造學的境界。
本課在探究新知的過程中,亦學亦練,注重了知識的生成與鞏固,學與練相得益彰。同時教師非常注重總結性的語言,能適時地把學生表達的變化規律的用語,加以提煉并呈現給學生,使學生在全面了解商的變化規律的同時,又培養了學生用數學語言表達數學規律能力。
三、不足之處:
1、“積”、“商”是一對矛盾的統一體,學生極易混淆,建議可先復習乘法、除法的概念及算式各部分名稱,做好知識儲備,便于學生表述規律。
2、教師還應加強指導學生表述完整的練習,同時要適時引導、及時糾正,比如學生總結第一個規律時,說被除數不變,除數擴大(或縮小)幾倍,商就擴大或縮小幾倍。
主動教育是一種教育思想,教育策略,教育藝術,教育境界。教師大膽地把舞臺和空間讓給學生,把自己隱蔽起來,讓學生充分發揮其主動性,這樣,課堂就綻放出空靈之美。當然,“冰凍三尺非一日之寒”!模式的創新、思維的轉變,也都不是一蹴而就的過程。我們也從這節課中看到了自身許多的不足。
創新終歸出于實踐,期待在以后的實踐中與我們的孩子們共同轉變、攜手同行!正如我校“主動教育”教學理念中提出的“關注學生興趣,興趣煥發生命精彩;關注學生習慣,習慣影響學生未來;關注學生質疑,質疑引發智慧覺醒。”